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ABSTRACT
In this work, we benchmark the accuracy of the density-functional tight-binding (DFTB) method, namely the long-range cor-
rected second-order (LC-DFTB2) and third-order (DFTB3) models, for predicting energetics of imidazolium-based ionic liquid 
(IL) ion pairs. We compare the DFTB models against popular density functionals such as LC-ωPBE and B3LYP, using ab initio 
domain-based local pair-natural orbital coupled cluster (DLPNO-CC) energies as reference. Calculations were carried out in the 
gas phase, as well as in aqueous solution using implicit solvent methods. We find that the LC-DFTB2 model shows excellent per-
formance in the gas phase and agrees well with reference energies in implicit solvent, often outperforming DFTB3 predictions 
for complexation energetics. Our study identifies a range of opportunities for use of the LC-DFTB method and quantifies its sen-
sitivity to protonation states and the types of chemical interactions between ion pairs.

1   |   Introduction

Understanding ionic solvent structure through atomistic simu-
lations is a prerequisite for designing ionic solutions in geochem-
ical [1] or chemical energy storage [2] contexts, and advancing 
a range of technologies, from self-healing ionic polymers for 
molecular electronics [3] to novel 3D printing approaches [4]. 
Imidazolium-based organic solvents are of particular interest 
due to the abundance of imidazolium derivatives in ionic liquid 
(IL) compounds. Imidazolium derivatives are likewise prevalent 
in alkaloids [5], biological systems [6], and synthetic pharmaceu-
tical products [7]. Moreover, covalently connected polyamide 
ionenes (PA-ionenes) containing imidazolium rings were found 
to exhibit intrinsic, rapid, shape memory, and self-healing be-
haviors at room temperature [8–10]. Previous work suggested 
that hydrogen bonds (primarily between the counter-anions 

and the cationic PA-ionene chains) are responsible for the poly-
mer self-healing process [8]. However, this analysis was based 
on classical molecular dynamics (CMD) simulations, which 
are computationally inexpensive yet limited by an empirical 
treatment of interatomic potentials and charges, and unable to 
describe proton transfer or other chemical reactions. A more 
rigorous quantum chemical treatment of these processes is 
therefore desirable, for instance with density functional theory 
(DFT); however, calculating the dynamic properties of large-
scale polymeric systems using DFT remains challenging due to 
the high computational cost.

As a middle ground in terms of computational resource re-
quirements, density-functional tight-binding (DFTB) quantum 
chemical methods offer a compromise by accelerating DFT 
by two to three orders of magnitude, maintaining comparable 
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accuracy to DFT, and providing variationally derived elec-
tronic structures for every geometry [11]. As an approximation 
to DFT, DFTB is based on a two-center approximation to the 
Kohn–Sham Hamiltonian using a minimal basis set for valence-
shell electrons and empirically optimized pseudoatomic orbitals 
[12]. Core electron interactions, nuclear repulsion energies, and 
double-counting terms are accounted for by way of distance-
dependent interatomic repulsion potentials. The Hamiltonian 
and overlap matrix elements are precalculated within the basis 
of the pseudoatomic orbitals and tabulated as a function of inter-
atomic distance, permitting a faster time-to-solution with DFTB 
than with conventional DFT [13]. If applicable to self-healing IL 
systems, DFTB would offer a good compromise between com-
putational speed and reliable treatment of critical chemical in-
teractions such as proton transfer and polarization effects, while 
avoiding pitfalls of classical methods, among them empirical in-
teratomic potentials and atomic charges [14–16].

The DFTB models emerge from Taylor expansions of the Kohn–
Sham DFT energy around a reference electron density with re-
spect to a density fluctuation, which gives rise to the second-order 
(DFTB2) and third-order (DFTB3) formalisms [11]. While DFTB2 
considers on-site and interatomic charge interactions via Mulliken 
point charges and a γ-function, which approximates a Coulomb-
like interaction of exponentially decaying charge density [11], the 
DFTB3 formalism further considers the variation of atomic chem-
ical hardness with the corresponding atomic charge state [17].

In previous studies, DFTB3 was reported to be an efficient, 
accurate method for studying protic IL structures and proper-
ties  [16, 18]. Addicoat et  al. [16] benchmarked DFTB3 against 
hybrid DFT model chemistry reference energies and concluded 
that DFTB3 was a suitable choice for predicting complexation 
energies for molecular clusters containing up to 15 ion pairs. 
For such molecular clusters, external charge stabilization ob-
scures the role of charge transfer, polarization, and further, the 
types of chemical interactions occurring between ion pairs. This 
warrants study of individual ion pairs to more fundamentally 
understand method performance. Moreover, it is known that 
self-interaction errors (SIEs) inherited from the semi-local treat-
ment of electronic exchange affect both DFT and DFTB meth-
ods [19]. These SIEs may overestimate charge delocalization and 
underestimate ion pair stabilization [20], making them, partic-
ularly, problematic for protic ILs, where either zwitterionic 
salts or hydrogen-bonded molecular complexes can persist. In 
ab initio methods such as the gold-standard coupled cluster (CC) 
method, SIEs are completely absent due to explicit accounting of 
electrons for electron exchange.

