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Abstract: Purpose: To develop a preliminary deep learning model that uses diffusion-weighted
imaging (DWI) images to classify the severity of neurological impairment caused by ischemic stroke.
Materials and Methods: This retrospective study included 851 ischemic stroke patients (711 patients
in the training set and 140 patients in the test set). The patients’ NIHSS scores, which reflect the
severity of neurological impairment, were reviewed upon admission and on Day 7 of hospitalization
and were classified into two stages (stage 1 for NIHSS < 5 and stage 2 for NIHSS ≥ 5). A 3D-CNN was
trained to predict the stage of NIHSS based on different preprocessed DWI images. The performance
in predicting the severity of anterior and posterior circulation stroke was also investigated. The AUC,
specificity, and sensitivity were calculated to evaluate the performance of the model. Results: Our
proposed model obtained better performance in predicting the NIHSS stage on Day 7 of hospitaliza-
tion than that at admission (best AUC 0.895 vs. 0.846). Model D trained with DWI images (normalized
with z-score and resized to 256 × 256 × 64 voxels) achieved the best AUC of 0.846 in predicting the
NIHSS stage at admission. Model E rained with DWI images (normalized with maximum–minimum
and resized to 128 × 128 × 32 voxels) achieved the best AUC of 0.895 in predicting the NIHSS stage
on Day 7 of hospitalization. Our model also showed promising performance in predicting the NIHSS
stage on Day 7 of hospitalization for anterior and posterior circulation stroke, with the best AUCs
of 0.905 and 0.903, respectively. Conclusions: Our proposed 3D-CNN model can effectively predict
the neurological severity of IS using DWI images and performs better in predicting the NIHSS stage
on Day 7 of hospitalization. The model also obtained promising performance in subgroup analysis,
which can potentially help clinical decision making.

Keywords: ischemic stroke; convolutional neural networks; NIHSS

1. Introduction

Ischemic stroke (IS), which has high mortality and disability rates [1], is the most
common type of stroke and places a heavy burden on patients’ families, as well as society
in general [2]. According to the guidelines for the management of patients with IS, timely
medical intervention is the key treatment to reduce brain tissue injury as much as possible.
Accurately and timely evaluating the severity of IS is of great significance in guiding the
treatment scenario and facilitating early medical intervention [3].

The National Institutes of Health Stroke Scale (NIHSS), the most common neurological
scale used worldwide to assess the severity of IS, is generally used to help inform clinical
treatment decisions and predict the outcome with high validity and reliability [4,5]. The
NIHSS includes 11 items (consciousness, gaze, visual fields, sensory, language, etc.), and
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each item is assigned a score of 0–2, 0–3, or 0–4 points. The maximum score is 42. Previous
studies have verified that patients with an NIHSS score of 5 have poorer short-term out-
comes than patients with an NIHSS score of 4 or less [6]. Therefore, the correct classification
of the NIHSS stage can guide clinical treatment decisions, especially for reperfusion treat-
ment. However, the assessment of NIHSS is time-consuming and relatively subjective. A
more accurate, efficient, and objective way to evaluate the severity of IS is urgently needed
in clinical practice.

Medical imaging plays a vital role in the management of IS patients, and the preferred
modality is non-contrast CT, which is mainly applied to exclude hemorrhage and iden-
tify conditions other than angiopathy, such as brain tumors and intracranial infections.
The Alberta Stroke Program Early CT Score (ASPECTS) is usually evaluated during the
hyperacute stage before thrombolytic therapy in order to assess the risk of symptomatic
intracranial hemorrhage and the functional prognosis of IS [7]. This scale has a sensitivity
of 78% and a specificity of 96% in predicting functional outcomes. This means that the
ASPECTS has a relatively low sensitivity. Diffusion-weighted imaging (DWI) sequencing is
a first-line diagnostic tool for acute ischemic stroke [8] and has a high specificity and sensi-
tivity in the detection of ischemic lesions [8]. Previously published studies have reported
that the DWI infarct volume can be used to predict neurological severity and is correlated
with NIHSS score [9,10]. However, the accurate segmentation of the DWI infarct volume is
relatively time-consuming and subjective. Sometimes the DWI infarct volume may face the
disadvantage of clinical–diffusion mismatch [11]. Therefore, a new potential solution is
needed to evaluate the most valuable part of DWI images that can reflect the severity of IS.

