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Sleep manifests itself by the spontaneous emergence of characteristic oscillatory

rhythms, which often time-lock and are implicated inmemory formation. Here, we analyze

a neural mass model of the thalamocortical loop in which the cortical node can generate

slow oscillations (approximately 1 Hz) while its thalamic component can generate fast

sleep spindles of σ -band activity (12–15 Hz). We study the dynamics for different coupling

strengths between the thalamic and cortical nodes, for different conductance values of

the thalamic node’s potassium leak and hyperpolarization-activated cation-nonselective

currents, and for different parameter regimes of the cortical node. The latter are listed

as follows: (1) a low activity (DOWN) state with noise-induced, transient excursions

into a high activity (UP) state, (2) an adaptation induced slow oscillation limit cycle with

alternating UP and DOWN states, and (3) a high activity (UP) state with noise-induced,

transient excursions into the low activity (DOWN) state. During UP states, thalamic

spindling is abolished or reduced. During DOWN states, the thalamic node generates

sleep spindles, which in turn can cause DOWN to UP transitions in the cortical node.

Consequently, this leads to spindle-induced UP state transitions in parameter regime

(1), thalamic spindles induced in some but not all DOWN states in regime (2), and

thalamic spindles following UP to DOWN transitions in regime (3). The spindle-induced

σ -band activity in the cortical node, however, is typically the strongest during the UP

state, which follows a DOWN state “window of opportunity” for spindling. When the

cortical node is parametrized in regime (3), the model well explains the interactions

between slow oscillations and sleep spindles observed experimentally during Non-Rapid

Eye Movement sleep. The model is computationally efficient and can be integrated into

large-scale modeling frameworks to study spatial aspects like sleep wave propagation.

Keywords: neural mass model, thalamocortical loop, sleep spindles, slow oscillations, cross-frequency coupling

1. INTRODUCTION

Sleep marks a pronounced change of the brain state as one of the vital means of persisting
mental and physical health (Laureys et al., 2007). It manifests itself by the spontaneous emergence
of characteristic oscillatory rhythms, most visible in the electroencephalogram (EEG) but also
noticeable in intracellular recordings, electrooculography (EOG), and electromyography (EMG)
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(Steriade et al., 1993; Schomer and Da Silva, 2012). Distinct
oscillatory features form the basis for sleep classification into
several stages: rapid eye movement sleep (REM) and three stages
of non-REM (NREM) sleep (N1 through N3) (Silber et al., 2007;
Berry et al., 2012). The NREM sleep stages exhibit characteristic
patterns: the N1 stage consists of slow eye movements and low-
amplitude low-frequency δ-band EEG activity (Krishnan et al.,
2016); sleep spindle oscillations dominate the N2 stage with
a waxing and waning envelope and an underlying oscillation
in the σ -band (∼12–15 Hz) (Steriade, 2003), in the case of
“fast” spindles, or ∼9–12 Hz for “slow” spindles (De Gennaro
and Ferrara, 2003; Mölle et al., 2011). Sleep spindles are also
observed in the deeper, N3 sleep stage, albeit with lower
power in the fast spindle frequency range (Cox et al., 2017)
and lower density (Fernandez and Lüthi, 2020). Finally, slow
oscillations (SOs), which is an alteration of active (UP) and
silent (DOWN) cortical states at ∼1 Hz frequency, govern the
deepest N3 sleep stage but are also present in the N1 and N2
sleep stages, albeit with a lower spectral power (Achermann and
Borbely, 1997; Amzica and Steriade, 1997). Ripple oscillations
are the second hallmark of the N3 sleep stage. Ripples
are fast oscillations (80–140 Hz) that occur in hippocampal
networks, often accompanied by a sharp wave, and signify
reactivations (memory replay) of neural ensembles in these
networks (Axmacher et al., 2008; Klinzing et al., 2019). The
precise coordination of the slow oscillations, spindles, and ripples
was shown to be vital for memory consolidation, of which the
mainmanifestation is the reactivation of specific activity patterns,
i.e., memory replay, during sleep (Walker and Stickgold, 2004;
Popa et al., 2010; Bendor and Wilson, 2012; Rasch and Born,
2013). The hierarchical nesting of spindle waxing periods to the
depolarized cortical UP states, mediated by the thalamocortical
circuitry, is essential for consolidation by providing a “window
of opportunity” and favorable conditions for plasticity for
transferring episodic memories from short-term hippocampal
storage to longer-term neocortical storage (Rosanova and Ulrich,
2005; Mölle et al., 2011; Cox et al., 2012). Notably, it was recently
shown that the interplay of the aforementioned rhythms is also
vital for non-hippocampus-dependent consolidation (Klinzing
et al., 2019) in rodents (Sawangjit et al., 2018), and humans (King
et al., 2017).

The basis of slow oscillations consists of a widespread
alternation of hyperpolarization and depolarization activity in
neocortical networks (Sanchez-Vives and McCormick, 2000;
Steriade, 2003; Peyrache et al., 2012). In contrast, spindles are
generated by the interaction of inhibitory reticular thalamic and
excitatory thalamocortical neurons (Timofeev and Bazhenov,
2005). Spindles occur in the isolated thalamus both in vivo
and in vitro (Kim et al., 1995; Timofeev and Steriade, 1996).
However, the cortex can also become actively involved in their
initiation and termination (Bonjean et al., 2011) and their
long-range synchronization (Contreras et al., 1997; Bonjean
et al., 2012). Therefore, in the thalamocortical modeling, the
assumption is that the cortical part of the model generates
slow oscillations and the thalamic part of the model, in
turn, generates spindles (Robinson et al., 2002; Suffczynski
et al., 2004; Schellenberger Costa et al., 2016). Moreover, slow
oscillations induce thalamic spindles, which then reflect back to

the cortex (Oyanedel et al., 2020). Furthermore, it has been shown
that the phase of SOs modulated the spindle power such that it
exhibited UP and DOWN states similar to SOs themselves, with
positive peaks during the depolarizing SO UP state, close to (or
slightly before) the SO peak (Mölle and Born, 2011; Mölle et al.,
2011).

Due to the computational advantage, the ability to elucidate
the dynamical repertoire, and the ability to describe macroscopic
phenomena comparable with neuroimaging datasets (Deco
et al., 2008; Touboul et al., 2011), herein we focus on neural
mass models (NMMs hereafter). In particular, Suffczynski
et al. (2004) proposed a thalamocortical NMM to explain
the relationship between spindle-generating and spike-wave-
generating activities. More recently, Cona et al. (2014)
proposed a new NMM to describe a “sleeping” thalamocortical
system with tonic and bursting firing modes within thalamic
neurons while Schellenberger Costa et al. (2016) probed a
thalamocortical model that generates spindles and K-complexes.
To this date, however, no study focused on the cross-frequency
slow oscillation–spindle interaction in the model setting that
would mimic the empirical findings (Ladenbauer et al., 2016,
2017; Helfrich et al., 2018). We aim to close this gap in the
present study.

This study effectively extends the results
in Schellenberger Costa et al. (2016) by using a biophysically
realistic model for the cortical node capable of generating
in vivo-like slow oscillations (Cakan and Obermayer, 2020).
By merging two modeling approaches, we also highlight
the applicability of hybrid modeling approaches and their
advantages, mainly the extensibility with other mass models. In
our case, using an already explored cortical node facilitates the
exploration of biophysically realistic stimulation protocols of
the thalamocortical model. We present a thorough dynamical
investigation of the thalamocortical model in the NREM sleep
setting. Both cortical and thalamic modules are biophysically
realistic while adhering to the notion of mass models and keeping
their computational advantages. In addition to investigating the
dynamical landscape, we study the nature of cross-frequency
coupling between slow oscillations and sleep spindles, which are
believed to set the stage for successful memory consolidation and
transfer from the hippocampus to the neocortex (Sirota et al.,
2003; Ji and Wilson, 2007).

The following sections first introduce the thalamic and cortical
models, their basic dynamical properties, and their respective
state spaces. Next, we investigate the effects of perturbations on
both isolated models to understand their response to external
stimuli. Finally, we study the full thalamocortical loop, including
both feedforward and feedback connections. In the full model
investigation, we focus on the interaction between cortical slow
oscillations and thalamic spindles, the cause-effect mechanical
understanding of the spindle and SO generation and timing, and,
finally, their cross-frequency coupling.

