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Summary

In this chapter we consider in silico modeling of dis-
eases starting from some simple to some complex (and
mathematical) concepts. Examples and applications of
in silico modeling for some important categories of
diseases (such as for cancers, infectious diseases, and
neuronal diseases) are also given.

What you can expect to know

Recent advances in bioinformatics and systems biol-
ogy enable modeling and simulation of subcellular, cel-
lular processes, and disease, using primary methods
from dynamical systems theory. In this approach, all
interactions among all components in a system are
described mathematically and computed models are
established. These in silico models encode and test
hypotheses about mechanisms underlying the function
of cells, the pathogenesis, and pathophysiology of dis-
ease and contribute to the identification of new drug
targets and drug design. The development of in silico

models is facilitated by rapidly advancing experimental
and analytical tools that generate information-rich,
high-throughput biological data. Bioinformatics provid-
ing tools for pattern recognition, machine learning, sta-
tistical modeling, and data extraction from databases
contribute to in silico modeling. Dynamical systems
theory is the natural language to investigate complex
biological systems demonstrating nonlinear spatiotem-
poral behavior. Most of the in silico models aim to
complement and not replace experimental research.
Experimental data are needed for parameterization,
calibration, and validation of in silico models. Typical
examples in biology are models for molecular net-
works, where the behavior of cells is expressed in
terms of quantitative changes in the levels of tran-
scripts and gene products as well as models of the cell
cycle. In medicine, in silico models of cancer, immuno-
logical disease, lung disease, and infectious diseases
complement conventional research with in vitro mod-
els, animal models, and clinical trials. This chapter pre-
sents basic concepts of bioinformatics, systems biology,
and their applications in in silico modeling and reviews
its applications in biology and disease.
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Bioinformatics in animal biotechnology

Biotechnology is the most promising life science
frontiers for the next decade. Together with informat-
ics, biotechnology is leading to revolutionary changes
in our society and economy. This genomic revolution
is global and is creating new prospects in all biological
sciences including medicine, human health, disease,
and nutrition, agronomy, and animal biotechnology.

Animal biotechnology is the source of innovation in
production and processing, profoundly impacting the
animal husbandry sector which seeks to improve ani-
mal product quality, health, and well-being.
Biotechnological research products, such as vaccines,
diagnostics, in vitro fertilization, transgenic animals,
stem cells, and a number of other therapeutic recombi-
nant products are now commercially available. In view
of the immense potential of biotechnology in the live-
stock and poultry sectors, the interest in animal bio-
technology has increased over the years.

The fundamental requirement to modern biotechnol-
ogy projects is the ability to gather, store, classify, ana-
lyze, and distribute biological information derived from
genomics projects. Bioinformatics deals with methods
for storing, retrieving, and analyzing biological data
and protein sequences, structures, functions, pathways,
and networks, and recently in silico disease modeling
and simulation using systems biology. Bioinformatics
encompasses both conceptual and practical tools for the
propagation, generation, processing, and understanding
of scientific ideas and biological information (Rhee, 2005).

Genomics is the scientific study of structure, function,
and interrelationships of both individual genes and the
genome. Recently, genomics research has facilitated the
whole-genome mapping of various animals and under-
standing of the building blocks of biology. This has
enabled researchers to decipher the fundamental cellular
functions at the DNA level such as gene regulation or
protein�protein interactions (PPIs) and thus discover
molecular signatures (cluster of genes, proteins, metabo-
lites, etc.), which are characteristic of a biological process
or of a specific phenotype. Bioinformatics methods and
databases can be developed to provide solutions to the
challenges of handling massive amounts of data.

The history of animal biotechnology with bioinfor-
matics is to make a strong research community that
will build the resources and support the veterinary
and agricultural research. There are some technologies
that were used dating back to 5000 BCE. Many of these
techniques are still being used today. Hybridizing ani-
mals by crossing specific strains of animals so that
they can create greater genetic varieties. The offspring
of some of these crosses is afterward bred selectively
to produce the most desirable traits in those specific
animals.

