
 International Journal of 

Molecular Sciences

Article

Fragrance in Pandanus amaryllifolius Roxb. Despite the
Presence of a Betaine Aldehyde Dehydrogenase 2

Vacha Bhatt 1, Vitthal T. Barvkar 1 , Agnelo Furtado 2, Robert J. Henry 2 and Altafhusain Nadaf 1,*

����������
�������

Citation: Bhatt, V.; Barvkar, V.T.;

Furtado, A.; Henry, R.J.; Nadaf, A.

Fragrance in Pandanus amaryllifolius

Roxb. Despite the Presence of a

Betaine Aldehyde Dehydrogenase 2.

Int. J. Mol. Sci. 2021, 22, 6968.

https://doi.org/

10.3390/ijms22136968

Academic Editor: Leszek

A. Kleczkowski

Received: 27 April 2021

Accepted: 24 June 2021

Published: 28 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Botany, Savitribai Phule Pune University, Pune 411007, India; vacha.biotech@gmail.com (V.B.);
vbarvkar@gmail.com (V.T.B.)

2 Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland,
St Lucia, QLD 4072, Australia; a.furtado@uq.edu.au (A.F.); robert.henry@uq.edu.au (R.J.H.)

* Correspondence: abnadaf@unipune.ac.in

Abstract: Pandanus amaryllifolius Roxb. accumulates the highest concentration of the major basmati
aroma volatile 2-acetyl-1-pyrroline (2AP) in the plant kingdom. The expression of 2AP is correlated
with the presence of a nonfunctional betaine aldehyde dehydrogenase 2(BADH2) in aromatic rice
and other plant species. In the present study, a full-length BADH2 sequence was reconstructed from
the transcriptome data of leaf tissue from P. amaryllifolius seedlings. Based on this sequence, a 1509 bp
coding sequence was defined that encoded a 54 kD PaBADH2 protein. This revealed the presence
of a full-length BADH2 protein in P. amaryllifolius. Moreover, quantitative real-time PCR analysis,
combined with BADH2 enzyme activity, confirmed the expression and functionality of the PaBADH2
protein. To understand the apparent structural variation, docking analysis was carried out in which
protein showed a good affinity with both betaine aldehyde (BAD) and γ-aminobutyraldehyde (GAB-
ald) as substrates. Overall, the analysis showed the presence of a functional BADH2, along with
substantial 2AP synthesis (4.38 ppm). Therefore, we conclude that unlike all other plants studied to
date, 2AP biosynthesis in P. amaryllifolius is not due to the inactivation of BADH2.

Keywords: P. amaryllifolius; betaine aldehyde dehydrogenase 2; 2-acetyl-1-pyrroline; γ-aminobutyraldehyde

1. Introduction

Among the 750 Pandanus species, Pandanus amaryllifolius is the only species that
produces the major basmati aroma compound 2-acetyl-1-pyrroline (2AP) in leaves. The
species accumulates 2AP at the highest concentrations reported in the plant kingdom [1–3].
Leaves of P. amaryllifolius areroutinely used to flavor different food dishes in Southeast
Asia [4]. In India, it was introduced in 1798, through the Botanical garden of Kolkata [5]
and popularly cultivated along the Indian peninsular in kitchen gardens as a spice.

This species has been extensively studied in the laboratory of AN as follows. Bag-like
structures called epidermal papillae were identified on the lower epidermis of the leaves
of this species and act as a site of storage for 2AP [6]. Their pattern of development has
been studied in the in vitro raised seedlings that showed that stomata act as the epicenter
for its development [7]. A total of 21 new volatiles in this species have been identified [8].
Further, in vitro regeneration protocol has also been standardized. The populations of P.
amaryllifolius grown under a wide range of environmental conditions across the Indian
peninsular regions were collected and an elite population with the highest 2AP contents
(12.2 ppm) was identified [9].These populations displayed remarkable genetic similarity.

We now report an investigation of the molecular basis of the extreme 2AP accumula-
tion in this species. In aromatic rice and other plant species, 2AP synthesis is correlated
with the presence of a nonfunctional BADH2 gene [10]. A mutation in the BADH2 gene
introducing a premature stop codon causes loss of gene function and starts accumulating
GAB-ald, a substrate of BADH2, and this GAB-ald spontaneously reacts with methylgly-
oxal to produce 2AP [11]. Fitzgerald et al. [12] reported that BADH2 is playing a crucial
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role in maintaining the yield under salt stress and under exposure to stress conditions
fragrant rice varieties with nonfunctional BADH2 is more susceptible to yield loss. A de-
tailed understanding of the enzymatic and molecular mechanism of BADH2 in Pandanus
can help to resolve the issue of stress susceptibility in fragrant rice. The BADH2 enzyme
belongs to the aldehyde dehydrogenase (ALDH) super family. Members of this family
possess substrate-binding, NAD+-binding, and oligomerization domains. The total loss
of activity was observed associated with a mutation in Cys294 to alanine in the catalytic
site of BADH2 [13–15]. Similarly, loss of activity was reported with a Glu260 to alanine
mutation, and a reduced enzyme affinity was observed with an Asn162 to alanine mutation.
Numerous studies have been carried out to identify the precursors of 2AP in various plant
species. These studies reported that proline, ornithine, and glutamate act as the primary
precursors of 2AP synthesis in P. amaryllifolius [16,17] and rice [18,19].