2. MATERIALS AND METHODS

2.1. Model Design
The architecture of the thalamocortical model is shown in
Figure 1. It consists of two thalamic neural populations, namely
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FIGURE 1 | Schematic of the thalamocortical motif. The cortical node (top

row) consists of one excitatory (EXC) and one inhibitory (INH) population. It is

coupled to the thalamic node with its thalamocortical relay (TCR) and thalamic

reticular nuclei (TRN) populations. Excitatory (inhibitory) populations are shown

in orange (blue). Excitatory synapses are depicted with arrows, inhibitory

synapses are depicted with filled circles. Squares depict noisy background

inputs.

thalamocortical neurons (TCR) and thalamic reticular nucleus
(TRN), which act as excitatory and inhibitory populations,
respectively. The cortical module consists of mean-field
approximation of excitatory and inhibitory exponential
integrate-and-fire neurons grouped into two populations, of
which the excitatory subpopulation exhibits a somatic spike-
frequency adaptation mechanism. Both thalamic and cortical
nodes rely on the notion of an empirical firing rate which
effectively replaces the complex individual spiking dynamics of
neural populations.

The model connectivity, both feedback and feedforward,
relies on the fast ionotropic excitatory and inhibitory synapses
conveyed by the AMPA and GABAA receptors. The cortical
node has feedback and feedforward connections, whereas in the
thalamic module, only the TRN possesses feedback connections
(as shown in Figure 1) since thalamic relay cells generally do not
form local connections within the population (Jones, 2001).

For the connection between the thalamus and the cortex, we
assume that the long-range afferents from the cortical excitatory
population project to both thalamic populations and that the
TCR population projects to the cortical excitatory population,
as depicted in Figure 1. We set delays of these long-range
connections to a physiologically realistic value of 13 ms (Roux
et al., 2013; Schellenberger Costa et al., 2016).

2.2. Thalamic Model
The thalamic model follows the approach detailed in
Schellenberger Costa et al. (2016). The evolution of the
mean membrane potential Vα of the thalamic populations
α ∈ {t, r} is described by

τ V̇α = −(Vα−Eleak)−wese(Vα−Ee)−wisi(Vα−Ei)−C
−1
m τ Iintrinsic,

(1)
with membrane time constant τ , synaptic input rate we (wi) that
scales synaptic inputs se (si) for excitatory (e) and inhibitory (i)
synapses, the corresponding Nernst reversal potential Ee (Ei), and

the membrane capacitance Cm. The mean membrane potential
Vα is then converted to a firing rate r(V) by a sigmoidal transfer
function,

r(V) =
rmax

1+ exp
(

−(V − θ)/σ
) , (2)

with maximum firing rate rmax, firing threshold θ , and gain
coefficient σ .

Both thalamic populations contain additional intrinsic
currents [Iintrinsic in Equation (1)] because spindle oscillations
require rebound burst activity. Rebound bursting is impossible
with a monotonic firing rate function and demands additional
mechanisms. Following Schellenberger Costa et al. (2016), we
employ the Hodgkin-Huxley-type extension, which has been
derived from integrate-and-fire-or-burst neurons (Langdon et al.,
2012).

The intrinsic currents in both thalamic populations include a
potassium leak current,

ILK = gLK(V − EK), (3)

and a T-type calcium current,

IT = gTm
2
∞h(V − ECa), (4)

which de-inactivates upon depolarization. In both definitions,
gLK and gT denote the conductance of the respective intrinsic
current, EK and ECa their respective Nernst reversal potential,
and m2

∞ and h the gating functions of T-type calcium current.
Both currents are essential for the generation of low-threshold
spikes and rebound bursts (as shown in Figure 2). The definition
of IT for TRN follows Destexhe et al. (1996b), while IT within the
TCR population is given in Destexhe et al. (1998). In addition, the
TCR population contains a hyperpolarization-activated cation-
nonselective current Ih:

Ih = gh(mh1 + gincmh2)(V − Eh), (5)

with gh being its conductance, Eh its Nernst reversal potential,
mh1 and mh2 the gating functions, and ginc the conductivity
scaling. This hyperpolarization-activated current is responsible
for the waxing and waning of spindle oscillations in the isolated
thalamus (Destexhe et al., 1996a).

Synaptic transmission in the thalamic model is conveyed
by conductance-based synapses, where the spike rate rk′ of a
presynaptic population k′ elicits a postsynaptic response slk in
population k given by

slk(t) =
∑

k′

αl(t)⊗ Nkk′rk′ (t)+ φ′(t). (6)

Nkk′ is the connection strength between the presynaptic, k′, and
postsynaptic, k, populations. φ′(t) represents a background noise
input, ⊗ denotes a convolution, and αl(t) is an alpha function
given by

αl(t) = γ 2
l · t · exp(−γlt) (7)
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FIGURE 2 | Schematic of the spindle generation mechanisms. Refer to the text for a detailed explanation. Thalamic connectivity is shown in the upper left panel. The

figure was adapted from Mayer et al. (2006).

representing the synaptic response to a single spike. γl is the
decay constant of the synaptic response, and l ∈ {e, i} denotes
the type of synapse, i.e., excitatory AMPA or inhibitory GABAA.
The convolution in Equation (6) is replaced in the numerical
simulations by the second-order ordinary differential equation
(ODE)

s̈lk = γ 2
l

(

∑

k′

Nkk′rk′ (t)+ φ′(t)− slk(t)

)

− 2γl ṡlk(t). (8)

The background noise input φ′(t) is modeled as an Ornstein-
Uhlenback process with zero drift but finite variance and
represents unresolved processes in our model, e.g., afferents from
other brain regions that are not explicitly modeled here.

In summary, the thalamic node is described by the set of
equations

τtV̇t = −(Vt − Eleak)− weset(Vt − Ee)− wisit(Vt − Ei)

−C−1m τt

(

ILKt + ITt + Ih

)

(9)

τrV̇r = −(Vr − Eleak)− weser(Vr − Ee)− wisir(Vr − Ei)

−C−1m τr

(

ILKr + ITr

)

, (10)

where subscripts t (r) represent the TCR (TRN) population. Note
that the background noise is included on the excitatory synaptic
input at the TCR population, set . The full set of equations is given
in Supplementary Material, with all parameters summarized
in Supplementary Table S1.

2.3. Cortical Model
The adaptive exponential integrate-and-fire (AdEx) neuron
model (Brette and Gerstner, 2005) forms the basis for the
derivation of the cortical mass model. Each population α ∈ {E, I}
possesses Nα neurons and the membrane voltage of neuron j in
the population α is governed by

Cm,cV̇j = Iion(Vj)+ Isyn(t)+ Ij,ext(t) (11)

Iion(V) = gL(EL − V)+ gL1Texp

(

V − VT

1T

)

− IA,j(t) (12)

τA İA,j = a(Vj − EA)− IA,j. (13)

The first equation describes the temporal evolution of neuron’s
j membrane voltage Vj as a function of its internal current
dynamics conveyed by Iion(Vj), its synaptic current Isyn(t), and
a background external current Ij,ext(t) received from neural
populations not specified by the computational model. Cm,c

denotes the cortical neuron’s membrane capacitance. Note that
inhibitory population α = I does not include the adaptation
current. The first term in Equation (12) expresses the voltage-
dependent leak current with leak conductance gL and leak
reversal potential EL; the second term describes the exponential
spike initiation mechanism with slope factor 1T and exponential
threshold VT . Finally, the last term describes the somatic
adaptation current, IA,j(t) (Equation 13), with subthreshold
adaptation a, adaptation reversal potential EA, and adaptation
time scale τA. When the membrane voltage crosses the spiking
threshold, Vj ≥ Vs, the voltage is reset with Vj ← Vr , clamped
for the refractory time Tref , and the spike-triggered adaptation
increment, b, is added to the adaptation current, IA,j ← IA,j + b.
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The synaptic currents are described by a sum of excitatory and
inhibitory contributions as

Isyn(t) = Cm,c

(

JαEsi,αE(t)+ JαIsi,αI(t)
)

, (14)

with the coupling strength Jαβ from population β to α, and the
fraction of active synapses si,αβ ∈ [0, 1]. The synaptic dynamics is
then given by

ṡi,αβ = −
si,αβ

τs
+

cαβ

Jαβ

(

1− si,αβ

)

∑

j

Gij

∑

k

δ(t− t
j

k
−dαβ ), (15)

where Gij is a random binary connectivity matrix. The first sum
is over all afferent neurons j, while the second sum is over all
incoming spikes k from neuron j emitted at time tk after a delay
dαβ . The (1 − si,αβ ) term in Equation (15) acts as a saturation
term and integrates all incoming spikes only if si,αβ < 1, i.e., only
if there is a synaptic capacity available.