There has been significant interest in the complete
analysis of the genome sequence of the farm animals
such as chicken, pig, cattle, sheep, fish, and rabbit. The
genomes of farm animals have been altered to search
for preferred phenotypic traits and then selecting for
better-quality animals to continue into the next genera-
tion. Access to these sequences has given rise to
genome array chips and a number of web-based map-
ping tools and bioinformatics tools required to make
sense of the data. In addition, the organization of giga-
bytes of sequence data requires an efficient bioinfor-
matics database. Fadiel et al. provide a nice overview
of resources related to the farm animal bioinformatics
and genome projects (Fadiel et al., 2005).

With farm animals consuming large amounts of
genetically modified crops, such as modified corn and
soybean crops, it is a good question as to effect this
will have on the meats. Some of the benefits of this
technology are that what once took many years of trial
and error is not completed in just months. The meats
that are being produced are coming from animals that
are better nourished by the use of biotechnology.
Biotechnology and conventional approaches are
benefiting both poultry and livestock producers. This
will give a more wholesome affordable product that
will meet the growing population demands.

Moreover, bioinformatics methods devoted to inves-
tigating the genomes of farm animals can bring even-
tual economic benefits, such as ensuring food safety
and better food quality in the case of beef. Recent
advances in high-throughput DNA sequencing techni-
ques, microarray technology, and proteomics have led
to effective research in bovine muscle physiology, to
improve beef quality either by breeding or rearing fac-
tors. Bioinformatics is a key tool to analyze the huge
data sets obtained from these techniques. The compu-
tational analysis of global gene expression profiling at
the mRNA or protein level has shown that previously
unsuspected genes may be associated either with mus-
cle development or growth and may lead to the devel-
opment of new molecular indicators of tenderness
(Hocquette et al., 2007). Gene expression profiling has
been used to document changes in gene expression,
for example, following infection by pathological organ-
isms (Meade et al., 2006), during the metabolic changes
imposed by lactation in dairy cows (Loor et al., 2005),
in cloned bovine embryos (Somers et al., 2006) and in
various other models.

Bioinformatics enrichment tools are playing an
important role in facilitating the functional analysis of
large gene lists from various high-throughput biologi-
cal studies. Huang et al. discuss 68 bioinformatics
enrichment tools which help us understand their algo-
rithms and details of a particular tool (Huang et al.,
2009). However in biology, genes do not act
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independently, but in a highly coordinated and inter-
dependent manner with each other. In order to under-
stand the biological meaning, one needs to map these
genes into gene-ontology (GO) categories or metabolic
and regulatory pathways. Different bioinformatics
approaches and tools are employed for this task, start-
ing from GO-ranking methods, pathway mappings,
and biological network analysis (Werner, 2008). The
awareness of these resources and methods is essential
to make the best choices for our research interests.

The knowledge of bioinformatics tools will facilitate
its wide application in the field of animal biotechnol-
ogy. Bioinformatics is the computational data manage-
ment discipline that helps us gather, analyze, and
represent this information in order to educate our-
selves, understand biological processes in the healthy
and disease states, and facilitate the discovery of better
animal products. Continued efforts are required to
develop cost-effective and efficient computation plat-
forms that can retrieve, integrate, and interpret the
knowledge behind the genome sequences. The applica-
tion of bioinformatics tools for biotechnology research
will have significant implications in life sciences and
the betterment of human lives. Bioinformatics is being
adopted worldwide by academic groups, companies,
and national and international research groups, and it
should be thought of as an important pillar of current
and future biotechnology, without which a rapid prog-
ress in the field is not possible. Systems approaches in
combination with genomics, proteomics, metabolo-
mics, and kinomics data have tremendous potential in
providing insights into various biological mechanisms
including the most important human diseases.

Bioinformatics and systems biology

We are witnessing the birth of a new era in biology.
The ability to decipher the genetic code of living
organisms promises to improve the quality of human
life has dramatically changed the landscape of the bio-
logical and biomedical sciences and has brought with
it new challenges.