Although the economic importance of P. amaryllifolius is attributed to the aroma,
limited information is available regarding the structure and specificity of BADH2 in this
species. An earlier report [20] showed the presence of a truncated allelic form of the
BADH2 gene in in vitro plantlets of P. amaryllifolius (PND BADH2, gene ID: KY765936.1).
Furthermore, in silico analysis suggested that insufficient affinity between the PaBADH2
enzyme and its substrate GAB-ald might be the major determinant of aroma development
in P. amaryllifolius. Here, we obtained the full-length functional PaBADH2 sequence from
the transcriptome analysis and characterized its enzymatic activity, gene expression, protein
sequence, active site, and interaction with a substrate.

2. Results
2.1. De Novo Transcriptome Assembly and Analysis

RNAseq data from the leaf of P. amaryllifolius was used to perform de novo assembly
of the transcriptome. Raw data comprising 37,583,042 reads were obtained from the library.
The SRA sequences were submitted to NCBI (BioProject ID: PRJNA692823). After removing
the low-quality reads and all possible contamination, a total of 29,464,902 clean reads with
Q ≥ 30 and 46% of GC content were obtained. Trinity-based de novo assembly generated
contigs with N25 of 1663 bp, N50 of 1010 bp, and N75 of 555 bp. The N50 value of assembly
is the sequence length of the shortest contig at 50% of the total transcriptome assembly
length. It is a length-weighted median. N50 statistic defines assembly quality in terms of
contiguity. Likewise, N25 and N75 are the minimum contig length to cover 25% and 75% of
transcriptome assembly, respectively. A total of 34,672 transcript sequences were produced
that had an average transcript size of 802 bp. A total of 27,734 transcripts had homologous
genes in the NCBI nt database, while 6938 transcripts had no significant homology to any
known genes. The assembly statistics are given in Supplementary Table S1.

2.2. Isolation of PaBADH2 Transcriptome Sequence and Its Comparison with Other BADH2 Sequences

A full-length transcript sequence of PaBADH2 was isolated from the assembled tran-
scriptome using homology-based criteria and the transcript was found to be 1989 bp long.
The sequence comprises a 5′ UTR from nucleotide 1 to 116 and a 3′ UTR from nucleotide
1629 to 1988. The gene sequence was compared with the previously reported PND BADH2
and a nonscented rice OsBADH2 sequence. There were several mismatches observed be-
tween PaBADH2 and PND BADH2 gene sequences. To confirm the reconstructed sequence,
the raw sequencing reads were mapped onto the assembled BADH2 from P. amaryllifolius
and this revealed that a total of 1762 reads mapped to the PaBADH2 (1512 bp) sequence
that supported the full-length sequence of an apparently functional transcript (Figure 1).
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Figure 1. Mapping-based evidence for presence of the PaBaDH2 gene in P. amaryllifolius genotype.
PaBADH2 and PND BADH2, Betaine aldehyde dehydrogenase gene of Pandanus amaryllifolius from the
present study and Arora et al. (2017), respectively: (A,B) alignment of the PaBADH2 and the PND
BADH2 genes showing several mismatches including the insertion of the T nucleotide and the deletion
of the C nucleotide at each end of the 24 bp region indicated with red and blue broken vertical lines
and the consequential change in the amino acid sequence; (C) mapping of whole-genome Illumina
reads of P. amaryllifolius to the PaBADH2 and the PND BADH2 as reference sequences indicates the
reads, showing no evidence of the T nucleotide insertion and the deletion of the C nucleotide at each
end of the 24 bp sequence.
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2.3. Comparative Amino Acid Sequence Analysis

The PaBADH2 transcript included an open reading frame with 1509 nucleotides en-
coding a 503 amino acid full-length sequence, which would translate to a 54 kD functional
protein. A peptide sequence (VSYGAWWQKS) and a cysteine residue (28th amino acid
from the conserved peptide sequence), which was reported to be highly conserved in the
proteins of aldehyde dehydrogenase, was observed in PaBADH2. Another characteristic
conserved peptide, EGCRLGPVVS, reported in betaine dehydrogenases, was also present
in PaBADH2. This finding suggests the presence of functional BADH2 protein in P. amarylli-
folius. The PaBADH2 gene contains a C-terminal SKL sequence, suggesting that the protein
is targeted to the peroxisomes.

The comparative sequence alignment of PaBADH2 and the previously reported se-
quence, PND BADH2 [20] exhibited 91.7% sequence similarity. The analysis also showed
that most of the amino acid sequences were conserved between them except for a major
consecutive 8 amino acid variation present at the middle of the PaBADH2 sequence. A
critical amino acid of the catalytic domain of functional BADH2, Glu260, was present in
PaBADH2, while it was mutated to glycine in PND BADH2. PaBADH2 showed 79.3%
sequence identity with the rice sequence, OsBADH2 (Figure 2). Although there were some
variations in the amino acid sequence of PaBADH2 relative to the OsBADH2 sequence, the
formation of full-length protein was not hampered. The predicted amino acid sequence
for PaBADH2 suggested the presence of a full-length functional protein because the dif-
ferences in the sequences were not in the conserved amino acids that are important for
enzyme activity.