To address SIEs in DFT methods that prioritize low compu-
tational resource requirements, an empirical long-range cor-
rection (LC) is often employed [21]. By extending a similar 
correction to the DFTB framework, it was recently shown that 
long-range corrected second-order DFTB [21, 22] (LC-DFTB2) 
could effectively overcome many deficiencies of DFTB without 
LC [21–23], including large SIEs. This is accomplished by incor-
porating a Hartree–Fock-like exchange to the γ-function at long 
inter-electron distances, where the local density approximation 
incorrectly models the exchange interaction [21]. In this paper, 
we, therefore, focus on the applicability of LC-DFTB2 [24] to IL 
systems and polymers with charged residues. We place special 

emphasis on complexation energies (also referred to as ion pair 
formation energies) essential for qualitatively accurate predic-
tions in IL and ionic polymer simulations featuring large system 
sizes or time depths. For a quality model, these reaction energies 
must be in qualitative agreement with predictions from accurate 
correlated electronic structure methods such as CC.

In this work, we evaluate conventional DFTB3 [17] as well as 
LC-DFTB2 [24] methods and their predictions of individual ion 
pair energetics, noting that an LC-DFTB3 method and associ-
ated parameters have yet to be developed. We compare DFTB 
model complexation and isomerization energies against predic-
tions from various DFT and CC methods. The purpose of our 
work is to give charge- and solvent environment-specific recom-
mendations for IL simulations with quantum chemical methods.

Our work represents a fundamental first step toward simulating 
large PA-ionene chains and aggregates via DFTB methods, with 
reliable treatment of ion pair chemistry. Meanwhile, conclusions 
from this work complement the Addicoat et al. [16] benchmark 
by selecting systems without external charge stabilization and 
calculating the complexation, (de)protonation, and salt formation 
energies of individual IL ion pairs against CC reference energies.

Our work is organized as follows: first, we introduce our selection 
of IL model systems, including the ionic and neutral complexes 
employed in the benchmark (Section 2.1). We then validate the 
domain-based local pair natural orbital [25] (DLPNO) approxi-
mation to CC with singles, doubles, and perturbative triples [26] 
[CCSD(T)] for these systems (Section 2.2.1). Benchmarking re-
sults against the DLPNO-CCSD(T) reference energies are then 
reported for calculations in the gas phase (Section 3.1) and aque-
ous solution (Section 3.2), for which we apply a solute molecule 
density continuum solvation model (SMD) [27] and a conductor-
like screening model (COSMO) [28]. Including solvated bench-
marks was motivated by experimental observation of residual 
water content [29] during IL polymer synthesis. Our bench-
marks focus on the accuracy of relative energies: complexation 
energies and ion (de)protonation energies in both gas phase and 
aqueous medium. We discuss the performance trends of the LC-
DFTB and DFTB3 models and conclude with comments on their 
suitability for simulating these systems, suggesting potential fu-
ture directions for method development.

2   |   Methodology

2.1   |   Model Systems

Due to the limited set of available chemical elements, H, C, N, O, 
and S, in the ob2′ (ω = 0.3) parameter set [30] for LC-DFTB2 calcu-
lations, we selected the acetate (Ac), mesylate (Mes), and methyl 
bisulfate (Mbs) anions. As cations, we chose imidazolium (Im), 
1-methylimidazolium (MIm), and 1-ethyl-3-methylimidazolium 
(EMim), shown in Figure 1.

Nine ion pairs were derived from the three cations and three 
anions, with further speciation into zwitterionic, neutral, and 
covalent forms for each ion pair. The ionic form had the imidaz-
olium cation and (deprotonated) organic acid anion interacting 
as a salt, while the neutral form contained the imidazole and 
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organic acid. The covalent form was inspired by observations of 
dynamic covalent interactions between conjugated ionic liquids 
and CO2 [31]. This form was prepared as a Lewis acid–base ad-
duct, with a C–O covalent bond between the imidazolium cat-
ion (Lewis acid) and the deprotonated organic acid anion (Lewis 
base). The geometries for each cation, anion, and their neutral 
conjugates were fully optimized prior to their use for construct-
ing the initial coordinates for the 27 total possible ion pair com-
plexes, as described in Section 2.2.2. Since we are also interested 

in the performance of the methods in aqueous solution, we re-
peated all geometry optimizations and energy calculations with 
SMD, which gave rise to a final total of 2 × 27 = 54 initial ion pair 
complex geometries that were then carried forward for further 
geometry optimization.

As anticipated, several structural isomers emerged from this set of 
54 geometry optimizations. An example is given in Figure 2 with 
MImAc complexes in gas phase and solution. Table 1 defines the 
labeling system used to distinguish complexes obtained after opti-
mization. For convenience, we introduce an acid–base notation to 
label the complexes assessed by our benchmark, with AH as acid 
(e.g., acetic acid) and B as base (molecules containing the imid-
azole unit), [A]− as conjugate base of the organic acid, and [BH]+ 
as the imidazolium conjugate acid of the imidazole base. Where 
multiple initial coordinate conditions relaxed to near structural 
isomers, the lowest-energy structure was carried forward. This 
process reduced the initial 54 complex structures to 24 systems, 
namely 12 gas-phase systems, and 12 solvated systems.