One such challenge is that recent and novel technolo-
gies produce biological data sets of ever-increasing size,
including genomic sequences, RNA, and protein abun-
dances, their interactions with each other, and the iden-
tity and abundance of other biological molecules. The
storage and compilation of such quantities of biological
data is a challenge: the human genome, for example,
contains three billion chemical units of DNA, whereas a
protozoan genome has 670 billion units of DNA. Data
management and interpretation require the develop-
ment of newly sophisticated computational methods
based on research in biology, medicine, pharmacology,

and agricultural studies and using methods from
computer science and mathematics—in other words,
the multidisciplinary subject of bioinformatics.

Bioinformatics enables researchers to store large
data sets in a standard computer database format and
provides tools and algorithms scientists use to extract
integrated information from the databases and use it
to create hypotheses and models. Bioinformatics is a
growth area because almost every experiment now
involves multiple sources of data, requiring the ability
to handle those data and to draw out inferences and
knowledge. After 15 years of rapid evolution, the sub-
ject is now quite ubiquitous.

Due to the tremendous surge in the availability of
biological data, the term “big data” is often used to
describe the nature, scale, and dimension of these data.
Moreover, the upcoming technologies must address
and account for new schemas for the complicated and
unstructured nature of biological data while designing
data repositories. Currently, data repositories like the
National Center for Biotechnology (Sayers et al., 2011),
GenBank (Benson et al., 2013), Gene Expression
Omnibus (Edgar et al., 2002), and Protein Data Bank
(Berman et al., 2000) are some of the major bioinfor-
matics resources for research in this domain.

Another challenge lies in deciphering the integrated
functions of thousands of genes or systems biology.
Systems biology is a term used to describe a number of
trends in bioscience research and a movement that
draws on those trends. It can be described as a biology-
based interdisciplinary field of study that focuses on
complex interactions of biological systems. Those in the
field claim that it represents a shift in perspective
toward holism instead of reduction. Systems biology
brings in the aspect of complex systems to cell biology.
The fundamental guiding principle of the field of sys-
tems biology is that of studying the cell as a whole
entity and not merely in parts or isolation. It treats the
cell as one functional component with a highly efficient
integrated machinery of molecular interactions causing
activation of cellular interactions which lead to effects
in tissues and organs that subsequently manifest in
physiological functions. This integrated understanding
makes systems biology truly interdisciplinary combing
fields of biology, mathematics, physics, computer sci-
ence, and electrical engineering.

Systems biology has great potential to facilitate the
development of drugs to treat specific diseases. The
drugs currently on the market can target only those
proteins that are known to cause disease. However
with the human genome now completely mapped, we
can target the interaction of genes and proteins at a
systems biology level. This will enable the pharmaceu-
tical industry to design drugs that will only target
those genes that are diseased, improving healthcare in
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the United States. Like two organs in one body,
systems analysis and bioinformatics are separate but
interdependent.

Common computational methods in systems
biology

Computational methods take an interdisciplinary
approach, involving mathematicians, chemists, biolo-
gists, biochemists, and biomedical engineers. The
robustness of data sets related to gene interaction and
co-operation at the system level requires multifaceted
approaches to create a hypothesis that can be tested.
Two approaches are used to understand the network
interactions in systems biology, namely, Experimental
and Theoretical and Modeling techniques (Choi, 2007).
Below is a detailed overview of the different computa-
tional/ bioinformatics methods in modern systems
biology.

Experimental methods in systems biology

Experimental methods utilize real situations to test
the hypothesis of mined data sets. As such, living
organisms are used whereby various aspects of
genome-wide measurements and interactions are mon-
itored. Specific examples on this point include the
following.