2.4. Docking Analysis

To uncover possible functional differences between OsBADH2 and PaBADH2, protein
docking analysis was carried out using BAD and GAB-ald as substrates (Figures 3 and 4).
The three-dimensional structure of the PaBADH2 protein was developed and enzyme–
substrate interaction was studied using protein docking where BAD was used as the
substrate for BADH2. With GAB-ald, the interaction energy for a monomer of PaBADH2
and OsBADH2 was −3.3 kcal/mole and −3.2 kcal/mole, respectively, whereas, in the
case of BAD, it was −5.1 kcal/mole and −5.2 kcal/mole, respectively. The conserved
amino acids of the NAD+ catalytic domains are almost identical in both proteins. The
active site of PaBADH2 for substrate binding comprised of, Ile158, Thr159, Pro160, Lys185,
Ser187, Glu188, Phe236, Gly238, Ser239, and Thr242. Likewise, the active site of OsBADH2
consists of Glu297, Leu300, Phe301, Phe304, Trp305, Trp334, Ile338, and Arg349. From this
analysis, interactions were found in the complexes between hydrogen bonds, ionic bonds,
C-H bonds, and Van der Waals interactions. The BAD interacted with the active site of
PaBADH2 via two hydrogen bonds (2.1 A0), two C-H bonds (3.49 A0), one ionic interaction
(4.64 A0), and six Van der Waals interactions (3.16 A0). In this reaction, the hydroxyl
group containing amino acids Ser239 and Thr242 from the active site of the enzyme were
associated in hydrogen bond formation with a ligand molecule. Moreover, the nucleophilic
nature of the tertiary amine of the substrate allows the formation of an ionic bond with
Glu188 present in the active site of the enzyme. Thr159 and Thr237 were present close to
the substrate forming a strong C-H bond. Other than these, Phe236, Gly238, Lys185, Ser187,
and Ile158 were involved in the Van der Waals interaction. In the same way, OsBADH2
also contained Glu297 that formed ionic interaction with the ligand, whereas other amino
acids such as Leu300, Phe301, Phe304, Trp305, Trp334, Ile338, Arg349 were engaged in
Van der Waals bond formation with the substrate. Overall, the docking analysis of both
PaBADH2 and OsBADH2 suggested that there was not much difference in the interaction
energies and the bond formation in the active site of both the enzymes; hence, it can be
said that the PaBADH2 enzyme is likely to have similar activities.
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Figure 2. Multiple sequence alignment of BADH2 protein sequence from OsBADH2 (gene ID:
4345606), PND BADH2 (gene ID: KY765936.1), and PaBADH2. The marked region shows the
continuous stretch of eight amino acid variations in PND BADH2, as compared with OsBADH2 and
PaBADH2 sequences. The conserved region of the aldehyde dehydrogenase domain is represented
with red lines.
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Figure 3. Docking analysis of PaBADH2 with betaine aldehyde (BAD): (a) docked 3D structure
of PaBADH2-BAD complex; (b) showing H-bond donor (pink) and acceptor (green) surfaces in
PaBADH2-BAD complex; (c) the 2D view of interacting residues of PaBADH2-BAD complex at ligand
binding site that involves H-bond (green circle), Van der Waals bond (light green circle) and electro-
static interaction (brown circle); (d) docked 3D structure of OsBADH2-BAD complex; (e) showing
H-bond donor (pink) and acceptor (green) surfaces in OsBADH2-BAD complex; (f) the 2D view of
interacting residues of OsBADH2-BAD complex at ligand binding site that involves H-bonds (green
circle), Van der Waals bonds (light green circle), and electrostatic interaction (brown circle).

Figure 4. Docking analysis of PaBADH2 with 4-amino butaraldehyde (GAB-ald): (a) docked 3D
structure of PaBADH2-GAB-ald complex; (b) showing H-bond donor (pink) and acceptor (green)
surfaces in PaBADH2-GAB-ald complex; (c) the 2D view of interacting residues of PaBADH2- GAB-
ald complex at ligand binding site that involves H-bond (green circle) and Van der Waals bond (light
green circle); (d) docked 3D structure of OsBADH2 GAB-ald complex; (e) showing H-bond donor
(pink) and acceptor (green) surfaces in OsBADH2GAB-ald complex; (f) the 2D view of interacting
residues of OsBADH2-GAB-ald complex at ligand binding site that involves H-bonds (green circle)
and Van der Waals bonds (light green circle).
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2.5. BADH2 Enzyme Activity and Gene Expression Analysis

The BADH2 enzyme activity of P. amaryllifolius, Basmati 370 (scented rice), and
IR 64 (nonscented rice) with GAB-ald as a substrate at pH 8.0 was 40.0 nM/min/g,
23.9 nM/min/g, and 35.1 nM/min/g, respectively (Figure 5). With BAD as a substrate, the
same assay depicted a different trend. P. amaryllifolius showed 73.6 nM/min/g, Basmati
370 showed 11.4 nM/min/g, and IR 64 showed 22.5 nM/min/g enzyme activity. This
confirms the presence of a functional BADH2 enzyme in P. amaryllifolius. Additionally, the
study proves that P. amaryllifolius utilizes BAD substrate more efficiently than GAB-ald at
pH 8 and vice versa for the rice varieties. The expression analysis of the PaBADH2 gene
(1.33 ±0.89 fold), OsBADH2 in Basmati 370 (1.00 ± 0.081), and IR 64 (1.65 ± 0.98) showed
that it was upregulated in leaf tissue (Figure 4). This result further highlights the presence
of the functional PaBADH2 gene in P. amaryllifolius.

Figure 5. A comparative BADH2 enzyme activity using BAD and GAB-ald substrates and gene
expression analysis in P. amaryllifolius and rice varieties. The EF1 gene was taken as a reference gene
for normalization and relative abundance (fold change) was calculated by the 2−∆∆Ct method.