In the mean-field approximation, the distribution p(V) of
the membrane potentials and the mean population firing rate
r can be calculated using the Fokker-Planck equation in the
thermodynamic limit, with the number of neurons N →

∞ (Brunel, 2000; Cakan and Obermayer, 2020). However,
using the model reduction scheme described in Augustin et al.
(2017) and Cakan and Obermayer (2020), we exploit the
low-dimensional linear-nonlinear cascade model, where for a
given mean membrane current µα with standard deviation
σα , the mean V̄α of the membrane potentials, the adaptive
timescale τα , and the population firing rate rα in the steady-
state can be captured by a set of nonlinear transfer functions
8(µα , σα) (Richardson, 2007), i.e.,

rα = 8r(µα , σα), (16)

V̄α = 8V (µα , σα), (17)

τα = 8τ (µα , σα), (18)

for α ∈ {E, I}. In the case of the excitatory population (α =
E), the mean adaptation current ĪA is subtracted from the
mean membrane current µE in the computation of population
firing rate, mean membrane voltage, and adaptive timescale via
transfer functions, i.e., µE → µE − ĪA/Cm,c. These transfer
functions can be precomputed for a specific set of single AdEx
neuron parameters (Augustin et al., 2017) and are shown in
Supplementary Figure S1.

The average population currents in the mean-field
approximation are given by

ταµ̇α = µ
syn
α + µext

α − µα , (19)

µ
syn
α = JαE s̄αE + JαI s̄αI , (20)

˙̄IA = τ−1A

(

a(V̄E − EA)− ĪA
)

+ b · rE, (21)

µext
α =

µctx,α − µext
α

τOU
+ σαξα , (22)

where the dynamics of mean membrane current µα depends on
the synaptic current µ

syn
α and an external noisy current µext

α ,
which enters the system in the form of Ornstein–Uhlenbeck
process withmean driftµα , standard deviation σα , and time scale

τOU . ξα is drawn from a random Gaussian white noise process
with zeromean and unit variance. In the subsequent text, we refer
to mean drifts asµE (µI) as an input to the excitatory (inhibitory)
population with the original physical units of mV/ms. After
multiplying µα with membrane conductance C, we obtain input
currents in physical units of A, but we will omit themultiplication
by C in subsequent text and treat all µα with units of A.

The mean of the fraction of active synapses s̄αβ obeys

˙̄sαβ = −τ−1s,β s̄αβ + (1− s̄αβ ) · rαβ , (23)

where the mean rαβ and the variance ραβ of the effective input
rate from population β to population α for a spike transmission
delay dαβ are given by

rαβ =
cαβ

Jαβ

Kβ · rβ (t − dαβ ), (24)

ραβ =
cαβ

Jαβ

· rαβ . (25)

Finally, the current variance σ 2
α and the variance of the

fraction of active synapses σ 2
s,αβ are given by

σ 2
α =

∑

β∈{E,I}

2J2αβσ 2
s,αβτs,βτm

(1+ rαβ )τm + τs,β
+ σ 2

ext,α , (26)

σ̇ 2
s,αβ = (1− s̄αβ )

2 · ραβ

+ τ−2s,β

(

ραβ − 2τs,β (ραβ + 1)
)

· σ 2
s,αβ . (27)

The parameters are summarized in Supplementary Table S2.

2.4. Connecting the Thalamic and Cortical
Models
The thalamic and cortical models introduced before are coupled
into a thalamocortical model with feedback and feedforward
connections via their firing rate. More concretely, the excitatory
firing rate from the cortical node enters the dynamics of both
TCR and TRN populations in the thalamus with a connection
strength Nctx→thal (cf. Figure 1). In particular, the excitatory
cortical firing rate comes in Equation 8 for the excitatory AMPA
synapse with Nkk′ = Nctx→thal and rk′ = rE(t − dctx,thal), with
dctx,thal being the thalamocortical delay of 13 ms.

For the thalamocortical connection, we connect the excitatory
firing rate from the TCR population onto excitatory population
of the cortical model (cf. Figure 1). In particular, the TCR firing
rate enters the cortical dynamics in Equation 24 with rβ =
Nthal→ctx · rTCR, and dαβ = dctx,thal. The transmission delay in
the thalamocortical direction is set to the same value as in the
corticothalamic direction, i.e., 13 ms.

2.5. Numerical Simulations
The whole delayed dynamical equations system [Equations (1)–
(27)] was integrated with the forward Euler method. If not
mentioned otherwise, simulated time was t = 30 s with an
integration timestep of dt = 0.01 ms. After integration, time
series were subsampled at dtsamp = 10 ms. The thalamocortical
model was simulated using the neurolib library (Cakan et al.,
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FIGURE 3 | The generation of thalamic sleep spindles depends on the conductances gLK and gh. (A) Color-coded number of spindles per second as a function of

conductance parameters gh and gLK for 4 different noise levels σTCR. The model was simulated for 65 s. The first 5 s were not included in the statistics. (B) 10 s time

series from the thalamic node model (red traces for TCR firing rate, blue traces for TRN firing rate) from the three regions marked in (A) with different parameters:

gLK = 0.018 mS/cm2 (I), gLK = 0.031 mS/cm2 (II), gLK = 0.024 mS/cm2 (III), and gh = 0.062 mS/cm2 (all three regions). For other model parameters, see

Supplementary Table S1.

2021). neurolib is a computational framework for whole-
brain modeling written in Python. It provides a set of neural
mass models and is designed to be extendable and allows for easy
implementation of custom mass models. Moreover, it supports
heterogeneous brain modeling by coupling more than one type
of mass model together. It offers a custom parameter exploration
and optimization module for fitting models to multimodal
experimental data using evolutionary algorithms. All subsequent
analyses were also done in Python, and the repository with
the model and analysis code is available at https://github.com/
jajcayn/thalamocortical_model_study.

Background noise inputs are implemented as an independent
Ornstein–Uhlenbeck processes (Bibbona et al., 2008) satisfying

dx =
µα − x

τ
dt + σαξ , (28)

with the mean drift µα and SD σα , for α ∈ {E, I,TCR},
integration timestep dt. ξ is drawn from a random Gaussian
white noise process with zero mean and unit variance. The
Ornstein-Uhlenbeck processes, x, were pre-integrated and then
inserted into the thalamic state equations as φ′ into Equation (8),
and to the cortical equations as µext

α into Equation (22).

2.6. Spindle Detection From the Model
Output
For automated spindle detection from model output, we used a
modified version of the A7 spindle detection algorithm described
in Lacourse et al. (2019) and implemented in the Yet Another
Spindle Algorithm (YASA) package (Vallat and Jajcay, 2020) for
Python.

Since the A7 spindle detection algorithm is designed to
analyze empirical data, e.g., EEG,MEG, ECoG, or LFP (cf. Warby
et al., 2014; Lacourse et al., 2020), we made adjustments to
the algorithm parameters. For detecting spindles on the cortical
model output, we lowered the threshold for the duration from 0.5
to 0.3 s and for the relative power in the fast spindle band from
0.2 to 0.15 s.