At present, the information from radiological images mainly relies on visual scores,
such as ASPECTS and the collateral score. However, visual scoring may ignore informa-
tion in images with millions of pixels. Meanwhile, the application of the scales results
in differences in observation among different observers, which affects the reliability of
the scales. In recent years, convolutional neural networks (CNNs) have emerged as one
of the most prominent methods for medical image analysis, such as classification [12],
segmentation [13], and prediction [14]. CNNs can potentially evaluate invisible features
and learn internal biological information, which could help in clinical decision making. In
some specific medical tasks, deep learning models have outperformed clinicians [15]. With
the development of deep learning, CNNs are also being used to analyze DWI images of is-
chemic stroke patients for tasks such as detection and vascular territorial classification [16],
segmentation of ischemic lesions [17,18], and lesion volume measurement [19]. Recently,
several studies have focused on functional outcome prediction using deep learning via
DWI images [20]. However, no previous studies have investigated the potential of CNN in
predicting the NIHSS score using DWI images.

In this study, a deep learning system was designed to address the issue of automatically
classifying the stage of NIHSS (stage 1 for NIHSS < 5 and stage 2 for NIHSS ≥ 5) based
on DWI images. The main contributions are as threefold: First, we proposed an automatic
3D-CNN to predict the NIHSS stage at different time points, trained by DWI images and
the corresponding NIHSS stage labels. The input DWI images were preprocessed by
different voxel sizes and normalization strategies. To the best of our knowledge, this is
the first automatic learning system for this problem. Second, we further investigated the
performance of our model in predicting the NIHHS stage in different circulation areas to
evaluate the efficiency of our model. Third, we collected DWI images from 851 patients,
and the experimental results showed that our proposed model can effectively predict the
neurological severity of IS using DWI images and performs better in predicting the NIHSS
stage on Day 7 of hospitalization. The model also obtained promising performance in
subgroup analysis, which can potentially help timely clinical decision making.

In the following four sections, we first introduce the materials and methods, including
patient selection and the technical details of the proposed method (Section 2). Then, we
report the experimental results (Section 3) and finally discuss the results presented in the
current study (Section 4) before drawing a conclusion (Section 5).
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2. Materials and Methods

This study was approved by the institutional review board of our institution (Ap-
proved Number 2021-03-002), which waived the requirement for patients’ informed consent,
as this is a retrospective study. The workflow is presented in Figure 1.
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2.1. Patients

Patients with IS who were admitted to Xiangtan Central Hospital, Hunan Province,
from 1 March 2017 to 31 December 2020 were enrolled retrospectively for the training and
validation sets. Moreover, patients who were admitted to the same hospital from 1 January
2021 to 1 May 2021 were enrolled for the test set. Patients who underwent MRI scans from
24 h to 7 days after stroke onset in the subacute period were enrolled in order to avoid the
influence of ischemic penumbra, which could lead to mismatching between DWI images
and NIHSS scores. These patients received intravenous thrombolysis by rt-PA (recombinant
tissue plasminogen activator) or urokinase. The following exclusion criteria were applied:
(1) an MRI scan was performed within 24 h of ischemic stroke onset to determine if
ischemic penumbra was present; (2) the patient had a history of neurological impairment;
(3) the image quality of the MRI scans was poor; (4) the patient suffered a recurrent stroke;
(5) symptomatic intracranial hemorrhage occurred.

2.2. MRI Scanning Protocols

The included patients underwent MRI scans with the following four scanners: two
Siemens Magnetom Aera devices, a Philips Achieva 3.0T X-series, and a Siemens Symphony.
Brain MRI sequences, including T1-weighted imaging (T1WI), T2-weighted imaging (T2WI),
fluid-attenuated inversion recovery (FLAIR), apparent diffusion coefficient (ADC), and
DWI, were performed after the hyperacute period.