2.6. Quantification of 2AP and Other Metabolites

The highest amount of 2AP was recorded in P. amaryllifolius (4.38 ppm), followed by
Basmati 370 (0.20 ppm) and the absence of 2AP in IR 64 (Figure 6). The amount of 2AP
in P. amaryllifolius was 20–22 times higher than that in the basmati rice varieties. Thus, P.
amaryllifolius produces significantly higher concentrations of 2AP than fragrant rice. These
results are in agreement with earlier reports [8]. Among the metabolites studied, free
proline (8.01 µmoles/g) and methylglyoxal (130 ± 0.020 µM/g) contents were highest in
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P. amaryllifolius. Yadav et al. [21] reported 62.3 and 74.8 µM/g of methylglyoxal in rice
varieties IR 64 and PB1. This indicates that P. amaryllifolius contains an appreciably higher
amount of methylglyoxal, as compared to nonscented rice varieties. Moreover, the same
trend was followed by GABA content (10.1 µg/g). The concentration of GABA in various
plant parts commonly ranges from 0.03 to 5.5 µg/g [22]. Rashmi and Nadaf [23] reported
15.0 µmoles/g GABA in P. odorifer plants. The amount of GABA present in P. amaryllifolius
was also considerably higher than in other plants.

Figure 6. Comparative metabolite analysis in P. amaryllifolius, Basmati 370, and IR 64. The graph shows a comparative
analysis of four key metabolites, namely, (A) proline, (B) 2AP, (C) methylglyoxal, and (D) GABA of 2AP biosynthetic pathway.
Analysis was carried out in triplicates, and the standard deviation is represented with error bars. (Mean ± SE, n = 3).

2.7. Enzyme Activity of ∆1-Pyrroline-5-Carboxylate Synthetase (P5CS) and Expression Analysis

The P5CS enzyme activity and transcript levels were found to be higher in P. amarylli-
folius (67.8 ± 2.8 nM/min/g and 2.00 ± 0.71 fold, respectively), which further correlates
with the higher amount of proline and 2AP (Figure 7). P5CS enzyme is related to the
enhancement of ∆1-pyrroline-5-carboxylic acid (P5C), thus resulting in the accumulation of
higher 2AP. Kaikavoosi et al. [24] reported that overexpression of the P5CS gene enhanced
the accumulation of proline, P5C, and 2AP in aromatic rice.
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Figure 7. A comparative P5CS enzyme activity and gene expression analysis in P. amaryllifolius and
rice varieties was carried out. The EF1 gene was taken as a reference gene for normalization and
relative abundance was calculated by the 2−∆∆Ct method.

3. Discussion
3.1. De Novo Transcriptomics Analysis

De novo assembly and assessment of IIIuminaRNAseq data from P. amaryllifolius
yielded a total of 27 million reads. Rashmi et al. [25] reported 28 million reads in P. odorifer,
a species from the same genus. Both species have almost the same depth of sequencing.
RNA seq data of P. odorifer showed an average transcript size of 951 bp and N50 of 1821 bp,
whereas in P. amaryllifolius, the average transcript size was 802 bp and N50 of 1010 bp.
This indicates that the average transcript size of P. odorifer is slightly longer than that of P.
amaryllifolius, while the N50 value of the contigs showed variation in size.

3.2. P. amaryllifolius Exhibits Functional BADH2 Gene

One of the aims of the present study was the isolation and sequence characterization
of PaBADH2 in P. amaryllifolius. The transcriptome analysis clearly revealed the expression
of PaBADH2 with a single open reading frame without any stop codons. Further, the
sequence alignment with functional OsBADH2 revealed over 79.3% sequence similarity.
The homology between the conserved BADH2 domains indicated that this was a functional
sequence. Arora et al. [20] reported BADH2 transcripts from in vitro P. amaryllifolius
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plantlets. When both the sequences were aligned, the length of the PaBADH2 sequence
differed from the PND BADH2 gene sequence. This may be due to the presence of 5′ UTR
and 3′ UTR. The sequence derived by transcriptome analysis showed the presence of 5′

UTR from nucleotides 1 to 116 and 3′ UTR from nucleotides 1629 to 1988. Further, the
alignment of the PaBADH2 and the PND BADH2 genes showed several mismatches with
a prominent variation of 24 base pairs, as depicted in Figure 1. The several mismatches
showed the insertion of a T nucleotide and the deletion of a C nucleotide at each end of the
24 bp region. The mapping of transcriptome reads to PaBADH2 and the PND BADH2 as
reference sequences indicated that the reads show no evidence of the T nucleotide insertion
and the deletion of the C nucleotide at each end of the 24 bp sequence. This analysis
indicated the distinctness of this sequence from PND BADH2.

3.3. Comparative Amino Acid Sequence Analysis

Our data report the presence of a functional BADH2 protein in P. amaryllifolius. The
comparative amino acid sequence alignment between PaBADH2 and OsBADH2 showed
that there is no variation in conserved amino acids. Similar to OsBADH2, all three key
amino acids are present in PaBADH2. These are not directly involved in the protein–
ligand interaction but provide a suitable framework that mediates the catalytic activity.
As reported by Arora et al. [20], PND BADH2 does not produce a functional protein.
The sequence alignment showed that in the PND BADH2 amino acid sequence, a crucial
amino acid Glu260 is replaced by Glycine [20]. The conversion of acidic amino acid into
a hydrophobic amino acid may be the reason that made PND BADH2 unable to form a
suitable cavity for ligand and therefore explain why PND BADH2 might be nonfunctional.
In contrast, the key amino acids involved in the reaction are conserved in PaBADH2
making it functional. Therefore, it can be inferred that the presence of conserved amino
acids helped in the formation of the required cavity for the substrate, and the binding
residues of the enzyme located at the exposed region provided a favorable interaction with
the substrate. Hence, the PaBADH2 protein present in P. amaryllifolius showed functionality
as it exhibits affinity and binding capacity with the substrate.