2.7. Cross-Frequency Coupling (CFC)
Measures
In order to quantify the coupling between the phase of the slow
oscillation and the spindle amplitude, we compute the Kullback-
Leibler modulation index (KL-MI, cf. Tort et al., 2010) and
the mean vector length (MVL, cf. Canolty et al., 2006). For
quantifying the phase-phase CFC, we use the phase-locking value
(PLV, cf. Cohen, 2008) and the mutual information (MI, cf. Paluš,
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1997; Jajcay et al., 2018) between time series of instantaneous
phases. We first filter the modeled outputs using a one-pass,
zero-phase, non-causal finite impulse response (FIR) bandpass
filter, implemented in the mne Python package (Gramfort et al.,
2013) (either adapted to the SO, 0.1–3.0 Hz, or the fast spindle
frequency, 12–15 Hz, ranges). The filtered signal is then passed
to the Hilbert transform, which provides us with the estimate
of the complex analytic signal sa(t) = s(t) + iŝ(t), where s(t)
is the real-valued input signal (model output), and ŝ(t) is the
Hilbert-transformed signal. The instantaneous phase, φ(t), and
amplitude, A(t), are then given by

φ(t) = arctan
ŝ(t)

s(t)
(29)

A(t) =
√

s2(t)+ ŝ2(t). (30)

The KL-MI estimates the phase-amplitude coupling by
computing the Kullback-Leibler divergence (Kullback and
Leibler, 1951) between the distribution of spindle amplitudes
Aspindle(t) over the slow oscillation phase bins φSO(t) and a
uniform distribution (the null hypothesis of no phase-amplitude
coupling). The KL-MI is defined by

KL–MI =
log(N)−H(P)

log(N)
, (31)

where N is the number of phase bins and H(P) is the Shannon
entropy of the amplitude distribution.

The MVL is computed by averaging the complex time series
constructed by multiplying the spindle amplitude, Aspindle(t),
with the term containing the phase, φSO, of the slow oscillations,
thus

MVL =

T
∑

t=0

Aspindle(t)e
iφSO(t). (32)

The length (real part) of the MVL vector quantifies the strength
of phase-amplitude coupling. Its phase denotes the mean phase
of the slow oscillation at which the spindle amplitude is the
strongest.

The PLV, as a measure of phase locking between two
oscillations, is computed by temporally averaging the phase
differences in unit circle between the phase of the slow oscillation
and the phase of the spindle oscillation:

PLV =

T
∑

t=0

ei(φSO(t)−φspindle(t)). (33)

As with the MVL, the length of the PLV vector indicates the
strength of phase-locking, while the phase represents the phase
shift.

Finally, theMI of two discrete variables (in our case, the time
series of estimated phases) can be computed using

MI =
∑

y∈Y

∑

x∈X

p(x, y) log

(

p(x, y)

p(x)p(y)

)

, (34)

where p(x, y) signifies the joint probability mass function of
{X,Y}, and p(x) and p(y) represent the marginal probability
mass functions of X and Y , respectively. All three probability
mass functions are estimated using an equiquantal binning
algorithm (Paluš, 1995) with 16 bins.

To test for statistical significance, we computed 1,000 Iterative
Amplitude Adjusted Fourier Transform (IAAFT) surrogates
from a randomization procedure that preserves the power
spectrum and the amplitude distribution of the original time
series (Schreiber and Schmitz, 2000). The surrogates were
constructed by iterative replacements of Fourier amplitudes
with the values from the original time series and by rescaling
the distribution match between the distribution and the power
spectrum of the original data. We opted to use IAAFT surrogates
since our modeled data are firing rates with non-Gaussian
distribution and do not meet the criteria for using the basic
Fourier Transform surrogates. After constructing the surrogates,
we computed a given CFCmeasure for each surrogate time series,
yielding an empirical null distribution. Finally, we compared a
result on the modeled output to this null distribution to obtain
the empirical p-value.

3. RESULTS

3.1. Dynamical Repertoire of the Thalamic
Model—Spindle Oscillations
The isolated thalamic node model generates spindle oscillations
(as shown in Figure 2). As described previously (Bazhenov
et al., 2002; Destexhe and Sejnowski, 2003; Schellenberger Costa
et al., 2016), spindle oscillations emerge through the reciprocal
interaction of the TRN, which acts as a pacemaker, and the TCR,
which mediates spindle propagation to the cortex (Rasch and
Born, 2013; Fernandez and Lüthi, 2020). A low-threshold burst
discharge in the TRN population causes synchronous and robust
inhibition of the TCR, which activates its T-type calcium current.
The subsequent activity rebound drives the TRN population to
elicit additional low-threshold bursts. Additionally, activating the
T-type calcium current requires a strong tonic hyperpolarization
caused by the potassium leak current (Destexhe et al., 1996a;
Bazhenov et al., 2002).

The waxing and waning structure of the spindle oscillations
is caused by the after depolarization in the TCR, mediated
by the hyperpolarization-activated cation-nonselective channels,
represented by the Ih current (Fernandez and Lüthi, 2020). A
sequence of low-threshold spikes leads to the build-up of calcium
in the TCR cells, which increases the effective conductivity gh
of Ih. The depolarization of the TRN additionally counteracts
its ability to produce a low-threshold spike, which conclusively
ceases the spindle oscillation (Contreras et al., 1997; Lüthi
and McCormick, 1998). Sleep spindle termination also involves
cortical and brain stem mechanisms (Fernandez and Lüthi,
2020), which we omit for brevity here. The two mechanisms—
one creating fast spindle oscillation between 12 and 15 Hz, the
other responsible for the waxing and waning structure with
frequency < 1 Hz — are visualized in Figure 2.
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We probed the thalamic model for a set of parameters
that convey the generation of spontaneous spindles. Figure 3
summarizes spindle activity in the thalamic model as a function
of three parameters: the conductances of the potassium leak,
gLK , and rectifying, gh, currents, and the variance, σTCR, of
the background noise input. In the noise-free case (Figure 3A,
σTCR = 0.0 mV/ms3/2), we observe two regions where spindle
oscillations emerge spontaneously (marked as region I and region
II in the figure). In these two regions, the interaction between
the fast T-type current and its slow modulation via the rectifying
current leads to spindle oscillations. The regions differ in the
value of gLK (cf. Schellenberger Costa et al., 2016). Spindle
oscillations in the region I are longer, more symmetric, and have
a longer inter-spindle interval (Figure 3B rows I vs. II).

When we introduce noise to the thalamic model (second to
the fourth column of Figure 3), we observe qualitative changes
in the spindling behavior. The most noticeable is the emergence
of the waxing and waning cycle as a function of noise strength in
areas neighboring the original spindle-promoting regions. This
is clearly seen in the third row of Figure 3B (region III), as the
spindles emerge for sufficiently strong background noise. In the
spindle-promoting regions I and II, noise randomizes spindle
timing: it can push the TCR population into a spindle event or,
reversely, cease spindling faster than the slow Ih-driven negative
feedback loop alone. The background noise in our model can act
as a depolarizing or hyperpolarizing force, thus can either speed
up the activation of Ih and cease spindling, or, reversely, slow
it down and prolong the spindling periods. Sufficiently strong
noise may also change the number of spindles in the spindle-
promoting regions I and II as seen for noise strengths σTCR =

0.01 mV/ms3/2 and larger.
To the best of our knowledge, there is no experimental

evidence of how spindle properties change as a function of gLK .
However, we know that spindle density ranges between 2–10
spindles/min in EEG data (Purcell et al., 2017; Fernandez and
Lüthi, 2020), and spindles can have various levels of symmetry.
Although, there seems to be a continuous range of spindle density
and symmetry rather than two clusters in the conductance
phase space. We consider the two separated spindling regions
as a pure model feature (which is confirmed by the bifurcation
analysis of the thalamic model in Schellenberger Costa et al.,
2016, Figure 2), where the model can generate more symmetrical
and less frequent spindles (region I, lower gLK , hence lower
hyperpolarization), and less symmetrical and more frequent
spindles (region II, higher gLK).