2.3. Classification

The neurological impairment of patients with ischemic stroke is closely related to
the location and scope of ischemic lesions. The NIHSS is the most commonly used scale
to assess neurological impairment, and the NIHSS score at admission forms the basis of
the treatment strategy. Moreover, the NIHSS score on Day 7 of hospitalization has higher
validity for long-term neurological impairment assessment. Therefore, we employed 3D-
CNN models based on DWI images to evaluate the neurological impairment using NIHSS
scores at admission and on Day 7 of hospitalization. We scored the patients’ neurological
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function with NIHSS scores at the time of hospital admission and repeated the assessment
seven days after stroke onset. Patients who scored below 5 on the NIHSS were classified as
stage 1, representing minor stroke, and those who scored at least 5 were classified as stage 2
for severe stroke. All NIHSS evaluations were completed by experienced, professionally
trained neurologists, each of whom had at least five years of clinical experience in neurology.

2.4. Image Preprocessing

In this study, image preprocessing included the following steps: removing the artifacts,
position correction (registration), normalization, and resampling.

Digital Imaging and Communications in Medicine (DICOM) DWI data were collected
and transformed into the Neuroimage Informatics Technology Initiative (NIFTI) format,
and the high intensity of the ischemic lesions on the DWI images ensured that ADC
(apparent diffusion coefficient) values were reduced to avoid T2 shine-through effects.

We removed artifacts in the DWI images, especially the high signal caused by an
uneven magnetic field, and replaced the value with zero. Then, we corrected the im-
age position to a standard position by 3D-slicer (https://www.slicer.org, accessed on 1
July 2021).

Since the MRI scans were collected from different MRI scanners, the global signal
intensity might be significantly different across machines. To best avoid the effect of
different global signal intensities on the models, we performed normalization before model
training. The images were normalized using two methods: maximum–minimum and
z-score. For the maximum–minimum, the intensity of each voxel was transformed to the
range of 0–1 using Equation (1), where x is the intensity of each voxel before transition and
xnor is the intensity after the transition. For the z-score, the images were normalized by
Equation. (2), where xnor is the intensity after transition, x is the intensity of each pixel, u is
the mean of the voxel values of all images, and σ is the standard deviation of intensity of
each voxel (Figure 2).

xscale = (x − xmin)/(xmax − xmin) (1)

xnor = (x − u) /σ (2)
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Considering that the original DWI images had different spatial resolutions due
to the different scanning parameters between scanners, we resized the images to
128 × 128 × 32 voxels and 256 × 256 × 64 voxels by SimpleITK (https://itk.org, accessed
on 15 July 2021) in order to investigate the best voxel size for the current task. The recon-
structed voxel values were generated by the linear interpolation algorithm.

2.5. Convolutional Neural Network Construction

In this section, we used a 3D-CNN based on a VGG net to solve the problem of NIHSS
stage classification and described our proposed approach. The framework of our proposed
model is presented in Figure 3. DWI images labeled by different NIHSS stages were set as
the input. Different voxel sizes and preprocessing strategies were performed to evaluate
the influence of data variation. Meanwhile, the NIHSS scores at different time points were
tested to avoid overfitting. This is the first study to address this problem.
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A 3D-CNN can examine all volumetric information, which is different from the 2D-
CNN architecture. We employed a 3D convolutional layer that can extract a feature map
exploiting the entire volumetric spatial information, including both local and global contex-
tual information, and can produce a better quality of the local optima [21]. The 3D-CNN
was developed in PyTorch (version 1.0; Facebook, Menlo Park, CA, USA). The network was
built with nine convolutional layers, five maximum pool layers, and three fully connected
layers (Figure 3 and Table 1). Data were randomly divided into a training set (569 patients)
and a validation set (142 patients) at a ratio of 8:2. Training was performed for 100 epochs
with the following parameters: a learning rate of 10–4, an adaptive moment estimation
(Adam) optimizer, a batch size of eight DWI scans, and a cross-entropy loss function.