2.2   |   Electronic Structure Methods

2.2.1   |   CC Methods

CC methods were selected to provide high-accuracy references for 
the ion pairing energetics. The CC calculations were performed 
using the ORCA v. 5.0.4 electronic structure program [32, 33], with 
single and double excitations (CCSD) as well as single, double, and 
perturbative triple excitations [CCSD (T)]. Dunning's augmented 
correlation-consistent double-zeta (aug-cc-pVDZ) and triple-zeta 
(aug-cc-pVTZ) basis sets [34, 35] were used. DLPNO-CC calcula-
tions [26, 36] were performed with additional contracted auxiliary 
basis sets for both aug-cc-pVDZ and aug-cc-pVTZ [37, 38]. The 
self-consistent field (SCF) energy convergence criterion for the un-
derlying Hartree–Fock calculations was 10−8 Hartree (abbreviated 
as a.u.). The cost-effective DLPNO approximation was compared 
against full CCSD(T)/aug-cc-pVDZ calculations, including both 
gas phase and implicit solution. Figure S1 is a parity plot comparing 
the CCSD(T)/aug-cc-pVDZ and DLPNO-CCSD(T)/aug-cc-pVDZ 
gas phase complexation energies relative to ionic species at infinite 
separation. An analogue relative to neutral species at infinite sepa-
ration is given in Figure S2, and SMD results are in Figures S3 and 
S4. The DLPNO-CCSD(T) method is in excellent agreement with 
full CC, with a mean absolute error (MAE) of 0.7 kcal mol−1 in gas 
phase. With SMD, the DLPNO-CCSD(T) MAE is 0.6 kcal mol−1. 

FIGURE 1    |    Imidazolium-based cations and the organic anions con-
sidered in this work. Nine ion pairs were composed from imidazoli-
um (Im), 1-methyl-imidazolium (MIm), 1-ethyl-3-methyl-imidazolium 
(EMIm), acetate (Ac), mesylate (Mes), and methyl bisulfate (Mbs).

FIGURE 2    |    Optimized geometries for methyl-imidazolium ace-
tate complexes. (A) Gas-phase covalent complex, (B) gas-phase neutral 
complex, (C) solvated neutral complex, and (D) solvated zwitterionic 
complex.

TABLE 1    |    Notation for optimized complex structures.

Complex Label Formation reactions

Neutral complexes AH • B [A]− + [BH]+ → AH • B
(proton transfer)
AH + B → AH • B

(noncovalent interaction)

Neutral covalent complexes (Lewis adduct) [A]−–[BH]+ [A]− + [BH]+ → [A]− – [BH]+

(Lewis addition)

Zwitterionic complexes [A]−[BH]+ [A]− + [BH]+ → [A]−[BH]+

(ion association)
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We thus selected the DLPNO-CCSD(T) method as the benchmark 
reference for all energy comparisons.

2.2.2   |   DFT Methods

All DFT calculations were performed using ORCA v. 5.0.4 [32]. 
We computed reaction energetics using the B3LYP [39, 40] and 
LC-ωPBE [41, 42] DFT functionals. For the basis set, we selected 
Pople's 6–311 + G(d, p) [43–47] valence triple zeta fully polarized 
basis set. As for the CC calculations, the SCF convergence crite-
rion was 10−8 a.u. for all calculations.

Geometries for each ion and its conjugate base excepting EMIm, 
whose neutral conjugate base breaks the ring aromaticity and 
was not considered in this work, were optimized at the LC-
ωPBE/6–311 + G(d, p) level of theory prior to generating initial 
geometries for complexes. We selected this level of theory be-
cause it was found in an earlier study to outperform generalized 
gradient approximation (GGA) and fixed hybrid DFT methods 
for the geometries of imidazolium-based ILs [48]. The initial co-
ordinates were prepared in Avogadro v. 1.2.0 [49] by orienting 
the two species at positions that were chemically reasonable for 
hydrogen bonding interactions. Three cases were considered for 
each pair: the anion interacting with the cation, the neutral pro-
ton transfer complex, and the covalent Lewis adduct. In several 
cases, different initial conditions produced different complex ge-
ometries, from which we consistently carried forward the lowest-
energy structure. After generating initial geometries for the pair 
complexes following the classifications listed in Table  1, fully 
optimized LC-ωPBE/6–311 + G(d, p)-level geometries were ob-
tained for each complex. For SMD calculations geometries for the 
ions, neutral conjugates, and complexes were obtained at the LC-
ωPBE/6–311 + G(d, p)/SMD level of theory. A dielectric constant 
of 78.4 was selected to represent water at room temperature.