Outside of the spindle-promoting regions I and II, the
thalamic model displays continuous oscillation in the fast spindle
band due to hyperpolarization induced rebound bursts (as in
region III Figure 3B, but also for larger and smaller values of gh,
hence above and below regions I and II). This behavior does not
exhibit the waxing and waning structure since the T-type current
dominates and Ih is not strong enough to sufficiently depolarize
the TRN population to cease the oscillation. Furthermore, for
larger values of gLK (to the right of region II in Figure 3), the ILK
current dominates, and the thalamic model switches to slow, δ-
like rate oscillations. In the corners of the state space spanned by
the conductances gLK and gh, the thalamic model exhibits a stable

fixed point behavior with constant firing rates (e.g., for maximal
conductances gh = gLK = 0.08 mS/cm2, the TCR exhibit down
state with a constant rate of 10 Hz, while for gh = gLK = 0
mS/cm2 the TCR exhibit up state with a constant rate of 116 Hz).

In its default parametrization, our model exhibits a spindle
frequency of approximately 13 Hz. The spindle frequency in
the thalamic model depends on the conductance of the T-
type calcium current, gT (Schellenberger Costa et al., 2016). By
changing the conductance value in the TCR population, the
model is able to reproduce spindle frequencies in the whole range
of fast spindle oscillations (approximately 12 – 15 Hz). On the
other hand, changing the value of gT in the TRN population has
only a minor effect on the spindle frequency. This effect does not
significantly change qualitatively with the introduction of noise
into the thalamic model. Other spindle parameters, such as its
duration, amplitude, or symmetry, are approximately invariant
with respect to changes in gT in both populations.

3.2. Dynamical Repertoire of the Cortical
Model—Slow Oscillations
The cortical node as a motif of delay-coupled excitatory and
inhibitory populations with somatic spike-frequency adaptation
can be parametrized into four different dynamical regimes
dependent on the mean external input currents µα to both
populations α ∈ {E, I} (Cakan and Obermayer, 2020). The 2D
slices of bifurcation diagrams of interest are shown in Figure 4A.
When the excitatory input is weak, the system is in its DOWN
state: a fixed point solution with a low firing rate of the excitatory
population. As we increase the external input to the E population,
the system undergoes a supercritical Hopf bifurcation, and a
limit cycle emerges. For a weak background current to the I
population, the interaction between inhibition and excitation
creates an E-I oscillation with a frequency of ∼25 Hz. For a
stronger background current to the I population, the interplay
between adaptation and excitation gives rise to a slow limit cycle
with frequencies of around 2 Hz and lower. The system is in
a stable fixed point for stronger background current to the E
population again, albeit with a higher firing rate, the so-called UP
state (Cakan and Obermayer, 2020).

When noise is added to a system parametrized close to the
border of the slow limit cycle and the DOWN state, we observe
a DOWN state with occasional irregular UP state excursions
(i.e., noise pushes the system intermittently into the limit cycle
— Figure 4B middle). Reversely, along the border between the
limit cycle and the UP state, the system exhibits a UP state with
irregular DOWN state excursions caused by noise (Figure 4B
right). From the perspective of modeling slow oscillation during
deep sleep, the optimal operating point of the cortical model
is close to the border between the UP state and the slow limit
cycle, where the cortical node undergoes irregular DOWN state
excursions (Cakan et al., 2022).

3.3. Thalamic Model Driven by Cortical
Input
We first investigate the state space of the thalamic model
by studying the effects of external (cortical) inputs without

Frontiers in Computational Neuroscience | www.frontiersin.org 8 May 2022 | Volume 16 | Article 769860

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Jajcay et al. SO-Spindle Coupling in a Thalamocortical Model

FIGURE 4 | Emergence of slow oscillations in the cortical model. (A) Slices of state space spanned by the mean external input currents µα , α ∈ {E, I}, to the excitatory

and inhibitory population with no (σE = σI = 0.0 mV/ms3/2, top panel) and finite (σE = σI = 0.05 mV/ms3/2, bottom panel) noise. The panels show (left to right) the

following: the maximum firing rate of the excitatory population, the dominant frequency of its rate oscillations (computed as a frequency with maximum power in its

Welch spectrum; white color denotes no oscillations, i.e., fixed point dynamics), and the difference between its maximum and minimum firing rates. White lines

indicate boundaries between fixed points (UP and DOWN) and limit cycles (LCEI and LCaE ) computed on the noise-free case. (B) Simulated time series (from E in red,

from I in blue) from selected states for no (σE = σI = 0.0 mV/ms3/2, top panel) and finite (σE = σI = 0.05 mV/ms3/2, bottom panel) noise. Panels show (left to right)

traces obtained from inside the limit cycle [µE = 0.56 nA, µI = 0.4 nA, marked with green square in (A)], from the left [µE = 0.466 nA, µI = 0.4 nA, marked with green

star in (A)] and the right [µE = 0.7 nA, µI = 0.4 nA, marked with green circle in (A)] border of the limit cycle. For other parameters, see Supplementary Table S2.

closing the feedback loop back to the cortex. Figure 5 shows
the number of thalamic spindles as a function of the potassium
leak conductance gLK and the conductance gh of TCR’s rectifying

current for constant external rate inputs to both thalamic
populations. For larger external inputs, the regions of thalamic
spindling translate to lower values of gh independent of
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FIGURE 5 | Effects of constant external input on thalamic spindling. The panels show the color-coded rate of thalamic spindles as a function of the conductance

parameters gh and gLK for three different noise levels σTCR and three different strengths rstim of the external input. External coupling strengths are equal for the TCR

and TRN populations and are set to one. The other model parameters of the thalamic node are given in Supplementary Table S1. Squares (gh = 0.05 mS/cm2,

gLK = 0.033 mS/cm2 ) and triangles (gh = 0.062 mS/cm2, gLK = 0.033 mS/cm2 ) mark parameter values used for Figure 6. Symbol color refers to the different

thalamic noise levels. Note that the typical excitatory firing rate of the cortical node’s UP state is up to 50–60 Hz.

TCR noise levels. Increased external input leads to a higher
concentration of intracellular calcium in the TCR, which
activates the rectifying Ih current more strongly and ultimately
abolishes the waxing and waning cycle of spindle oscillations (cf.
Figure 2). For smaller values of gh, Ih is reduced, and the waxing
and waning of spindle oscillations reappear.

We then stimulate the thalamic node with rectangular current
pulses mimicking an idealized sequence of cortical UP and
DOWN states. Figure 6A shows the resulting rates of the
TCR and TRN populations as a function of time. For higher

values of gh, thalamic spindles are only induced in the DOWN
state, as already expected from Figure 5. For lower values
of gh, spindling resumes during UP states, albeit with lower
spindle event frequency. Finally, we stimulate the thalamic
node with the excitatory rate of a cortical node undergoing
sustained adaptation-induced slow oscillations (Figure 6B) and
noise-induced DOWN-state transitions (Figure 6C). With few
exceptions, thalamic spindles are induced right after cortical
UP to DOWN transitions, but—given the short duration of the
cortical DOWN state—every SO induces one thalamic spindle
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FIGURE 6 | Thalamic response to alternating cortical UP and DOWN states. The (A–C) panels show the firing rates of the TCR (red), the TRN (blue), and the cortical

input (black) as a function of time. Note that values for TCR and TRN are marked on the primary y-axis (left), while the values for cortical input are marked on the

secondary y-axis (right) for clarity. Corticothalamic coupling strength (Nctx→thal = 1.0) was equal for the TCR and TRN populations. (A) Thalamic response to square

wave stimulation of 0.05 Hz frequency with the amplitude representing the firing rate of an external population of 60 Hz. (B) Thalamic response to excitatory rate input,

which is generated by a cortical node undergoing limit cycle oscillations (cf. Figure 4B, upper left panel). (C) Thalamic response to excitatory rate input, which is

generated by a cortical node undergoing noise-induced DOWN state transitions (cf. Figure 4B, lower right panel). (D) Distribution of delays between midpoints of

cortical DOWN states and spindle-band peaks in the noise-induced slow oscillations from panel (C). The parameters for the thalamic node were as follows: gh = 0.05

mS/cm2 (left panels, see also green squares in Figure 5), gh = 0.062 mS/cm2 (right panels, see also green triangles in Figure 5), gLK = 0.033 mS/cm2, for all other

parameters see Supplementary Table S1. The parameters for the cortical node were as follows: µE = 0.56 nA, σE = σI = 0.0 mV/ms3/2 for panels (B) and

µE = 0.7 nA, σE = σI = 0.05 mV/ms3/2 for panels (C), for all other parameters see Supplementary Table S2. The parameters of connected thalamocortical model

are given in Supplementary Table S3.

only. In this setting, this motif well reproduces the SO-correlated
spindling observed during NREM sleep (Mölle et al., 2011;
Ladenbauer et al., 2016, 2017; Helfrich et al., 2018). Changing
the conductance gh of TCR’s rectifying current, the ratio between
the numbers of “free” and SO-correlated spindle events can
be adapted.