3.4. Docking Analysis

The variations in amino acid sequence were further studied by structural character-
ization of PaBADH2 protein through docking analysis. A comparative PaBADH2 and
OsBADH2 homology modeling showed that the alignment of both models resulted in
a 0.115 RMSD value. That claims that the 3D structures of both the proteins are closely
similar without any major differences. That shows changes in amino acid sequence do
not alter the 3D structure of the protein. To verify that it does not hamper the interaction
between protein and substrate, docking analyses were carried out. In BADH2 enzymes,
the NAD+ binding domain is mainly responsible for the conversion of intermediate alde-
hydes to their respective carboxylic acids. The crystal structure of AMADH from Spinacia
oleracea, Pisum sativum [26], and Oryza sativa [27] have been studied. The 3D structure
and simulation studies of OsBADH2 enzyme carried out by Baicharoen, Vijayan, and
Pongprayoon [27] inferred that Asn162, Glu260, and Cys294 are prominent amino acids of
the catalytic domains. The previous study in rice suggested this catalytic triad as crucial
for the catalytic activity of ALDH. These three amino acids are conserved in many plant
species. In the hemithioacetal enzyme formation, Cys294 and Glu260 are involved and
Asn162 helps in the stabilization of an intermediate. In the protein–ligand interaction,
the oligomerization domain shows little mobility, while during the interaction, the NAD+
domain shows maximum mobility. Asn162 and Glu260 form strong hydrogen bonds with
nearby residues, resulting in a rigid conformation. The strong interaction network may
help to shape a suitable cavity size and dimension that fits both substrate and cofactor. In
contrast, Cys294 remained mobile inside the pocket. Numerous reports are available that
show that mutation in any of the amino acids from this catalytic domain results in reduced
enzyme-substrate affinity. The conversion of Asn162 to alanine resulted in a momentous
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reduction in enzyme affinity with the substrate, while a change of Glu260 to alanine led to
a complete loss of enzyme activity [15,28,29]. Mutation in Cys294 to alanine was reported
to entirely abolish the activity of the enzyme [13,14]. Kamaraj and Purohit [30] executed a
comparative rice BADH2 enzyme interaction study using rice mutant lines BADH2N162A,
BADH2E260A, and BADH2C294A. The docking analysis revealed that the protein structure
developed by mutant lines showed a narrower binding pocket than the wild-type BADH2
protein, and it also exhibited lower interaction energy when docked with GAB-ald. The
minimum enzyme interaction was found in BADH2N162A, followed by BADH2E260A and
BADH2C294A. Therefore, it was concluded that these conserved amino acids play a major
role in the establishment of appropriate binding cavity for better accommodation of the
substrate. Any further changes in these conserved amino acids lead to change in the
dynamics of the binding cavity, which, in turn, affects the enzyme–substrate interaction.
Arora, Sultana, Kumar and Gangopadhyay [20] reported docking analysis in which they
showed E260 as a conserved amino acid of substrate binding pocket; however, it is miss-
ing in their PND BADH2 sequence. The same amino acid is present in OsBADH2 and
PaBADH2 sequences. Further, in the sequence, they reported glycine in place of glutamate
(E260). This questions the authenticity of their sequence. In contrast, the docking analysis
of our sequence confirms the functionality of PaBADH2.

The high PaBADH2 enzyme activity in vivo (46 nM/min/g) confirmed these findings.
Srivong et al. [31] reported BADH2 enzyme activity in aromatic (Khao Dawk Mali 105) and
nonaromatic rice (Sew-Mae- Pah-Tawng) at 26 nmol/min and 37 nmol/min, respectively.
These results revealed higher BADH2 activity in P. amaryllifolius than in rice. GAB-ald
and BAD are specific substrates of BADH2. Arakawa et al. [32] have also reported BADH2
activity in barley, wheat, and spinach as 0.17, 0.22, and 0.82 nM/min/mg of total protein,
respectively. These data support the existence of a functional BADH2 in P. amaryllifolius.
Further, the qPCR analysis also revealed the existence of the BADH2 gene at the transcript
level, which supports the functionality of the BADH2 protein.