Protein�protein interactions

PPIs predictions are methods used to predict the
outcome of pairs or groups of protein interactions.
These predictions are done in vivo and various meth-
ods can be used to carry out the predictions.
Interaction prediction is important as it helps research-
ers make inferences of the outcomes of PPI. PPI can be
studied by phylogenetic profiling, identifying struc-
tural patterns and homologous pairs, intracellular
localization, and posttranslational modifications
among others (Choi, 2007). A survey of available tools
and web servers for analysis of PPIs is provided by
Tuncbag et al. (2009).

Transcriptional control networks

Within biological systems, several activities involv-
ing the basic units of a gene take place. Such pro-
cesses as DNA replication, RNA translation, and
transcription into proteins must be controlled; other-
wise, the systems could yield numerous destructive

or useless gene products. Transcriptional control
networks, also called gene regulatory networks, are
segments within the DNA that govern the rate and
product of each gene.

Bioinformatics has devised methods to look for
destroyed, dormant, or unresponsive control networks.
The discovery of such networks helps in corrective
therapy, hence, the ability to control some diseases
resulting from such control networks breakdown
(Choi, 2007). There has also been rapid progress in the
development of computational methods for the
genome-wide “reverse engineering” of such networks.
ARACNE is an algorithm to identify direct transcrip-
tional interactions in mammalian cellular networks
and promises to enhance our ability to use microarray
data to elucidate cellular processes and to identify
molecular targets of pharmacological drugs in mam-
malian cellular networks (Margolin et al., 2006). In
addition to methods like ARACNE, we need systems
biology approaches that incorporate heterogeneous
data sources, such as genome sequence and
protein�DNA interaction data. The development of
such computational modeling techniques to include
diverse types of molecular biological information
clearly supports the gene regulatory network inference
process and enables the modeling of the dynamics of
gene regulatory systems (Hecker et al., 2009).

Signal transduction networks

Signal transduction is how cells communicate with
each other. Signal transduction pathways involve inter-
actions between proteins, micro and macromolecules
and DNA. A breakdown in signal transduction path-
ways could lead to detrimental consequences within
the system due to the lack of integrated communica-
tion. Correction of broken signal transduction path-
ways is a therapeutic approach researched for use in
many areas of medicine.

The high-throughput and multiplex techniques
for quantifying signaling and cellular responses are
being increasingly available and affordable. A high-
throughput quantitative multiplex kinase assay (Janes
et al., 2003), mass spectrometry-based proteomics (Ong
and Mann, 2005), and single-cell proteomics (Irish
et al., 2006) are few of the experimental methods to
elucidate signal transduction mechanisms of cells.
These large-scale experiments are generating large
data sets on protein abundance and signaling activity.
Data-driven modeling approaches such as clustering,
principal components analysis, and partial least
squares need to be developed to derive biological
hypothesis. The potential of data-driven models to
study large-scale data sets quantitatively and
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comprehensively will make sure that these methods
will emerge as standard tools for understanding signal
transduction networks (Janes and Yaffe, 2006).

Mathematical modeling techniques

Modeling biological systems is a major task of sys-
tems biology and mathematical biology. Computational
systems biology intends to develop and use efficient
algorithms, data structures, visualization, and commu-
nication tools with the goal of computer modeling of
biological systems. A mathematical model can provide
new insights into a biological model of interest and
help in generating testable predictions.

Modeling or simulation can be viewed as a way of
creating an artificial biological system in vitro whose
properties can be changed or made dynamic. By exter-
nally controlling the model, new data sets can be cre-
ated and implemented at the system level to create
novel insights in treating gene-related problems. In
modeling and simulation, sets of differential equations
and logic clauses are used to create a dynamic systems
environment that can be tested.

Mathematical models of biochemical networks (sig-
nal transduction cascades, metabolic pathways, and
gene regulatory networks) are a central component of
modern systems biology. The development of formal
methods adopted from theoretical computing science
is essential for the modeling and simulation of these
complex networks (de Jong, 2002; Breitling et al.,
2008). The computational methods that are being
employed in mathematical biology and bioinformatics
are (1) directed graphs, (2) Bayesian networks, (3)
Boolean networks and their generalizations, (4) ordi-
nary and partial differential equations, (5) qualitative
differential equations, (6) stochastic equations, and (7)
rule-based formalisms. Below are a few specific exam-
ples of the applications of these methods.