3.4. Cortical Model Driven by Thalamic
Input
Secondly, we study the effects of external thalamic inputs to the
cortical node with a one-way thalamus → cortex connection.
Thalamic input (noise-free spindles) was simulated using our
thalamicmodel parametrized in the spindling region I (Figure 3),
i.e., with gLK = 0.018 mS/cm2, gh = 0.062 mS/cm2.
Figure 7 summarizes cortical responses as a function of cortical
parameters and thalamus → cortex connection strengths. We
observe two distinct effects of thalamic stimulation. Firstly,
it increases the slow oscillation frequency because additional

thalamic input leads to an increase in the excitation, an effect
similar to increasing µE in the isolated cortical node.

The second effect is the imprinting of spindle oscillations
into the cortical activity for stronger coupling strengths
(Figure 7, lower two rows). Typically, a spontaneous thalamic
spindle induces a transition to a cortical UP state, and
spindle activity is superimposed on the UP state of the
cortical activity. After the thalamic spindle ceases, the thalamic
firing rate significantly decreases, and the cortex returns
to the DOWN state due to the adaptation mechanism of
excitatory neurons.

The addition of noise to the cortical node (σE =

σI = 0.05 mV/ms3/2) does not qualitatively change our
previous observations. However, background noise can induce
a DOWN swing (leading to irregular slow oscillation) in
the cortex parametrized at the border between the limit
cycle and the UP state (Supplementary Figure S2). Moreover,
increasing the thalamus → cortex connection strength leads
to prolonged UP states, to less frequent DOWN states,
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FIGURE 7 | Cortical response to thalamic spindle stimulation. The panels show the firing rates of the excitatory cortical population (red), the inhibitory cortical

population (blue), and the thalamic input (black) as a function of time. Note that values for the excitatory and inhibitory cortical populations are marked on the primary

y-axis (left), while the values for thalamic input are marked on the secondary y-axis (right) for clarity. Columns show different parametrizations of the cortical node (left

to right): inside the slow limit cycle (µE = 0.56 nA, cf. Figure 4B left), the border of the DOWN state and the limit cycle (µE = 0.466 nA, cf. Figure 4B middle), and the

border of the limit cycle and the UP state (µE = 0.7 nA, cf. Figure 4B right). Different rows show different values of thalamus→ cortex connection strength ranging

from Nthal→ctx = 0.0 to Nthal→ctx = 0.1. The parameters for the cortical node were as follows: µI = 0.4 nA, σE = σI = 0.0 mV/ms3/2, for all other parameters see

Supplementary Table S2. The parameters for thalamic node were as follows: gLK = 0.018 mS/cm2, gh = 0.062 mS/cm2, σTCR = 0.0 mV/ms3/2, for all other

parameters see Supplementary Table S1. The parameters of connected thalamocortical model are given in Supplementary Table S3.

and, for large enough coupling strength, to spindle activity
from the thalamus being imprinted onto the UP state of
the cortex.

3.5. Full Thalamocortical Loop
In the following section, we study the dynamics of the
full thalamocortical loop consisting of one cortical and one
thalamic node, coupled according to Figure 1. To summarize
our hypotheses regarding the thalamocortical motif, we expect
slow oscillations to emerge in the cortex and spindles in the
thalamus (Krishnan et al., 2016; Latchoumane et al., 2017).
Additionally, we expect slow oscillation activity to affect the
timing of thalamic spindles (Hagler et al., 2018; Jiang et al., 2019)
and thalamic spindles to cause cortical spindles during cortical
UP states (Mölle et al., 2002; Ladenbauer et al., 2017; Helfrich
et al., 2018).

Figure 8 shows the amplitude difference and the power in
two spectral bands for the firing rate of the cortical excitatory
population, depending on the connection strengths of the
thalamus→ cortex and cortex→ thalamus. Increasing thalamus
→ cortex connection strength leads to a broader region in which

the cortical node is oscillating in the slow oscillation band,
albeit the amplitude of cortical oscillation decreases (Figure 8A).
Moreover, increasing the thalamus→ cortex connection strength
also causes a power decrease in the slow oscillation band (0.1–
3.0 Hz), and the region of increased slow oscillation power
shifts slightly toward lower background excitation values (to
the left in the panels), as depicted in Figure 8B. Finally, the
power in the fast spindle band (12–15 Hz) increases as a
function of both the thalamus→ cortex and cortex→ thalamus
connection strengths (Figure 8C). Adding background noise to
both cortical (σE = σI = 0.05 mV/ms3/2) and thalamic
(σTCR = 0.005 mV/ms3/2) nodes does not qualitatively change
these observations (not shown). Thalamic parameterization was
chosen from the spindling region II (Figure 3), i.e., the thalamus
was simulated with gLK = 0.033 mS/cm2, gh = 0.062
mS/cm2.

3.6. Cortical Spindle Activity in the
Thalamocortical Loop Model
Figure 9A summarizes cortical spindle activity dependent on
thalamus→ cortex and cortex→ thalamus connection strengths
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FIGURE 8 | Impact of changes of thalamocortical connection strengths on cortical SO and spindle activity. The panels show a single slice of the state space diagram

of the cortical model on par with Figure 4, zoomed into the slow limit cycle region, for the recurrently connected thalamocortical model of Figure 1. The full model

was simulated with different strengths of connections in both directions: thalamus→ cortex is shown on the x-axis, and cortex→ thalamus is shown on the y-axis.

Panels show (A) the color-coded difference between the maximum and minimum firing rate in the excitatory cortical population, (B) the color-coded mean spectral

power in the slow oscillation range (0.1–3 Hz), and (C) the color-coded mean spectral power in the fast spindle range (12–15 Hz). The mean spectral power in both

bands was computed by averaging the power spectral density computed using Welch’s method within the slow oscillation band, 0.1–3.0 Hz, and fast spindle band,

12–15 Hz. Note that the bottom left panels (Nctx→thal = 0.0, Nthal→ctx = 0.0) parallel the bifurcation diagram of isolated cortex in Figure 4. All simulations were

conducted without noise, for other parameters see Supplementary Tables S1-S3.

and the level of background excitation and inhibition (µE and
µI , respectively). The density of cortical spindles is directly
proportional to the thalamus → cortex connection strength.
Cortical spindle activity emerges mainly in the region where
cortical node exhibits oscillatory activity (cf. Figure 8A).

The time series of firing rates in both nodes in the
thalamocortical model is presented in Figure 9B. For selected
values of model parameters, at the border between the cortical
DOWN state and the limit cycle, a spontaneous thalamic spindle
causes the cortical node to go into the UP state, and the cortical
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FIGURE 9 | Interaction between cortical slow oscillation and thalamic spindles in the noise-free case. (A) Estimated number of cortical spindles per second as a

function of the mean external input currents µext to the excitatory and inhibitory population (encoded by x and y-axis in each smaller panel, respectively) and the

thalamus→ cortex and cortex→ thalamus connectivity strength (encoded by x and y-axis over panels, respectively). The thalamocortical model was simulated for

65 s without noise. (B) 15 s excerpts of time series from the excitatory population in the cortical node (black) and TCR in the thalamic node (gray) for two sets of

connection strengths (Nthal→ctx = 0.04 and Nctx→thal = 0.4, denoted by lime green symbols; and Nthal→ctx = 0.12 and Nctx→thal = 1.2, denoted by aqua blue symbols)

and three values of µE as per three dynamical states of the cortex: DOWN state with µE = 0.45 nA (star), slow limit cycle with µE = 0.55 nA (square), and UP state

with µE = 0.8 nA for weaker connection strengths, and µE = 0.6 nA for stronger connection strength (circle). The points of interest are also denoted in (A). For all

points µI = 0.7 nA, and other parameters were kept constant as per Supplementary Tables S1-S3.

activity is then shaped by the incoming spindle, depending
on the thalamus → cortex connection strength as seen in
Figure 9B (aqua blue and lime green star). In the slow limit cycle,
cortical parametrization for the higher connection strengths, the
cortical UP states, and thalamic spindle waxing become coupled
(Figure 9B, aqua blue and lime green square). Typically, the
thalamic node elicits a spindle after cortical UP to DOWN state
transition, which creates a thalamic DOWN state. This allows
the thalamic node to go into hyperpolarization and generates a
spindle.