2.2.3   |   DFTB Methods

DFTB calculations were carried out with the DFTB+ v. 21.1 [50] 
program using Grimme dispersion (D3) [51] with two sets of op-
timized dispersion constants, one reported by Gaus et al. [52] and 
the other by Brandenburg and Grimme [53], along with Becke–
Johnson (BJ) damping [54] corrections with the respective 
LC-DFTB2-D3(BJ)/ob2′ (ω = 0.3) [30] and DFTB3-D3(BJ)/3ob 
[55] models and levels of theory. We leave calculations with the 
Brandenburg dispersion constants to the supplement, as Gaus' 

dispersion model is a common default implementation (as in 
DFTB+). The self-consistent charge (SCC) convergence criterion 
was 10−8 a.u., the same threshold as the SCF convergence crite-
rion for the CC and DFT calculations.

Since the SMD model is not yet implemented in DFTB+, we 
instead tested two available implicit solvent methods, the 
COSMO [28] and Generalized Born [56] with solvent-accessible 
surface area (GBSA) methods. The GBSA model used parame-
ters from Ehlert et al. [57] (see Tables S11–S14 for comparison). 
For COSMO, a range of rescaling for the van der Waals radii 
were compared against the reference energies, and the best-
performing model, a 1.5× radius rescaling, was carried forward.

2.3   |   Geometry Optimizations

Molecular structures for all benchmarked systems were fully opti-
mized at the LC-ωPBE-D3(BJ)/6–311 + G(d,p) level of theory, both 
in gas phase and in SMD aqueous solution. For all other methods, 
single-point energies were computed using the corresponding LC-
ωPBE-D3(BJ)/6–311 + G(d,p)-optimized geometries, except for the 
water molecule [58] and the hydronium ion [59], for which struc-
tures were taken from the corresponding references. During the 
LC-ωPBE-D3(BJ)/6–311 + G(d,p) geometry optimization cycles, 
some ion pairs relaxed to zwitterionic, neutral, or covalent forms 
irrespective of the protonation state of the initial complex coor-
dinates. In these cases, the lowest-energy structure was carried 
forward as the representative structure for the respective system.

2.4   |   Relative Energy Quantities

We are computing the following relative energy quantities: pro-
tonation energies for the bases and deprotonation energies for 
the acids, complexation energies with respect to both neutral and 
ionic individual components, and salt formation energies. Table 2 
collects the chemical reactions we assessed. In Table 2, the sym-
bol “•” indicates a hydrogen-bonded complex, while the symbol 
“–” indicates a covalent bond between the two components in a 
Lewis adduct.

The relative energies, ΔE, are defined following the convention 
ΔE = Eproducts—Ereactants for all chemical reactions listed above, 
with reactants at left of the reaction arrow. In this convention, a 
negative value of ΔE indicates an exothermic process, whereas a 
positive ΔE indicates an endothermic process.

TABLE 2    |    Chemical reactions and definitions for relative energy benchmarks.

Reaction type Example

Acid deprotonation AH + H2O → [A]− + [H3O]+

Conjugate acid deprotonation (imidazolium cations) [BH]+ + H2O → B + [H3O]+

Complexation (zwitterions) [A]− + [BH]+ → [A]−[BH]+

Proton transfer [A]− + [BH]+ → AH • B

Salt formation energy AH + B → [A]−[BH]+

Lewis addition (covalent complexes) [A]− + [BH]+ → [A]− – [BH]+
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We compute the MAEs and mean absolute deviations of 
the  errors (MAD) to assess the relative energy quantities, 
using their  standard definitions. These summary statistics 
are compared in Formulas (1) and (2), where yi are the reaction 
energies for each method, xi are the reference energies, and 
M(y) is the signed mean of the reaction energy errors from y1 
to yi:

While the MAE describes the errors for reaction energies 
observed for each method (relative to the reference DLPNO-
CCSD(T) calculations) the MAD of errors describes the disper-
sion of those errors, as an indicator for whether the magnitude 
of the errors is consistent across ion pairs and types of com-
plexes. For concision in presenting the results, “MAD of er-
rors” is abbreviated to MAD in the following sections.

3   |   Results and Discussion

In the following subsections, we present benchmark compari-
sons for complexation energies, acid deprotonation energies, as 
well as salt formation energies, as defined in Table 2. We report 
gas-phase benchmarks before discussing SMD and COSMO im-
plicit solvent results.

3.1   |   Gas-Phase Calculations

We note that the EMIm cation cannot be deprotonated to a neu-
tral conjugate base and is, therefore, treated only as a cation in 
our calculations.

3.1.1   |   Complexation Energies for Neutral Complexes

Complexation energies for neutral complexes are shown in 
Figure 3, with respect to ions in Figure 3A and with respect to 
neutral species in Figure 3B.

In Figure 3A, LC-DFTB2 shows an MAE of 6.0 kcal mol−1 and 
MAD 4.6 kcal mol−1. DFTB3 has the lowest performance of 
the assessed methods, with MAE 11.7 kcal mol−1 and MAD 
2.3 kcal mol−1. LC-ωPBE is comparable to LC-DFTB with MAE 
6.0 kcal mol−1 and MAD 2.7 kcal mol−1. Notably, B3LYP has 
the lowest errors and lowest deviation of errors, with MAE 
3.2 kcal mol−1 and MAD 2.1 kcal mol−1.