Mathematical models can be used to predict drug
response or causes of drug resistance under a given set
of conditions based on specific tumor properties. This
integration can help in the development of tools that
aid in the diagnosis, prognosis, and thus improve
treatment outcome in patients with cancer. For exam-
ple, in breast cancer being one of the well-studied dis-
eases over the last decade serves as a model disease.
One can thus apply the principles of molecular biology
and pathology in designing new predictive mathemati-
cal frameworks that can unravel the dynamic nature of
the disease. Genetic mutations of BRCA1, BRCA2,
TP53, and PTEN significantly affect disease prognosis
and increases the likelihood of adverse reactions to
certain therapies. These mutations enable normal cells
to become self-sufficient in survival in a stepwise

process. Enderling et al. (2006) have modeled this
mutation and expansion process by assuming that
mutations in two tumor suppressor genes are sufficient
to give rise to cancer. They modify the earlier model of
Enderling et al. which is based on an established par-
tial differential equation model of solid tumor growth
and invasion (Anderson et al., 2006). The stepwise
mutations from a normal breast stem cell to a tumor
cell have been described using a model consisting of
four differential equations.

Lauffenburger has applied a novel graphical
modeling methodology known as Bayesian network
analysis to model discovery and model selection for
signaling events that direct mouse embryonic stem,
an important preliminary step in hypothesis testing,
in protein signaling networks. The model predicts
bidirectional dependence between the two molecules
ERK and FAK. It is interesting to appreciate that the
apparent complexity of these dynamic ERK-FAK
interactions is quite likely responsible for the diffi-
culty in determining clear “upstream” versus “down-
stream” influence relationships by means of standard
molecular cell biology methods. Bayesian networks
determine the relative probability of statistical depen-
dence models of arbitrary complexity for a given set
of data (Woolf et al., 2005). This method offers fur-
ther clues to apply Bayesian approaches to cancer
biology problems.

The cell cycle is a process in which cells proliferate
while collectively performing a series of coordinated
actions. Cell-cycle models also have an impact on
drug discovery. Chassagnole et al. use a mathematical
model to simulate and unravel the effect of multitar-
get kinase inhibitors of cyclin-dependent kinases.
They quantitatively predict the cytotoxicity of a set of
kinase inhibitors based on the in vitro IC50 measure-
ment values. Finally, they assess the pharmaceutical
value of these inhibitors as anticancer therapeutics
(Chassagnole et al., 2006).

In cancer, avascular tumor growth is characterized
by localized, benign tumor growth where the nearby
tissues consume most of the nutrients. Mathematical
modeling of avascular tumor growth is important to
understand the advanced stages of cancer. Kiran et al.
have developed a spatial-temporal mathematical
model classified as different zone model for avascular
tumor growth based on the diffusion of nutrients, their
consumption, and it includes key mechanisms in the
tumor. The diffusion and nutrient consumption are
represented using partial differential equations. This
model predicts that the onset of necrosis occurs when
the concentrations of vital nutrients are below critical
values and also the overall tumor growth based on the
size effects of proliferation zone, quiescent zone, and
necrotic zone (Kiran et al., 2009).
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The mathematical approaches used to model the
three natural scales of interest: subcellular, cellular,
and tissue, as discussed above. A challenge is the
development of models that predict effects across bio-
logical scales. The long-term goal is to build a “virtual
human made up of mathematical models with connec-
tions at the different biological scales (from genes to
tissue to the organ)” (Brook et al., 2011).