The nonlinearity that transforms the data is caused by the activation function. Instead
of traditional “hyperbolic tangent” or “sigmoid” functions, we used a rectifier linear unit
(ReLU) in this study. On CNN, there were two traditional forms of pooling: maximum
pooling [22] and average pooling [23], both of which adopt down-sampling techniques.
Due to the significant signal of ischemic lesions on DWI images, maximum pooling was
adopted in this investigation, which could result in more substantial responses. To refresh
network weights, we used Adam as an optimization tool for the classical stochastic gradient
descent (SGD). Adam is a hybrid algorithm that combines the adaptive gradient technique
and the root mean square error. We also tested our dataset with different networks,
such as Desnet121, Resnet 18, and ResNeXt. The performance of our proposed models
outperformed others (Supplemental File).

https://itk.org
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Table 1. The architecture of the proposed 3D-CNN model.

Model Type Filter Size Number of Filters Stride

Layer 1 Conv1 + Maximum Pooling 3 × 3 × 3 16 (1, 1, 1)
Layer 2 Conv2 + Maximum Pooling 3 × 3 × 3 32 (2, 2, 2)
Layer 3 Conv3 3 × 3 × 3 64 (1, 1, 1)
Layer 4 Conv4 + Maximum Pooling 3 × 3 × 3 64 (2, 2, 2)
Layer 5 Conv6 3 × 3 × 3 96 (1, 1, 1)
Layer 6 Conv6 + Maximum Pooling 3 × 3 × 3 96 (2, 2, 2)
Layer 7 Conv7 3 × 3 × 3 128 (1, 1, 1)
Layer 8 Conv8 + Maximum Pooling 3 × 3 × 3 128 (2, 2, 2)
Layer 9 FC1 - - -

Layer 10 FC2 - - -
Layer 11 FC3 (SoftMax) - - -

Conv—convolutional layer; FC—fully connected layer.

All computations were performed on NVIDIA GeForce 1070 graphics processing
units (Santa Clara, Calif.). The models resized to 128 × 128 × 32 voxels had
3,995,874 parameters and a mean time of 0.0023 s; when resized to 256 × 256 × 64 voxels,
they had 13,471,362 parameters and a mean time of 0.0107 s. The other implantation details
are presented in Supplemental File.

For the input of the models, we preprocessed the input DWI images with different
normalization and resize schemes. Models A–D were based on NIHSS scores at admission,
and Models E–H were based on NIHSS scores on Day 7 of hospitalization (Table 2). For
the output of the model, a binary classification for the stage of NIHSS (stage 1 or 2)
was conducted. In the test set, we assessed NIHSS scores at admission and on Day 7
of hospitalization and classified them. The same preprocessing methods were adopted
as those of the training set. The processed images were imported into the model for
classification. The values of AUC, sensitivity, and specificity were evaluated.

Table 2. The detailed information for different proposed models with different preprocessing strate-
gies and predicted NIHSS stages.

Predicted NIHSS Stage Normalization Voxels

Model A Admission Maximum–minimum 128 × 128 × 32
Model B Admission Maximum–minimum 256 × 256 × 64
Model C Admission Z-score 128 × 128 × 32
Model D Admission Z-score 256 × 256 × 64
Model E Hospital Day 7 Maximum–minimum 128 × 128 × 32
Model F Hospital Day 7 Maximum–minimum 256 × 256 × 64
Model G Hospital Day 7 Z-score 128 × 128 × 32
Model H Hospital Day 7 Z-score 256 × 256 × 64

2.6. Statistical Analysis

Python (version 3.8.5; Python Software Foundation, Beaverton, OR, USA.) was used
for statistical analysis. Two-sample t-tests and chi-square tests were used to compare
the clinical information of the training and test sets. The DeLong test was used to com-
pare the performance of the different models. p-Values less than 0.05 were considered
statistically significant.