The cortical UP state activity is slightly modulated by the
spindle oscillations of the thalamic node (Figure 9B, lime green
and aqua blue circles). With the addition of noise, this regime
becomes interesting for our investigation, as seen in the next
section.

3.7. Slow Oscillation–Spindle Interaction in
the UP State Regime
In the UP state-dominant regime, the cortical model is
parametrized in the UP state, with irregular DOWN swings
caused by the background noise pushing the state into the limit
cycle. The average length of the UP state depends on the amount
µE of background excitation.

ForµE = 0.61 nA, i.e., close to the bifurcation, UP states are of
shorter duration (as shown in Figure 10). In this case, the UP and

DOWN states are relatively regular, with cortical DOWN states
providing a window of opportunity for hyperpolarization of
the TCR and subsequent spindle generation, which then embed
spindle oscillatory activity in the cortical node typically just after
the DOWN to UP state transition. This behavior can be observed
by following vertical white dashed lines in the cortical time series
(Figure 10A), which denotes the midpoints of cortical DOWN
states which are followed by a spindle within a 1.5 s window.
These lines extend to the time-frequency representation, and we
can see an intermittent increase of the cortical power in the
spindle band, thus demonstrating cortical spindles nested in the
UP states. The transition from the DOWN to the UP state in
the cortical node is accompanied by an overshoot in the cortical
activity, which then decreases due to the adaptation current, as
shown in Figure 10B. The mechanistic explanation of the SO–
spindle relationship is illustrated by cortical DOWN-state and
thalamic spindle time-locked plots (Figures 10B,D): the cortical
DOWN state is followed by a waxing period in the thalamic
activity, the spindle activity is then imprinted onto the cortical
activity, followed by an approximately 1 second long cortical
spindle. Thus, spindles are typically observed during the peak
of the cortical UP state or shortly after, as shown in circular
histograms in Figures 10B,D. Our model results align well
with the data-driven studies (Ladenbauer et al., 2017; Helfrich
et al., 2018). Mechanistically, a sustained UP state in the cortex
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FIGURE 10 | Spindles in the thalamocortical motif with short UP states. The figure shows various variables from 120 s of simulation of full thalamocortical model

simulation with the cortical node being parametrized at the right border between the slow limit cycle and the UP state, relatively close to the bifurcation line (µE = 0.61

nA). Individual panels show the following: (A) 20 s time series excerpt of the firing rate of the excitatory population in the cortical node (black) and its slow oscillation

phase (blue) computed using the Hilbert transform of low-pass filtered cortical excitatory firing rate. The panel below shows the time-frequency representation of the

cortical excitatory firing rates computed using the Short Time Fourier Transform with a 2-s time window. Dashed vertical lines (red in time series plot and white in

time-frequency plot) denote the midpoints of cortical DOWN states which are followed by a cortical spindle in the 1.5-s window. (B) the mean ± the SEM of the

cortical excitatory firing rates (red) and TCR firing rates (black), locked on the cortical DOWN states for the whole interval of 120 s. The panel below shows the

distribution of cortical slow oscillation phases (shown in (A) with blue) for the maximum of the cortical fast spindle band peak. Shown are histogram bars in thin red

and circular mean (± circular STD) in thick (dashed) red. (C) 20 s time series excerpt of the firing rate of the thalamocortical relay population in the thalamic node

(black). The panel below shows the time-frequency representation of the TCR firing rates computed using the Short Time Fourier Transform with a 2-s time window.

Dashed vertical lines (red in time series plot and white in time-frequency plot) denote the midpoints of cortical DOWN states which are followed by a cortical spindle in

the 1.5-s window. (D) the mean ± the SEM of the TCR firing rates (red) and cortical excitatory firing rates (black), locked on the thalamic spindle peaks in the whole

interval of 120 s. The panels below show as follows: the distribution of delays between midpoints of cortical DOWN states and spindle-band peaks and the

distribution of cortical slow oscillation phases for the maximum of the thalamic fast spindle band peak. Shown are histogram bars in thin red and circular mean (±

circular STD) in thick (dashed) red. The model was simulated with Nthal→ctx = 0.12, Nctx→thal = 1.2, µI = 0.4 nA, σE = σI = 0.05 mV/ms3/2, and σTCR = 0.005

mV/ms3/2, while other parameters were kept constant as per Supplementary Tables S1-S3.

suppresses spindling via the corticothalamic connections, since
TCR cannot reach necessary hyperpolarization. Therefore, for
this particular parametrization (predominant cortical UP states
with irregular DOWN swings), we conclude the causal direction
goes in the sense of the cortex→ thalamus.

For a parametrization further away from the bifurcation
(µE = 0.66 nA), prolonged UP states are observed
(Supplementary Figure S3). The SO–spindle interactions are
similar as to the case with shorter UP states (Figure 10), however,
these prolonged UP states are more similar to what is seen during
human NREM sleep (Ladenbauer et al., 2017; Helfrich et al.,
2018).

We also probed our connected thalamocortical model in
the remaining two cortical parametrizations. In particular,
when the cortex is parametrized in the DOWN state (with
µE = 0.36 nA, other parameters unchanged with respect
to previous text), the causal pathway between cortex and
thalamus reverses its direction. In this case, the cortex is
predominantly in the DOWN state. Without a sustained cortical
drive, the thalamus can generate free spindles, and these
spindles, in turn, drive the cortex into the UP state as they are
projected (Supplementary Figure S4). Finally, when the cortex
is parametrized in the limit cycle (µE = 0.42 nA), its UP
states hinder the generation of free spindles in the thalamus,
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FIGURE 11 | Phase-amplitude CFC in the thalamocortical motif. The figure shows the distribution of the average amplitudes of the thalamic spindle dependent on the

phase of the cortical slow oscillations in the simulation with short cortical UP states (time series from Figure 10 with µE = 0.61 nA). Dark gray bars denote the

distribution in the simulated thalamocortical model, while light gray bars denote the mean and 95th percentile distribution computed using 1000 IAAFT surrogates (for

details, see Cross-Frequency Coupling (CFC) Measures).

and the thalamic spindles are generated only in prolonged
DOWN states. When the thalamus generates a spindle within the
window of the cortical DOWN state, the projection of the spindle
then forces the cortex to the DOWN state—UP state transition
(Supplementary Figure S5).

Following previous data-driven results on the slow wave–
spindle nesting (Sirota et al., 2003; Mölle et al., 2011; Ladenbauer
et al., 2017; Helfrich et al., 2018), we finally quantified the
phase-phase and phase-amplitude coupling between these two
rhythms. Figure 11 shows the distribution of average amplitudes
of thalamic spindles as a function of the phase of the cortical
slow oscillation. Spindle amplitudes are highest between slow
oscillation phases 0 and π/4. The phase-amplitude relationship
was indeed significant as shown by both tested measures (KL −
MI = 0.0109, p < 0.001 and MVL = 11.3136, p < 0.001),
while the phase-phase relationship cannot be deemed significant
(PLV = 0.0020, p = 0.372 and MI = 0.0049, p = 0.266).
We conclude that the thalamocortical model possesses significant
phase-amplitude coupling between the phase of slow oscillations
and the amplitude of thalamic spindles, but no phase-phase
coupling was found.