The complexation energies for neutral complexes from neutral 
species in Figure  3B follow a similar trend for method per-
formance. LC-DFTB2 shows MAE 3.9 kcal mol−1 and a high 
deviation of errors, with MAD 4.4 kcal mol−1. DFTB3 has 
higher errors than LC-DFTB2 with MAE 6.0 kcal mol−1 and 
MAD 2.2 kcal mol−1. LC-ωPBE has MAE 7.6 kcal mol−1 and 
MAD 2.5 kcal mol−1. B3LYP again has the best performance 
with MAE 1.7 kcal mol−1 and MAD 1.6 kcal mol−1. Ranking 
the method performance for complexation energies of neu-
tral complexes in the gas phase, we find B3LYP>LC-ωPBE ~ 
LC-DFTB2 > DFTB3.

3.1.2   |   Relative Protonation 
and Deprotonation Energies

Figure 4 shows relative deprotonation energies for imidazolium 
acids in Figure 4A and the organic anion acids in Figure 4B. In 
both sets of systems, LC-DFTB2 significantly underperforms 
DFTB3 with an MAE of 11.2 kcal mol−1, where DFTB3 shows 
MAE 3.9 kcal mol−1, comparable to LC-ωPBE with MAE 
2.3 kcal mol−1. B3LYP again has the best performance with 
MAE 1.4 kcal mol−1. For the DFT methods, the deprotonation 

(1)MAE =

∑i
n=1

��yi − xi
��

n

(2)MAD=

∑i
n=1

��yi−M(y)��
n

FIGURE 3    |    Complexation energies in kcal mol−1 for neutral complexes with respect to ions (A) and to neutral species (B). Geometries of the neu-
tral complexes (C).
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of the Mbs acid shows the highest error, at 5.4 kcal mol−1 for 
LC-ωPBE and 2.4 kcal mol−1 for B3LYP. Regarding DFTB 
methods, we do not find a clear trend in errors, with LC-
DFTB2 having high errors for both imidazolium species, 
MAE 10.2 kcal mol−1, and anion acids, MAE 11.9 kcal mol−1. 
DFTB3 has MAE 6.5 kcal mol−1 for imidazolium species, but 
low errors for anion acids, MAE 2.2 kcal mol−1.

3.1.3   |   Complexation Energies for Ionic Complexes

Complexation energies for zwitterions are shown in Figures 5 
and 6. Energies in Figure 5 are relative to ions at infinite sep-
aration. LC-DFTB2 shows low errors with MAE and MAD 
0.9 kcal mol−1. The contribution of Grimme's dispersion 
model [53] is small, having the same magnitude of errors at 
0.9 kcal mol−1 and slightly lower error deviation with MAD 
0.7 kcal mol−1. Meanwhile, DFTB3 shows higher errors and 
deviations with MAE 5.2 kcal mol−1 and MAD 3.5 kcal mol−1. 
LC-ωPBE has similar errors with MAE 5.4 kcal mol−1 and MAD 
0.7 kcal mol−1. B3LYP again performs best, with MAE and 
MAD of 0.5 kcal mol−1. For complexation energies of zwitterions 
with respect to ions, we thus find that the performance follows 
B3LYP>LC-DFTB2 > DFTB3 ~ LC-ωPBE.

Figure  6 displays the complexation energies relative to neutral 
species at infinite separation. LC-DFTB2 has low errors, with 
MAE 0.9 kcal mol−1 and MAD 0.7 kcal mol−1. DFTB3 shows MAE 

FIGURE 4    |    Relative deprotonation energies for imidazole conjugate 
acids (A) and organic acids in kcal mol−1 (B). Water was added across the 
reactions, giving [BH]+ + H2O → B + [H3O]+.

FIGURE 5    |    Complexation energies for zwitterionic complexes with respect to ions in kcal mol−1.

FIGURE 6    |    Complexation energies for zwitterionic complexes with respect to neutral species in kcal mol−1.
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2.4 kcal mol−1 and MAD 0.9 kcal mol−1. LC-ωPBE has the highest 
error with MAE 9.4 kcal mol−1 and MAD 0.3 kcal mol−1 and B3LYP 
has MAE 2.9 kcal mol−1 and MAD 0.3 kcal mol−1. For complexation 
energies of zwitterions with respect to neutral species, we thus rank 
the performances as LC-DFTB2 > DFTB3 ~ B3LYP>LC-ωPBE.

Across all the assessed complexation reactions, presented in 
Figures  3–6, LC-DFTB2 has an MAE of 3.1 kcal mol−1 and an 
MAD of 2.8 kcal mol−1, Meanwhile, DFTB3 performs similarly 
to LC-ωPBE, with MAE 6.9 kcal mol−1 and MAD 2.5 kcal mol−1. 
LC-ωPBE shows MAE 6.7 kcal mol−1 and MAD 1.7 kcal mol−1, 
whereas B3LYP performs best among the assessed methods across 
these complexation reactions, with MAE 2.0 kcal mol−1 and MAD 
1.2 kcal mol−1. In the gas phase, we summarize the method perfor-
mance ranking as B3LYP>LC-DFTB2 > LC-ωPBE ~ DFTB3.