3.5. Role of Precursors in the High Expression of 2AP in P. amaryllifolius

P. amaryllifolius is a potent producer of 2AP. The P. amaryllifolius leaf tissue showed
the presence of 2AP. Basmati rice has been reported to accumulate up to 1 ppm of 2AP
and in the highly scented rice variety Khao Dawk Mali-105 up to 3 ppm of 2AP [33].
Yoshihashi, Nguyen, and Kabaki [19] reported relatively higher 2AP in the aerial parts
of the rice plants when compared to the milled grains. Moreover, 2AP has been reported
to be synthesized throughout rice plants except in the roots [34]. Similar to the reports
for aromatic rice, the reports for 2AP indicate that it is synthesized in aerial parts of P.
amaryllifolius. The presence of 2AP prompted us to analyze the precursors related to the
2AP biosynthetic pathway. Proline has been identified as a precursor amino acid for
the biosynthesis of 2AP and higher concentrations have been reported to contribute to
enhanced 2AP levels. Several reports have demonstrated the role of proline in 2AP pathway.
Using tracer experiments with 15N-proline, Huang et al. [34] demonstrated that the nitrogen
of 2AP was derived from proline. Thimmaraju et al. [17] reported enhanced production
of 2AP by feeding L-proline to the semi-differentiated callus culture of P. amaryllifolius.
The maximum level of 22 mg/kg of 2AP was synthesized when rice calli were treated
with 1 mmol/l of L-proline. Suprasanna et al. [18] demonstrated that proline addition
enhanced the aroma in callus cultures of aromatic rice, suggesting that proline was related
to aroma synthesis. Kaikavoosi et al. [24] overexpressed the P5CS gene in scented rice
in order to achieve enhanced accumulation of proline, P5C, and 2AP. The leaf samples
accumulated 8.07 ± 0.09 µmoles/g of free proline and a higher amount of P5CS enzyme
activity 67.8 ± 2.83 with the presence of transcripts supporting the higher accumulation of
2AP in P. amaryllifolius leaves.

In addition to proline, methylglyoxal has also been identified as another precursor
for the biosynthesis of 2AP. Wu et al. [35] reported higher (1.9 µmol/g) MG levels in
aromatic than nonaromatic cultivars (1.2 µmol/g) of soybean. MG was identified as the
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carbon source for 2AP. Vegetable soybeans with higher levels of 2AP were reported to
contain higher amounts of MG demonstrating a direct relation between MG and 2AP.
They also demonstrated that an intermediate compound derived from proline reacts
nonenzymatically with MG to produce 2AP.

In addition, the synthesis of GABA is regulated by BADH2. In aromatic rice varieties,
since BADH2 is nonfunctional, low GABA synthesis takes place. However, the amount of
GABA present in P. amaryllifolius was considerably higher. The concentrations of GABA in
various plant parts commonly range from 0.03 to 5.5 µg/g fresh weight [22]. This study
demonstrated higher levels of proline and methylglyoxal that might be responsible for the
high 2AP expression in P. amaryllifolius. BADH2 enzyme activity leads to an increased level
of its substrate, GAB-ald, the immediate precursor of 2AP [36]. Utilization of GAB-ald
by converting it into GABA blocks 2AP synthesis, whereas the enhancement of GAB-ald
results in increased 2AP synthesis.

3.6. BADH2-Independent 2AP Synthesis in P. amaryllifolius?

Considering the functionality of PaBADH2 in P. amaryllifolius,along with high 2AP
synthesis, raises the question of how 2AP is synthesized in P. amaryllifolius. Interest-
ingly, Huang et al. [34] reported that in aromatic rice, the upregulation of P5CS might
be associated with the higher levels of delta-1-pyrroline-5-carboxylic acid, thus showing
accumulation of a high amount of 2AP. The analysis of the expression level of ∆1-pyrroline-
5-carboxylic acid synthetase and the enhanced concentration of its product among fragrant
and nonfragrant varieties exhibited that 2AP is synthesized by the direct reaction of
methylglyoxalwithdelta-1-pyrroline-5-carboxylate independent of BADH2 [37]. In another
study, Huang et al. [34] studied an in vitro model system and demonstrated that methylgly-
oxal was one of the main precursors for 2AP synthesis. Methylglyoxal might react directly
with ∆1 -pyrroline-5- carboxylic acid, derived from L-proline by purified recombinant B.
subtilis ssp. natto PRODH, and lead to the formation of 2-acetyl-1-pyrroline. The over-
produced ∆1-pyrroline-5-carboxylic acid may be detoxified by methylglyoxal and results
in the biosynthesis of 2AP. In our analysis, we recorded comparatively higher levels of
P5CS and methylglyoxal in P. amaryllifolius. Therefore, ultimately, this mechanism might be
existing in P. amaryllifolius, which might be responsible for high 2AP synthesis independent
of PaBADH2 (Figure 8).

Moreover, fragrance is a trait of high value in rice. The Discovery of the recessive
fragrance gene in rice Bradbury et al. [10] has facilitated the breeding of fragrant rice. The
same gene has been linked with fragrance in sorghum and other plant species. The loss
of function of the BADH2 gene [10] that results in fragrance is associated with a loss of
performance that may be due to stress susceptibility caused by the disruption of a pathway
that is a key stress response mechanism in plants [12]. Pandanus leaves have the same
fragrance but are much more resistant to stresses, such as salt [38], than fragrant rice
varieties. Understanding the biochemical processes in Pandanus may support the breeding
of higher-yielding stress-tolerant rice and other crops that are also fragrant.



Int. J. Mol. Sci. 2021, 22, 6968 13 of 18

Figure 8. Proposed 2AP biosynthetic pathway in P. amaryllifolius, highlighting enzymes used in
biosynthesis of 2AP in P. amaryllifolius.P5CS: ∆1-pyrroline-5-carboxylate synthetase; P5CR: ∆1-
pyrroline-5-carboxylate reductase; ProDH: proline dehydrogenase.

4. Material and Methods
4.1. Plant Material

One-year-old seedlings of P. amaryllifolius,maintained at the Botanical garden of De-
partment of Botany, Savitribai Phule Pune University, Pune, Maharashtra, were used for
transcriptome analysis, estimation of metabolites, enzyme assay, and gene expression
analysis. The seeds of fragrant (Basmati 370) and nonfragrant (IR64) rice cultivars were
obtained from the Maval region, Maharashtra, and Indian agriculture research institute
(IARI) New Delhi, India, respectively. For the estimation of metabolites, enzyme assay, and
gene expression analysis, leaves of 45-day-old rice seedlings and one-year-old plantlets of
P. amaryllifolius were used.