3. Results
3.1. Subjects’ Clinical Information

In total, 711 patients (mean age = 66.02 ± 11.22 years; 538 anterior circulation strokes;
237 women) were enrolled in the training and validation sets. Another 140 patients (mean
age = 65.00 ± 10.26 years; 113 anterior circulation strokes; 50 women) were enrolled in
the test set. The clinical information of the included patients is presented in Table 3.
Age, gender, and lesion location had no significant differences between the training and
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validation set and the test set. Of the patients of the training and test sets, 393 and 48,
respectively, had NIHSS scores less than 5, and the other 318 patients of the training set and
92 patients of the test set had NIHSS scores greater than or equal to 5. The distribution of
the classification of NIHSS was significantly different at the time of hospitalization between
the training and validation set and the test set (p < 0.01). On Day 7 of hospitalization,
445 patients of the training set and 94 patients of the test set had NIHSS scores less than
5, and the other 268 patients of the training set and 46 patients of the test set had NIHSS
scores greater than or equal to 5. The distribution of the classification of NIHSS has no
significant difference on Day 7 of hospitalization between the training and validation set
and the test set (p > 0.05).

Table 3. Demographics, location, and class distribution of the included patients.

Characteristics Training and Validation Sets Test Set p-Value

Sample capacity 711 140
Age (years) a 66.02 ± 11.22 65.00 ± 10.26 0.31
Women (%) b 33.1 (237) 35.7 (50) 0.65

Anterior circulation (%) 80.9 (538) 82.9 (113) 0.08
Posterior circulation (%) 25.2 (173) 25.0 (27) 0.83
NIHSS (0 days) <5 (%) 55.3 (393) 34.2 (48) <0.01
NIHSS (0 days) ≥5 (%) 44.7 (318) 65.7 (92) <0.01
NIHSS (7 days) <5 (%) 62.7 (445) 67.1 (94) 0.35
NIHSS (7 days) ≥5 (%) 37.3 (268) 32.9 (46) 0.32

a Shown as the mean ± SD. b Shown as the percentage (number of cases).

3.2. Classification at Admission

With different normalization and resizing schemes, the CNN models based on NIHSS
scores at admission had AUC values of 0.809–0.846 (Figure 4 and Table 4). Model D
normalized with the z-score and resized to 256 × 256 × 64 voxels the had best AUC of
0.846 (95% CI, 0.776–0.902) with a sensitivity of 60.9% (95% CI, 50.1–70.9%) and a specificity
of 97.9% (95% CI, 88.9–99.9%). The DeLong test showed no significant statistical difference
between the models based on NIHSS scores at admission (p > 0.05).
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Table 4. The performance of the models in the test set.

Model AUC Sensitivity Specificity

Model A 0.842 (0.771–0.898) 71.7% (64.1–80.6%) 77.1% (62.7–88.0%)
Model B 0.821 (0.747–0.881) 71.7% (61.4–80.6%) 79.2% (65.0–98.5%)
Model C 0.809 (0.734–0.871) 59.8% (49.0–64.8%) 93.7% (82.8–98.7%)
Model D 0.846 (0.776–0.902) 60.9% (50.1–70.9%) 97.9% (88.9–99.9%)
Model E 0.895 (0.832–0.940) 95.7% (88.5–99.9%) 67.0% (56.6–76.4%)
Model F 0.831 (0.759–0.889) 76.1% (61.2–87.4%) 79.8% (70.2–87.4%)
Model G 0.855 (0.785–0.908) 76.1% (61.2–87.4%) 88.3% (80.0–94.0%)
Model H 0.855 (0.758–0.909) 82.6% (68.6–92.2%) 78.7% (69.1–86.5%)

Models A–D—predicting the NIHSS stage at admission; models E–H—predicting the NIHSS stage on Day 7 of
hospitalization. The 95% confidence intervals are presented in brackets.