3.2   |   Implicit Solvent Calculations

3.2.1   |   Complexation Energies for Neutral Complexes in 
Aqueous Solution

Figure  7 shows the complexation energies for neutral com-
plexes with respect to ions in Figure 7A and to neutral species in 
Figure 7B, each in implicit solvent using aqueous medium. For the 
complexation of neutral complexes with respect to ionic species in 
Figure 7A, both DFTB flavors have the highest errors. LC-DFTB2 
shows MAE 8.4 kcal mol−1 and MAD 3.1 kcal mol−1 and exhibits 
a large maximum error of 14.7 kcal mol−1 for covalent EMImAc. 
DFTB3 has MAE 7.8 kcal mol−1 and MAD 5.9 kcal mol−1. DFTB3 
has high errors for neutral covalent complexes as well, ranging 
from 10.7 to 16.8 kcal mol−1, but lower errors for proton transfer 

(AH • B) complexes, with errors of 2.1 kcal mol−1 for ImAc and 
1.6 kcal mol−1 for MImAc. Both DFT methods have low errors and 
low deviation in their errors. LC-ωPBE shows MAE 4.0 kcal mol−1 
and MAD 2.2 kcal mol−1, and B3LYP performs the best with 
MAE 3.5 kcal mol−1 and MAD 2.4 kcal mol−1. For these reactions 
in aqueous solution, we find that the performance ranking is 
B3LYP ~ LC-ωPBE>DFTB3 > LC-DFTB2.

For the complexation energies of neutral complexes with re-
spect to neutral species in Figure 7B, LC-DFTB2 shows MAE 
2.4 kcal mol−1 and MAD 2.3 kcal mol−1, while DFTB3 has 
MAE 2.9 kcal mol−1 and MAD 3.8 kcal mol−1. In this subset 
of the complexation energies, LC-DFTB2 follows the perfor-
mance trend of DFTB3, with errors less than 1 kcal mol−1 for 
the AH • B complexes (ImAc and MImAc), but a higher error 
for covalent ImAc [A]− – [BH]+ at 5.9 kcal mol−1. LC-ωPBE has 
the highest errors overall with MAE 6.1 kcal mol−1 and MAD 
1.8 kcal mol−1. B3LYP again shows the lowest errors with MAE 
1.9 kcal mol−1 and MAD 1.9 kcal mol−1. For these reactions, 
B3LYP>DFTB2 ~ DFTB3 > LC-ωPBE.

3.2.2   |   Relative Protonation 
and Deprotonation Energies

Figure 8 shows the relative deprotonation energies of imidazolium 
acids in Figure 8A and the organic anion acids in Figure 8B. Both 
DFTB methods show high errors for deprotonation reactions in 
implicit solvent. LC-DFTB2 has MAE 12.8 kcal mol−1, whereas 
DFTB3 has high MAE 17.0 kcal mol−1. Both LC-DFTB2 and 

FIGURE 7    |    Complexation energies for neutral complexes with re-
spect to ions (A) and neutral species (B) in implicit solvent (kcal mol−1). 
Geometries for the solvated neutral complexes are shown in (C).

FIGURE 8    |    Relative deprotonation energies for conjugate acids of 
the (A) cations and (B) anions in kcal mol−1. Water was added across the 
reactions, giving [BH]+ + H2O → B + [H3O]+.
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DFTB3 show, particularly, high errors for the deprotonation of 
acetic acid, with 18.8 kcal mol−1 for LC-DFTB2 and 17.5 kcal mol−1 
for DFTB3. Meanwhile, the DFT methods show low errors, with 
LC-ωPBE MAE of 2.2 kcal mol−1 and B3LYP MAE of 1.2 kcal mol−1 
across all deprotonation reactions. Consistent with the gas phase 
trend, LC-DFTB2 better reproduces the imidazolium acid depro-
tonations, with MAE 11.0 kcal mol−1, than the organic anion acid 
deprotonations, MAE 14.0 kcal mol−1. DFTB3 has higher errors 
in both cases, with MAE 19.4 kcal mol−1 for imidazolium species 
and MAE 15.5 kcal mol−1 for organic anion acids. LC-ωPBE again 
shows its highest error for deprotonation of Mbs at 4.2 kcal mol−1. 
B3LYP has low errors across deprotonation reactions, with all er-
rors below 2.0 kcal mol−1. Here, the order for method performance 
is B3LYP >LC-ωPBE>LC-DFTB2 > DFTB3.

3.2.3   |   Complexation Energies for Ionic Complexes

Complexation energies for zwitterionic complexes are shown 
in Figure  9, with respect to ions in Figure  9A, and with re-
spect to neutral species in Figure  9B. Figure  9C includes 

structures of all ionic complexes optimized in an implicit 
water solvent. Starting with complexation energies for zwit-
terionic complexes with respect to ions in Figure  9A, the er-
rors are low with MAE fewer than 3 kcal mol−1 for all assessed 
methods. LC-DFTB2 and DFTB3 perform similarly, each with 
MAE and MAD of 0.7 kcal mol−1. DFTB3 shows a maximum 
error of 1.3 kcal mol−1 for MImAc, lower than the LC-DFTB2 
error of 1.6 kcal mol−1. LC-ωPBE shows MAE 1.6 kcal mol−1 
and MAD 0.4 kcal mol−1, whereas again B3LYP has the best 
performance with MAE and MAD of 0.6 kcal mol−1. Here, 
B3LYP>DFTB3 ~ LC-DFTB2 > LC-ωPBE.