4.2. Transcriptome Analysis

For transcriptome analysis, total RNA was extracted from the leaf tissue of P. amaryl-
lifolius using a Qiagen RNeasy Plant Mini Kit (Qiagen, Germany), following the man-
ufacturer’s protocol, and DNase I treatment at 37 ◦C for 30 min was used to remove
any potential genomic DNA contamination. The quality and quantity of isolated RNA
were checked using a Nanodrop (ND-1000) spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA) and by analyzing the RNA samples on a 1% agarose gel. The quality
of the RNA samples was further checked on a Bioanalyzer 2100 (Agilent technologies,
Singapore). A sample with an RNA integrity number (RIN) of more than 7 was used for
RNA sequencing analysis.

4.3. RNA Sequencing, De Novo Assembly, and Functional Annotation of Unigenes

Paired-end libraries of 150bp read length were sequenced using a HiSeq 2500 system
(Illumina, San Diego, CA, USA) by SciGenom, Kochi, India. The raw sequence data



Int. J. Mol. Sci. 2021, 22, 6968 14 of 18

generated were analyzed through the following steps. The raw data were filtered using
an NGSQC Toolkit (v2.3.3 NIPGR, New Delhi, India) to remove adaptor sequences and
reads with low quality (Phred) scores (Q ≥ 30). Only high-quality reads were further
used for de novo transcriptome assembly using Trinity (v2.2) pipeline [39]. The resulting
trinity assembly was made non-redundant using CD-HIT (v4.6.1). The assembled unigene
sequences were annotated using BLASTx (E-value≤ 1E−5) (http://www.ncbi.nlm.nih.gov/
BLAST/) (accessed on 18 February 2019) against the National Center for Biotechnology
Information (NCBI) database of non redundant protein (Nr) (http://www.ncbi.nlm.nih.
gov) (accessed on 18 February 2019) [40].

4.4. Isolation of PaBADH2 Gene Using Transcriptome Sequence

A standalone blastable database of the assembled transcriptome was established using
the ViroBLAST tool [41]. The nucleotide sequence of the PaBADH2 gene was retrieved
from the transcriptome data by using TBlastNtool with the Rice BADH2 protein sequence.

4.5. PaBADH2 Transcript Comparative Sequence Analysis

In order to study the gene and protein sequences, the isolated nucleotide sequence of
the PaBADH2 gene was compared with previously reported P. amaryllifolius BADH2 (PND
BADH2, gene ID: KY765936.1) and a nonfragrant rice BADH2 (gene ID: 4345606)gene.
OsBADH2 and PND BADH2 sequences were retrieved from the NCBI database, along
with their respective amino acid sequences. Using expasy translate tools (http://www.
expasy.org/) (accessed on 18 February 2019), the PaBADH2 nucleotide sequence was
translated. The sequences were aligned together with the ClustalW 1.8 program (http:
//www.ebi.ac.uk/clustalw/) (accessed on 18 February 2019).

4.6. Homology Modeling and Molecular Docking of BADH2

The amino acid sequences of PaBADH2 and nonfragrant rice (gene ID 4345606) were
further used for protein structure prediction through SWISS-MODEL (https://swissmodel.
expasy.org/interactive) (accessed on 18 February 2019). The homology modeling was per-
formed using Zea mays AMADH (aminoaldehyde dehydrogenase) as a template. To study
the enzyme–substrate interaction, BAD was taken as a substrate. The structural details
of both the substrates were collected from the PubChem database. The AutoDockVina
(Vina) [42] docking tool was used for ligand flexible docking simulations. The structures
of the templates and the refined model of PaBADH2 were set up as the receptors for the
docking protocol. The structure data file (SDF) of the ligand molecule was downloaded
from PubChem (http://pubchem.ncbi.nlm.nih.gov) (accessed on 18 February 2019), and
docking was performed at the acceptor and donor binding sites, as reported earlier [27].
The molecular docking was performed between OsBADH2 and PaBADH2 with BAD as
a substrate.

4.7. Estimation of BADH Enzyme Activity

The BADH activity of 100 mg protein isolated from P. amaryllifolius, Basmati 370
(scented rice), and IR 64 (nonscented rice) was measured with BAD and GAB-ald as
substrates following the method of Weretilnyk et al. [43].

4.8. Quantitative Real-Time Expression of BADH2 Gene

Total RNA was isolated from leaf tissues of Basmati 370 (scented), IR-64 (nonscented)
rice varieties, and P. amaryllifolius. 1 µg of RNA of the selected plant species was used
to carry out first-strand cDNA synthesis using RevertAidTM M-MuLV Kit (Fermentas,
Waltham, Massachusetts, USA). For qPCR analysis, PaBADH2 and OsBADH2 gene-specific
primers were designed through Primer 3.0 software (http://biotools.umassmed.edu/
bioapps/primer3_www.cgi) (accessed on 18 February 2019) (Table 1). The PCR conditions
for the BADH2 were optimized using gradient PCR (Eppendorf, Hamburg, Germany)
for real-time expression analysis. The BADH2 expression analysis was performed in the
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Mastercycler ep realplex system (Eppendorf, Hamburg, Germany) using iQ SYBR Green
Supermix (Bio-Rad, Hercules, CA, USA). The real-time quantitative PCR was carried out in
a total volume of 25 µL containing 12.5 µlSYBR Green, 1 µL of each forward and reverse
primer (10 pmol/µL), 1µL of Cdna, and 9.5 µL water. The PCR conditions were kept as
follows: 95 0C for 10 min one cycle; 95 ◦C, 30 s; 56 ◦C, 30 s; 72 ◦C, 1 min for 40 cycles
were performed in triplicates and repeated twice. The diluted cDNA (1:4) was amplified
with the primers based on a gene of interest, and the Ct values generated were used to
prepare the standard curve. Initial copy numbers of unknown samples were calculated by
using Step One Real-Time software absolute quantification model. The elongation factor 1
(EF1) housekeeping gene was used as an internal control to normalize the expression of
the target gene, and relative expressions of BADH2 were measured following the 2−∆∆CT