3.3. Classification on Day 7 of Hospitalization

With different normalization and resizing schemes, the CNN models E–G based on
NIHSS scores on Day 7 of hospitalization had AUC values of 0.831–0.895 on the test set
(Figure 4 and Table 4). Model E normalized by the maximum–minimum and resized to
128 × 128 × 32 voxels achieved the highest AUC value of 0.895 (95% CI, 0.832–0.940), with
a sensitivity of 95.7% (95% CI, 88.5–99.9%) and a specificity of 67.0% (95% CI, 56.6–76.4%).
Since the AUCs varied among different models, the DeLong test also showed no signif-
icant statistical differences between the models based on the NIHSS scores on Day 7 of
hospitalization (p > 0.05).

3.4. Classification of IS Based on Different Circulations

We further analyzed the performance of our predictive models in anterior and posterior
circulation stroke. For predicting the NIHSS stage at admission, models A–D achieved
AUC values from 0.793 to 0.815 (Table 5). Model A had the best performance and had an
AUC value of 0.815 (95% CI, 0.731–0.881), with a sensitivity of 59.4% (95% CI, 46.9–71.1%)
and a specificity of 97.7% (95% CI, 88.0–99.9%) (Table 5). When ischemic stroke occurred in
the posterior circulation, the models achieved AUC values from 0.946 to 1.000. Model D
predicted all of the cases of posterior circulation stroke correctly (Table 6). The AUCs were
higher in predicting the NIHSS stage in posterior circulation stroke.

Table 5. The performance of the models in test set in anterior circulation stroke.

Model AUC Sensitivity Specificity

Model A 0.815 (0.731–0.881) 59.4% (46.9–71.1%) 97.7% (88.0–99.9%)
Model B 0.793 (0.707–0.886) 84.1% (77.3–91.8%) 63.6% (47.8–77.6%)
Model C 0.798 (0.712–0.867) 59.4% (46.9–71.1%) 93.2% (81.3–98.6%)
Model D 0.815 (0.731–0.881) 56.5% (44.0–68.4%) 97.7% (88.0–99.9%)
Model E 0.905 (0.836–0.952) 90.0% (73.5–97.9%) 74.7% (64.0–83.6%)
Model F 0.821 (0.738–0.887) 76.7% (57.7–90.1%) 81.9% (72.0–89.5%)
Model G 0.899 (0.828–0.948) 86.7% (69.3–96.2%) 86.7% (77.5–93.2%)
Model H 0.878 (0.803–0.932) 96.7% (82.8–99.9%) 72.7% (39.0–94.0%)

Models A–D—predicting the NIHSS stage at admission; models E–H—predicting the NIHSS stage on Day 7 of
hospitalization. The 95% confidence intervals are presented in brackets.

For predicting the NIHSS stage on Day 7 of hospitalization, models E–H had AUC
values from 0.821 to 0.905 in predicting the severity of anterior circulation stroke, and
Model E achieved the best AUC value of 0.905 (95% CI, 0.836–0.952), with a sensitivity of
90.0% (95% CI, 73.5–97.9%) and a specificity of 74.7% (95% CI, 64.0–83.6%) (Table 5). In
the posterior circulation stroke group, the models had AUC values from 0.773 to 0.903
(Table 6), and Model E performed the best with an AUC value of 0.903 (95% CI, 0.727–0.983),
a sensitivity of 93.7% (95% CI, 69.8–99.8%), and a specificity of 81.8% (95% CI, 48.2–97.7%).
The AUCs were relatively higher in predicting the NIHSS stage on Day 7 of hospitalization
in anterior circulation stroke and lower in posterior circulation stroke. The DeLong test
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also showed no significant statistical differences between the models based on the NIHSS
scores on Day 7 of hospitalization (p > 0.05).

Table 6. The performance of the models in the test set in posterior circulation stroke.