Concept of modeling

A model is an optimal mix of hypotheses, evidence,
and abstraction to explain a phenomenon. The hypoth-
esis is a tentative explanation for an observation, phe-
nomenon, or scientific problem that can be tested by
further investigation. Evidence describes the informa-
tion, that is, experimental data that help in forming a
conclusion or judgment. Abstraction is an act of filter-
ing out the required information to focus on a specific
property only. For example, archiving books based on
the year of publication, irrespective of the author
name, would be an example of abstraction. In this pro-
cess, we lose some detail and gain some. Through
modeling, predictions are made, that may be tested by
experiment. A model may be simple, for example, the
logistic equation describing how a population of bacte-
ria grows or the model may be complicated. Models
may be mathematical or statistical (Coveney and
Fowler, 2005).

Mathematical models make predictions, whereas
statistical models enable us to draw statistical infer-
ences about the probable properties of a system. In
other words, models can be deductive or inductive. If
the prediction is necessarily true given that the model
is also true, then the model is a deductive model. On
the other hand, if the prediction is statistically inferred
from observations, then the model is inductive.
Deductive models contain a mathematical description,
for example, the reaction�diffusion equations that
make predictions about reality. If these predictions do
not agree with experiment, then the validity of the
entire model may be questioned. Mathematical models
are commonly applied in physical sciences. On the
other hand, inductive models are mostly applied in the
biological sciences. In biology, models are used to
describe, simulate, analyze, and predict the behavior
of biological systems. Modeling in biology provides a
framework that enables description and understanding
of biological systems through building equations that
express biological knowledge. Modeling enables the
simulation of the behavior of a biological system by
performing in silico experiments, that is, numerically
solving the equations/rules that describe the model.
The results of these in silico experiments become the

input for further analysis, e.g., identification of key
parameters or mechanisms, interpretation of data, or
comparison of the ability of different mechanisms to
generate observed data.

In particular, systems biology employs an integra-
tive approach to characterize biological systems, in
which interactions among all components in a system
are described mathematically to establish a
computable model. These in silico models complement
traditional in vivo animal models and can be applied
to quantitatively study the behavior of a system of
interacting components. The advent of high-
throughput experimental tools has allowed for the
simultaneous measurement of thousands of biomole-
cules, opening the way for in silico model construction
of increasingly large and diverse biological systems.
Integrating heterogeneous dynamic data into quantita-
tive predictive models holds great promise to signifi-
cantly increase our ability to understand and rationally
intervene in disease-perturbed biological systems. This
promise—particularly with regard to personalized
medicine and medical intervention—has motivated the
development of new methods for systems analysis of
human biology and disease. Such approaches offer the
possibility of gaining new insights into the behavior of
biological systems, of providing new frameworks for
organizing and storing data and performing statistical
analyses, of suggesting new hypotheses and new
experiments, and even of offering a “virtual labora-
tory” to supplement in vivo and in vitro work.

However in silico modeling in the life sciences is
far from straightforward and suffers from a number
of potential pitfalls. Thus mathematically sophisti-
cated but biologically useless models often arise
because of a lack of biological input, leading to mod-
els that are biologically unrealistic or address a ques-
tion of little biological importance. On the other hand,
models may be biologically realistic but mathemati-
cally intractable. This problem usually arises because
biologists unfamiliar with the limitations of mathe-
matical analysis want to include every known biologi-
cal effect in the model. Even if it were possible to
produce such models they would be of little use since
their behavior would be as complex to investigate as
the experimental situation. These problems can be
avoided by formulating clear explicit biological goals
before attempting to construct a model. This will
ensure that the resulting model is biologically sound,
can be experimentally verified, and will generate bio-
logical insight or new biological hypotheses. The aim
of a model should not simply be to reproduce the bio-
logical data, and indeed often the most useful models
are those that exhibit discrepancies from the experi-
ment. Such deviations will typically stimulate new
experiments or hypotheses. An iterative approach has
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been proposed, starting with a biological problem,
developing a mathematical model, and then feeding
back into the biology. Once established, this collabora-
tive loop can be traversed many times, leading to
ever-increasing understanding.