method [44]. The transcript abundance was calculated as fold change/10 ng of cDNA.

Table 1. Primers used for PaBADH2 real-time expression analysis.

Name of Primer Primer Sequences

F Pan BADH2 (Pandanus) 5′TGTTGTAAGTCAAGGACAGTATGC3′

R Pan BADH2 (Pandanus) 5′CCGCCCACCTCCAAATAATATAG3′

F Rice BADH2 (Rice) 5′ ATTTGTATCTACCGCCAAAAGC3′

R Rice BADH2 (Rice) 5′CGACATCAGTAATGATTGTGGGT3′

F Pan P5CS (Pandanus) 5′GAGGCAGCAACAAGCTTGT3′

R Pan P5CS (Pandanus) 5′GTGTACAAGAAGGGTTTCCAT3′

F Rice P5CS (Rice) 5′GAAGTGGTAATGGTCTTCTC3′

R Rice P5CS (Rice) 5′AGCAAATCTGCGATCTCATC3′

4.9. Quantification of 2AP Using HS-SPME with GC-MS

The quantification of 2AP in P. amaryllifolius and aromatic rice seeds was carried out us-
ing HS-SPME with GC-MS, as previously described by Wakte et al. [8] and Hinge et al. [45],
respectively. Briefly, a 4 mL screw-top vial (15 × 45 mm) with PTFE silicone septa (Chro-
matography Research Supplies, Louisville, KY, USA) was used to take 100 mg leaf material
(powdered) of P. amaryllifolius. The samples were incubated for 10 min at 80 ◦C for equili-
bration. The 1 cm-long SPME fiber coated with carboxen/divinyl-benzene/poly-dimethyl-
siloxane (CAR/DVB/PDMS) was used for adsorption of volatiles for 25 min. the volatile
compounds were recognized with respect to the presence of specific ions, their respective
ratio, and comparing the MS spectra with the reference spectra from the National Institute
of Standards and Technology (NIST, ver. 2.0f, 2008) mass spectral database. A series of
n-alkanes (C8 to C20) was used for calculating retention indices [46]. The 2AP concentration
was measured using an external standard method with 2,4,6-trimethylpyridine (TMP) as a
reference standard [47].

4.10. Quantification of Proline, Methylglyoxal, and GABA

GABA and proline concentration in leaf samples of P. amaryllifolius, Basmati 370
(scented rice), and IR 64 (nonscented rice) were estimated using the standard method
described by Gay et al. [48] and Bates et al. [49], respectively. For the estimation of
methylglyoxal, initial isolation was carried out following the method of Yadav et al. [21],
and quantification was performed according to Wild et al. [50].

P5CS enzyme activity was assayed following the method of García-Ríos et al. [51],
with minor modifications. The P5CS gene expression analysis was carried out in a similar
way, as described for the BADH2 gene using P5CS gene-specific primers.
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5. Conclusions

In the present study, we report a full-length functional sequence of the PaBADH2
gene from transcriptome data of P. amaryllifolius. Further qPCR and BADH2 enzyme
activity confirmed the functionality of PaBADH2 protein. P. amaryllifolius is considered
to accumulate 2AP to the highest levels. Similarly, the metabolites and enzymes related
to 2AP biosynthesis were also in high concentration. Although there is the presence of
functional BADH2 protein, 2AP synthesis is abundant, which suggests that a different
molecular mechanism might be involved in 2AP biosynthesis in P. amaryllifolius, which
still needs to be explored. This mechanism can further be employed in the breeding of rice
to develop an aromatic rice variety that is resistant to yield loss under stress conditions.
The high concentrations of proline may support the generation of high concentrations of
GAB-ald in sufficient concentrations so that the presence of an active BADH2 converting
the GAB-ald to GABA may not deplete the GAB-ald to levels that prevent reaction with
the high concentrations of methylglyoxal to produce 2AP.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22136968/s1, Table S1: Primary assembly statistics of the P. amaryllifolius transcriptome.
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26. Tylichová, M.; Kopečný, D.; Moréra, S.; Briozzo, P.; Lenobel, R.; Snégaroff, J.; Šebela, M. Structural and functional characterization
of plant aminoaldehyde dehydrogenase from Pisum sativum with a broad specificity for natural and synthetic aminoaldehydes.
J. Mol. Biol. 2010, 396, 870–882. [CrossRef] [PubMed]

27. Baicharoen, A.; Vijayan, R.; Pongprayoon, P. Structural insights into betaine aldehyde dehydrogenase (BADH2) from Oryza
sativa explored by modeling and simulations. Sci. Rep. 2018, 8, 12892. [CrossRef]
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