Model AUC Sensitivity Specificity

Model A 0.989 (0.853–1.000) 78.3% (56.3–92.5%) 100.0% (39.8–100.0%)
Model B 0.989 (0.853–1.000) 95.6% (77.8–99.9%) 100.0% (39.8–100.0%)
Model C 0.946 (0.785–0.996) 78.3% (56.3–92.5%) 100.0% (39.8–100.0%)
Model D 1.000 (0.872–1.000) 100.0% (85.2–100.0%) 100.0% (39.8–100.0%)
Model E 0.903 (0.727–0.983) 93.7% (69.8–99.8%) 81.8% (48.2–97.7%)
Model F 0.835 (0.643–0.949) 56.2% (29.2–80.2%) 100.0% (71.5–100.0%)
Model G 0.899 (0.828–0.948) 86.7% (69.3–96.2%) 72.7% (39.0–94.0%)
Model H 0.773 (0.572–0.910) 75.0% (47.6–92.7%) 72.7% (39.0–94.0%)

Models A–D—predicting the NIHSS stage at admission; models E–H—predicting the NIHSS stage on Day 7 of
hospitalization. The 95% confidence intervals are presented in brackets.

4. Discussion

In this study, we presented a CNN-based classification framework that can prelimi-
narily evaluate the severity of neurological impairment caused by IS, and compared the
performance of different time points for NIHSS evaluation, as well as different image
preprocessing procedures. Our proposed model achieved better performance in predicting
the NIHSS score on Day 7 of hospitalization than that at admission (best AUC 0.895 vs.
0.846). The model also obtained promising performance in subgroup analysis for predicting
the NIHSS score on Day 7 of hospitalization, i.e., anterior and posterior circulation stroke,
with the best AUCs of 0.905 and 0.903, respectively.

At present, the modified Rankin scale (mRS) and Barthel Index (BI) are mostly used in
clinical practice to evaluate the outcome of ischemic patients, and these scales mainly focus
on the disability of ischemic patients [24] and self-care ability. In contrast, the NIHSS score
is more comprehensive for the neural severity assessment of ischemic patients. Meanwhile,
the long-term outcome is not only related to the neural severity but also influenced by other
clinical characteristics [25]. The NIHSS has high reliability and validity for the evaluation
of neurological function in patients with stroke, and this scale is effective for judging
the changes in patients’ condition [4,26]. The validity of the NIHSS varies across time
points and increases with the progression of the disease [4,27]. Cai [27] found that mRS,
Glasgow Outcome Scale (GOS), BI, and Stroke-Specific Quality of Life (SS-QOL) scores
had higher Pearson correlation coefficients with NIHSS scores measured on admission
(0.475–0.572) than with NIHSS scores measured on Day 7 of hospitalization (0.592–0.678),
showing that the predictive validity of the NIHSS on Day 7 of hospitalization was higher
at admission. Similarly, our study showed that the CNN models performed better on
Day 7 data than on admission data; in particular, the sensitivity was higher on Day 7.
The neurological impairment in acute ischemic stroke is mainly caused by the ischemic
and ischemic penumbra. Study [28] showed that 52.4% of patients have DWI/NIHSS
mismatch (DNE) because of the existence of ischemic penumbra, and patients benefit from
intravenous thrombolysis within six hours of stroke onset [29]. A study on nonhuman
primates showed that DNE can last up to 48 h after stroke onset [30]. This may explain
the results in terms of the models obtaining better performance in predicting the NIHSS
stage on Day 7 of hospitalization than that at admission. At present, DNE is determined
mainly by whether the NIHSS score matches the ASPECTS score. In the current study, we
developed a 3D-CNN model based on NIHSS to predict the neurological impairment of
ischemic patients and classified the severity of neurological impairment by DWI images.
The 3D-CNN model can determine whether there is a mismatch between the ischemic core
and neurological impairment in patients with acute stroke and can help clinicians to decide
on whether vascular recanalization treatment is required in ischemic stroke.