4. DISCUSSION

This study investigated the dynamical states of a biophysically
realistic neural mass model of a thalamocortical motif. To assess
the contribution of each part of the model to the dynamics, we
started with an isolated cortical and thalamic node and examined
their individual dynamical landscapes. We perturbed each node
with an external stimulus resembling their counterpart, i.e., the
cortical model was perturbed by stimulation with spindle-like
oscillations, and the thalamicmodel was perturbed using a square
pulse with a low frequency, mimicking the idealized UP and
DOWN state sequence of cortical SO activity. Next, we connected

the isolated nodes to a full thalamocortical network and focused
on spindle imprinting onto the cortical UP state activity and the
interactions between spindles and slow oscillations, both being
hallmark activity in the human brain during slow-wave sleep.

The results of our modeling study are in line with previous
neuroimaging studies focusing on various aspects of sleep
spindles and their interactions with cortical slow oscillations.
In particular, the frequency of the spindles in our model (as
shown in Figures 10A,C, Supplementary Figures S3A,C) both
in thalamic and cortical nodes matches the experimental values
for fast spindles with an average of around 12 Hz (Nir et al., 2011;
Purcell et al., 2017; Alfonsi et al., 2019; Ujma et al., 2021). Typical
spindle duration between 0.5–1 s also agrees with experimental
values (Purcell et al., 2017). Finally, recent neuroimaging studies
showed that sleep spindles possess a significant phase-amplitude
relationship with cortical slow oscillations. More concretely,
waxing periods of spindles are nested in the cortical UP states
and the spindle peak typically occurs right at (or just after)
the slow oscillation UP state peak (Ladenbauer et al., 2017;
Helfrich et al., 2018, 2019). The presented thalamocortical
model well reproduces this SO–spindle relationship (as shown in
Figures 10B,D circular histograms and Figure 11).

By dissecting the thalamocortical model, we sought
the mechanistic explanation of the observed SO–spindle
relationship. From the modeling perspective, we needed
to recognize the difference between two different cortical
parametrizations and their mechanistic consequences. The
causal direction follows the path cortex → thalamus in the
cortical parametrization with predominantly UP state activity
with irregular, noise-driven DOWN state excursions. A
sustained UP state in the cortex suppresses spindling via the
corticothalamic connections since the TCR population cannot
reach the necessary hyperpolarization (cf. Figure 2). On irregular
cortical DOWN swings caused by the background noise, the
cortex is pushed into the DOWN state, which creates a window
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of opportunity for the thalamic DOWN state and a subsequent
spindle waxing period. Finally, this spindle is then imprinted
onto the cortical activity due to the thalamocortical projections.
Reversely, with DOWN state-dominant cortical activity with
irregular UP state excursions (cf. Figure 4B middle), the causal
direction reverses. In this case, without sustained cortical drive,
the thalamus can generate “free” spindles, which subsequently
push cortical activity into the UP state.

We left some parameters untouched despite exploring the
model dynamics with various parameter settings. In particular,
the conductances of calcium T-type currents gT in both thalamic
populations control the underlying frequency of spindles in the
spindle band (cf. Figure 2). Allowing heterogeneous connections
from the excitatory population in the cortical node to TCR
and TRN populations (as shown in Figure 1) would control
the balance between cortically driven excitation and inhibition,
leading to an altered shape of the thalamic spindles. In particular,
for a higher TRN/TCR input ratio, i.e., higher strength for cortex
→ TRN connection, the waxing periods are short—individual
spindles contain only one or two oscillations. The change in
shape is visible for higher ratios than 10 (not shown), and thus
we have not included this parameter in our overall investigation.
Note that the underlying frequency in the spindle band is not
modulated by heterogeneous connection strengths between the
cortex and thalamus. Finally, one of the caveats of our study is
the unknown realistic connection strengths in a thalamocortical
motif in humans, which is why we treated both connection
strengths from cortex → thalamus and thalamus → cortex as
free parameters of our investigation. Given the maximum firing
rates of both populations (cortex ∼40 Hz, thalamus ∼400 Hz), we
indeed expected the connectivity strengths in both directions to
have approximately a 10-fold difference.

The dynamics of slow oscillations and spindles vary
significantly between distinct sleep stages (Amzica and
Steriade, 1997; Mölle et al., 2002; Steriade, 2003). Various
neuromodulators, such as acetylcholine (ACh) or histamine
(HA), are known to vary significantly during sleep and awake, as
well as across sleep stages (Brady et al., 2011; Vanini et al., 2011).
Specific effects of these neuromodulators can be implemented
by changing the strength of the intrinsic and synaptic currents
in the cortical and thalamic populations. In their biophysically
realistic thalamocortical model, Krishnan et al. (2016) identified
a minimal set sufficient to account for characteristic changes
in the brain’s electrical activity across the sleep-wake cycle. We
have not included these effects and focused solely on the N3
sleep stage. Briefly, a reduction of ACh can be implemented
by an increase in potassium leak conductance (gLK) in the
thalamic node and an increase in spike-frequency adaptation
(b) in the cortical node (McCormick, 1992), while the effect of
HA can be implemented as a shift in the activation curve of a
hyperpolarization-activated current Ih in the TCR (McCormick
and Williamson, 1991).

This study merged two mass modeling approaches: a mean-
field approximation of the Fokker-Planck equations for the
cortical dynamics (Cakan and Obermayer, 2020) and a mass
model based on conductance-based average membrane voltage
dynamics for the thalamus (Schellenberger Costa et al., 2016),

and as such, showcase the applicability of the hybrid modeling
approaches. We are not aware of any caveats of this approach, as
long as a natural link in the sense of coupling variable between
the frameworks can be established. In our case, both frameworks
operate with the notion of firing rate and use firing rate as
the main model output and a coupling variable between their
subpopulations. Using the already probed cortical node facilitates
studying biophysically realistic stimulation protocols of the
thalamocortical model in our future work. Our motivation was
2-fold: the cortical model introduced by Cakan and Obermayer
(2020), which we used here, is biophysically realistic and very
well studied with respect to its dynamical states. Moreover, a
previous study also probed biophysically realistic stimulation
protocols on par with transcranial direct current stimulation
(tDCS) during sleep (Cakan and Obermayer, 2020). Finally, by
merging different mass modeling approaches in our current
work, we are also setting a stage for future extensibility of
the thalamocortical model by including more cortical nodes,
or, alternatively, nodes simulating different brain areas, e.g.,
the hippocampus.

One of the extension possibilities lies in topographic mass
models. A well-known property of cortical spindles is their
heterogeneity, i.e., mainly the difference between faster and
slower spindles, where faster spindles are usually observed in
parietal regions, while slower spindles are found in the frontal
regions (Werth et al., 1997; Mölle et al., 2002, 2011). The
main reason for this heterogeneity is the core and matrix
thalamocortical pathways (Rubio-Garrido et al., 2009; Piantoni
et al., 2016): core thalamocortical neurons are spatially selective
and topographically organized, target a single cortical area, and
project mainly to the granular layer. On the other hand, matrix
neurons have diffuse, multiarea projections, characterized by
multiple distant arbors, and reach mostly superficial layers of
the cortex (Rubio-Garrido et al., 2009; Piantoni et al., 2016).
The advantage of mass models over spiking models is the
computational efficiency and the fast transition into layer-
resolving 2D models by modeling more cortical layers with the
same base model and a different between-layer corticocortical
and corticothalamic connectivity and fan-outs (Potjans and
Diesmann, 2014), accounting for distinct core and matrix
thalamocortical projections.

As already mentioned above, a realistic outlook and extension
possibility is taking a step further in the direction of whole-brain
dynamics and creating a whole-brain model consisting of many
cortical nodes coupled using the structural connectome with the
thalamus, able to undergo stimulation. Recently, Cakan et al.
(2022) constructed a deep sleep whole-brain model and studied
the dynamics of local and global slow oscillation events. Each
node in their model consisted of an excitatory-inhibitory pair
of the mean-field approximation model of the AdEx neurons.
Hence, we might build on our current investigation of the
thalamocortical motif.

We suggest that our current investigation of the
computationally efficient thalamocortical microcircuit model
allows us to dive deeper into the sleeping brain and shed light
on the exact temporal structure and interaction of sleep rhythms
involved in episodic memory consolidation.
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