The ultimate goal of in silico modeling in biology
is the detailed understanding of the function of
molecular networks as they appear in metabolism,
gene regulation, or signal transduction. This is
achieved by using a level of mathematical abstraction
that needs a minimum of biological information to
capture all physiologically relevant features of a cellu-
lar network. For example, ideally, for in silico model-
ing of a molecular network, knowledge of the
network structure, of all reaction rates, concentra-
tions, and spatial distributions of molecules at any
time point is needed. Unfortunately, such information
is unavailable even for the best-studied systems. In
silico simulations thus always have to use a level of
mathematical abstraction, which is dictated by the
extent of our biological knowledge, by molecular
details of the network, and by the specific questions
that are addressed. Understanding the complexity of
the diseases and its biological significance in health
can be achieved by integrating data from the different
functional genomics experiments with medical, physi-
ological, and information on environmental factors
and computed mathematically. The advantage of
mathematical modeling of disease lies in the fact that
such models not only shed insight as to how a com-
plex process works, which could be very difficult to
infer an understanding of each component of this pro-
cess but also predict what may follow as time evolves
or as the characteristics of particular system compo-
nents are modified. Mathematical models have gener-
ally been utilized in association with an increased
understanding of what models can offer in terms of
prediction and insight.

Models have two distinct roles, prediction and
understanding, related to the model properties of accu-
racy, transparency, and flexibility. Prediction of the
models should be accurate including all the complexi-
ties and population-level heterogeneity having an
additional use as a statistical tool. It also provides an
understanding of how the disease spreads in the real
world and how the complexity affects the dynamics.
Understanding the model helps to develop sophisti-
cated predictive models and gather more relevant epi-
demiological data. A model should be suited for its
purpose that is, it should be as simple as possible, but
no simpler—having an appropriate balance of accu-
racy, transparency, and flexibility (Keeling and
Rohani, 2008). The model built should be helpful in
understanding the behavior of the disease and able to
simplify the other disease condition.

In silico models of cells

Several projects are proceeding along these lines
such as E-CELL (Tomita, 2001), Virtual Cell (Resasco
et al., 2012), and CellDesigner (Funahashi et al.,
2003) and simulations of biochemical pathways
(Palsson, 2000). Whole-cell modeling integrates
information from metabolic pathways, gene regula-
tion, and gene expression. In addition, several soft-
ware applications model specific aspects of cellular
interactions, such as COPASI (Hoops et al., 2006) for
simulation and analysis of biochemical networks,
PhysioDesigner 1.2 (Asai et al., 2012) for modeling
physiological systems, etc. Three elements are
needed for constructing a good cell model: precise
knowledge of the phenomenon, an accurate mathe-
matical representation, and a good simulation tool
(Tomita, 2001).

A cell represents a dynamic environment of interac-
tion among nucleic acids, proteins, carbohydrates,
ions, pH, temperature, pressure, and electrical signals.
Many cells with similar functionality form tissue. In
addition, each type of tissue uses a subset of this cellu-
lar inventory to accomplish a particular function. For
example, in neurons, electrochemical phenomena take
precedence over cell division, in which cell division is
a fundamental function of skin, lymphocytes, and
bone marrow cells. Thus an ideal virtual cell not only
represents all the information but also exhibits the
potential to differentiate into neuronal or epithelial
cell. The first step in creating a whole-cell model is to
divide the entire network into pathways and pathways
into individual reactions. Any two reactions belong to
a pathway if they share a common intermediate. In
silico modeling consists not only of decomposing
events into manageable units but also of assembling
these units into a unified framework. In other words,
mathematical modeling is an art of converting biology
into numbers.

For whole-cell modeling, a checklist of biological
phenomena that call for mathematical representation is
needed. Biological phenomena taken into account for
in silico modeling of whole cells are the following:

• DNA replication and repair
• translation
• transcription and regulation of transcription
• energy metabolism
• cell division
• chromatin modeling
• signaling pathways
• membrane transport (ion channels, pump, nutrients)
• intracellular molecular trafficking
• cell membrane dynamics
• metabolic pathways.
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The whole-cell metabolism includes enzymatic and
nonenzymatic processes. Enzymatic processes cover
most of the metabolic events, while nonenzymatic pro-
cesses include gene expression and regulation, signal
transduction, and diffusion.