Moving to complexation energies for zwitterionic complexes 
with respect to neutral species, shown in Figure  9B, LC-
DFTB2 shows low errors with MAE 4.6 kcal mol−1 and MAD 
4.1 kcal mol−1. LC-DFTB2 has a high error for MImAc, at 
9.4 kcal mol−1. Meanwhile, DFTB3 has MAE 3.8 kcal mol−1 and 
MAD 1.9 kcal mol−1, and instead shows the highest errors for 
sulfur-containing complexes. All errors for DFTB3 are less than 
6.4 kcal mol−1. LC-ωPBE shows MAE 5.7 kcal mol−1 and MAD 
0.8 kcal mol−1, and B3LYP again has the best performance with 

FIGURE 9    |    Complexation energies for solvated zwitterionic complexes with respect to ions (A) and to neutral complexes (B) in kcal mol−1. 
Geometries for solvated zwitterionic complexes are shown in (C).
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MAE 2.4 kcal mol−1 and MAD 0.6 kcal mol−1. For these reac-
tions, B3LYP>DFTB3 ~ LC-DFTB2 > LC-ωPBE.

Across all complexation reactions in implicit solvent (shown in 
Figures 7–9), LC-DFTB2 shows MAE 3.5 kcal mol−1 and MAD 
2.3 kcal mol−1. Meanwhile, DFTB3 exhibits low errors, consis-
tent with the earlier results by Addicoat et al. [16], with MAE 
3.2 kcal mol−1 and MAD 2.5 kcal mol−1. LC-ωPBE also shows 
low errors with MAE 3.8 kcal mol−1 and MAD 1.1 kcal mol−1. 
B3LYP again outperforms all other assessed methods with MAE 
1.8 kcal mol−1 and MAD 1.1 kcal mol−1. Across all reactions in 
implicit solvent, B3LYP>DFTB3 ~ LC-DFTB2 ~ LC-ωPBE.

As we can see from the above comparisons, while DFTB3 and 
LC-DFTB2 have a similarly strong performance in implicit 
aqueous solution, with an overall total MAE of 3.2 kcal mol−1 
for DFTB3 and MAE 3.5 kcal mol−1 for LC-DFTB2, LC-DFTB2 
performs better than DFTB3 in the gas phase, with MAE 
3.1 kcal mol−1 where DFTB3 has an MAE 6.9 kcal mol−1. Table 3 
summarizes the gas phase results and Table 4 summarizes the 
implicit aqueous solvation results. Analogous tables with MAD 
are included in Tables S6 and S18.

To understand the excellent LC-DFTB2 performance in the gas 
phase and inform possible routes for future method development 
or parameterization work, additional tests were performed to 
assess factors contributing to the observed performance which 
will be briefly summarized here (see Supporting Information 
for details, including Tables S8–S11). As potential factors of in-
fluence, we considered the range separation parameter, ω, reg-
ulating the LC Hartree–Fock-like exchange contributions to the 
complexation energetics, and the extent of charge transfer as 
indicated by the Mulliken charges employed by all DFTB fla-
vors. All tests were performed in the gas phase to avoid external 
charge delocalization and stabilization effects from the implicit 
solvent model.

Our analysis suggests that complexation energetics are indeed 
sensitive to the choice of the range separation parameter and 
the associated, respectively optimized, repulsion potentials; but 
mostly insensitive to the magnitude of the charge transfer. We 
find that the influence of ω on complexation energetics is rather 
small, on the order of 0.2 kcal mol−1 in terms of the MAE, and is 
insufficient to explain the excellent LC-DFTB2 performance in 
the gas phase. Meanwhile, we find large differences between the 
LC-DFTB2 and DFTB3 contributions from the repulsion energy, 
of several kcal mol−1 on average. Surprisingly, we find that the 
differences between methods are most pronounced for covalent 
complexes, at 10.8 kcal mol−1 with respect to ions and a standout 
21.0 kcal mol−1 with respect to neutral species. From this analy-
sis, we find that the individually optimized repulsion potentials 
for each range-separation parameter ω play a central role in the 
differences in predicted complexation energies between the two 
methods.

The second-order component of the LC correction appears to 
distinguish neutral Lewis adducts from neutral proton-transfer 
complexes, enabling satisfactory and even excellent descrip-
tions of a range of complexes' charge states, from zwitterions to 
neutral and covalent complexes. When the second-order Fock 
contribution is neglected, the errors for neutral and covalent 
complexation energies increase with LC-DFTB2/ob2′ (ω = 0.3), 
whereas zwitterions are described well with or without that 
component of the LC. This reflects the anticipated behavior, 
that the modified treatment of exchange influences bonding 
interactions but minimally affects nonbonding interactions.