A 3D-CNN can statistically analyze and classify images at the voxel level. This type of
model outperforms traditional image analysis methods and has been widely used in medi-
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cal image analysis in recent years. However, the diversity of MRI scanners and scanning
parameters leads to uneven imaging quality and uneven signal intensity, and image stan-
dardization is difficult. To identify the best model, we used different preprocessing methods.
Two current mainstream image standardization methods, namely, z-score and minimum–
maximum normalization [31], were tested for use with this model, and the images were
reconstructed with various numbers of voxels. We found that the model performed best
when the images were normalized by z-scores and resized to 128 × 128 × 32 voxels. DWI
has a lower spatial resolution than other MRI sequences. Our model performed best at
a relatively low voxel count; in contrast, other CNN studies have selected higher spatial
resolution levels. Although several models performed better, the DeLong test obtained no
statistical differences, indicating that a future study is needed to verify the circumstances.

NIHSS scores are more sensitive in anterior than posterior circulation stroke because
some signs of acute posterior circulation infarction, such as somatic dyskinesia, nystagmus,
and Horner syndrome, are not included in the NIHSS [32]. We further classified patients’
Day 7 NIHSS scores according to the location of the stroke and found that the model was
more sensitive in anterior circulation stroke than in posterior circulation stroke, which
is consistent with reports in the literature. At the same time, our model also had good
performance in posterior circulation stroke; however, it warrants further study with larger
sample size.

In patients undergoing acute imaging to evaluate the severity of acute ischemic stroke
using DWI–ASPECTS values, MRI is mainly used to evaluate whether there is severe
vascular occlusion, where an ASPECTS score of 7 or more represents a high risk of vascular
occlusion [33]; meanwhile, the infarct volume can affect prognosis. Jiang’s study showed
a strong correlation between the two aspects [34]. At present, there are few studies on
the automatic classification of ischemic stroke based on medical images. Ding’s study
found that 3D-CNN models can successfully predict the functional outcomes in patients
with brainstem infarction with a high AUC of 0.975 [20]. However, in general, there
is a lack of effective evaluation methods for ischemic stroke severity based on imaging
examinations [35]. In the present study, DWI scans of ischemic patients were used to
develop a preliminary 3D-CNN model, and this model successfully classified patients
according to their NIHSS scores, illustrating that it is feasible to grade the severity of acute
ischemic stroke based on DWI data using a CNN. Wong’s study [13] developed a sematic
segmentation model based on U-Net and grouped convolutions and achieved a Dice
score of 0.85 in testing. Furthermore, the AUC outcome prediction using stroke volume
in 30 refined brain regions based on relevant mRS areas adjusted for clinical variables
was 0.80 with an accuracy of 0.75. Another study [36] combined radiological and clinical
baseline data for outcome prediction, finding that there was no significant improvement
by combining image data with clinical data for mRS prediction, with an AUC of 0.81 vs.
0.80 and above using clinical data only. The NIHSS score was used as a classification of
neurological impairment, avoiding interference of other factors affecting the outcome. The
infarcted core showed a high signal in the DWI images, which was directly related to
the severity of neurological impairment. We used DWI images to train the model, which
performed better than that reported in the current literature, and proved that a 3D-CNN
can effectively classify the neurological impairment of patients with ischemic stroke by
DWI images, affording it broad prospects in clinical application.

The current study has several limitations. First, we did not investigate the performance
of deep learning in predicting the functional outcomes of these patients. It is also crucial in
clinical practice, and we consider it a future direction. Second, the image parameters were
not uniform. This may have compromised the generalizability and stability of our model.
However, we adopted preprocessing techniques to maximize the reduction in variability.
Finally, the single-center collected sample size was still too small and uneven for deep
learning methods. Larger sample size from multi-center institutions is needed to further
confirm the efficiency of our model.



J. Clin. Med. 2022, 11, 4008 11 of 12

5. Conclusions

Our proposed 3D-CNN model can effectively predict the NIHSS score of IS using only
DWI images and performs better for predicting the NIHSS scores on Day 7 of hospitalization.
The model also obtained promising performance in strokes of different circulations. The
proposed model can be applied to efficiently evaluate the severity of IS and potentially
guide clinical decision making.
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