Comparing the DFTB methods with B3LYP/6–311 + G(d,p), the 
best-performing DFT method, there is up to a four-time increase 
in Mulliken charge on the ions for covalent complexes. This ef-
fect is exacerbated by the minimal pseudoatomic basis sets em-
ployed in DFTB, as Mulliken charges are known to be sensitive 
to the basis set [60]. Despite this response in charge transfer, the 

TABLE 3    |    Summary of gas-phase method performance by MAE, 
kcal mol−1.

Reaction
LC-

DFTB2 DFTB3
LC-

ωPBE B3LYP

Acid 
deprotonation

11.2 3.9 2.3 1.4

Complexation, neutral complexes

With respect 
to ions

6.0 11.7 6.0 3.2

With respect 
to neutral 
species

3.9 6.0 7.6 1.7

Complexation, zwitterions

With respect 
to ions

0.9 5.2 5.4 0.5

With respect 
to neutral 
species

0.9 2.4 9.4 2.9

All reactions 3.1 6.9 6.7 2.0

TABLE 4    |    Summary of implicit solvent method performance by 
MAE, kcal mol− 1.

Reaction
LC-

DFTB2 DFTB3
LC-

ωPBE B3LYP

Acid 
deprotonation

12.8 17.0 2.2 1.2

Complexation, neutral complexes

With respect 
to ions

8.4 7.8 4.0 3.5

With respect 
to neutral 
species

2.4 2.9 6.1 1.9

Complexation, zwitterions

With respect 
to ions

0.7 0.7 1.6 0.6

With respect 
to neutral 
species

4.6 3.8 5.7 2.4

All reactions 3.5 3.2 3.8 1.8
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differences in complexation energies are on the order of only 
a few kcal mol−1, insufficient to explain the observed order-of-
magnitude higher errors in complexation energies. While dif-
ferences in the extent of charge transfer between DFTB3 and 
LC-DFTB2 are often small, the per-atom polarizations show 
significant differences between these methods. The differences 
in polarization across methods are of a greater magnitude than 
the extent of charge transfer estimated with Mulliken charges, 
reflecting that the signed differences in polarization cancel much 
of the increased charge when entire molecules rather than indi-
vidual atoms are considered.

4   |   Conclusions

In this work, we investigated ion pairs formed from three com-
monly used organic acid anions (Ac, Mes, and Mbs) and im-
idazolium cations (imidazolium, 1-methyl-imidazolium, and 
1-ethyl-3-methyl-imidazolium). Complexation and deproton-
ation energetics were computed using the DLPNO-CCSD(T) 
method, which we validated against corresponding full CC 
methods. Our focus was on the benchmark of LC-DFTB2 and 
DFTB3 as computationally economical approximations to con-
ventional DFT methods.

We paid particular attention to individual ion pairs when assess-
ing errors for the energetics, separating methodological strengths 
and weaknesses from the compensatory external Coulombic 
charge stabilizations usually encountered in calculations on 
larger ion pair clusters. Departing from Addicoat et al. [16], which 
benchmarked ion pair clusters rather than individual ion pairs, 
we found that the LC treatment in LC-DFTB2 lends considerable 
benefit to the gas-phase energetics, with MAE 3.1 kcal mol−1, 
while the DFTB3 performance declines to MAE 6.9 kcal mol−1. 
Meanwhile, both DFTB3 and LC-DFTB2 have similarly strong 
performance with implicit solvent, with a grand total MAE of 
3.2 kcal· mol−1 for DFTB3 and 3.5 kcal mol−1 for LC-DFTB2.

Additionally, the second-order Fock-like component of the LC 
correction appears to distinguish neutral covalent complexes 
(Lewis adducts) from proton transfer complexes, enhancing the 
description of neutral complexes. In the context of IL ion pairs, 
LC-DFTB2/ob2′ (ω = 0.3) achieves a lower grand total MAE in 
predicting all reaction energies, with performance exceeding 
DFTB3/3ob. Such an excellent performance in the gas phase is 
insufficiently explained by differences in charge transfer. The 
choice of range separation has a modest impact, while the as-
sociated repulsion potentials—individually optimized for the 
different values of ω—show a significant contribution, with 
indications for additional flexibility in distinguishing types of 
neutral complexes by the LC.

Noting conditions where DFTB3 performs well while LC-
DFTB2 shows large errors, such as complexation energies for 
zwitterionic complexes with respect to ions in implicit solvent 
(Figure 9A), we expect that a future LC-DFTB3 method would 
bridge the gap in performance and enhance DFTB description of 
IL ion pairs. Our results indicate that the excellent performance 
of the DFTB3 method for IL clusters, as reported by Addicoat 
et al. [16] was fortuitous since charge screening canceled meth-
odological errors of the DFTB method. In such cases, DFTB3 

provides excellent energy predictions but insufficiently captures 
charge transfer and other key physics at the level of ion pairs.

We are hopeful that the conclusions from this comparative study 
are informative for future large-scale yet accurate simulations 
of ILs and IL polymers containing the functional groups that 
we investigated here, as they constitute a broad range of natural 
products and synthetic derivatives with crucial and advanced 
functionalities, among them self-healing and shape-memory 
imidazole-ring-containing PA-ionenes.
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