In silico modeling of whole cells not only requires
precise qualitative and quantitative data but also an
appropriate mathematical representation of each event.
For metabolic modeling, the data input consists of
kinetics of individual reactions and also effects of
cofactors, pH, and ions on the model. The key step in
modeling is to choose an appropriate assumption. For
example, a metabolic pathway may be a mix of for-
ward and reverse reactions. Furthermore inhibitors
that are part of the pathway may influence some reac-
tions. At every step, enzymatic equations are needed
that best describe the process. In silico models are built
because they are easy to understand, controllable, and
can store and analyze large amounts of information. A
well-built model has diagnostic and predictive abili-
ties. A cell by itself is a complete biochemical reactor
that contains all the information one needs to under-
stand life. Whole-cell modeling enables investigation
of the cell cycle, physiology, spatial organization, and
cell�cell communication. Sequential actions in whole-
cell modeling are the following:

• catalog all the substances that make up a cell
• make a list of all the reactions, enzymes, and

effectors
• map the entire cellular pathways: gene regulation,

expression, metabolism, etc.
• build a stoichiometric matrix of all the reactions

versus substances (for qualitative modeling)
• add rate constants, concentration of substances,

strength of inhibition
• assume appropriate mathematical representations

for individual reactions
• simulate reactions with suitable simulation software
• diagnose the system with system analysis software
• perturb the system and correlate its behavior to an

underlying genetic and/or biochemical
• phenomenon using a hypothesis generator.

In silico metabolic modeling

Metabolic modeling is important to simulate the
cell’s function and phenotype. In recent years, meta-
bolic modeling is frequently used in the field of drug
discovery, clinical trial, and precision medicine.
Computational and mathematical techniques are essen-
tial for metabolic modeling and several approaches
and computational tools are currently available for this
purpose. Essential features of metabolic modeling
include metabolic systems biology, genome-scale

metabolic models, constraint-based modeling and flux
balance analysis, and multiomic flux balance analysis
among others. Apart from these applications, meta-
bolic modeling is also important for developing vari-
ous disease models for tissue- and patient-specific
insights into human diseases such as diabetes, neuro-
degenerative diseases, and cancers (Angione, 2019).
Among the several approaches, machine and deep
learning is applied for genome-scale metabolic model-
ing and Python-based models are available for cellular
metabolic functional and phenotype or disease analysis
(Cardoso et al., 2018; Zampieri et al., 2019). Several
tools are nowadays available for metabolic modeling
and analysis such as “Cameo” for in silico design of
cell factories (Cardoso et al., 2018), “Escher-FBA” for
flux balance analysis (Rowe et al., 2018), and
“COBRAme” for genome-scale models of metabolism
and gene expression (Lloyd et al., 2018). The area is
evolving and several new approaches and tools are
emerging.

In silico modeling of disease: in practice

In silico modeling has been applied in cancer, sys-
temic inflammatory response syndrome (SIRS),
immune disease, neuronal disease, and infectious dis-
ease. In silico models of disease can contribute to a bet-
ter understanding of the pathophysiology of the
disease, suggest new treatment strategies, and provide
insight into the design of experimental and clinical
trials for the investigation of new treatment modalities.

In silico modeling of disease combines the advan-
tages of both in vivo and in vitro experimentation,
without subjecting itself to the ethical considerations
and lack of control associated with in vivo experi-
ments. Unlike in vitro experiments, which exist in iso-
lation, in silico models allow the researcher to include
a virtually unlimited array of parameters, which ren-
der the results more applicable to the organism as a
whole (Colquitt et al., 2011).

In silico modeling of disease is quite challenging.
Attempting to incorporate every single known interac-
tion rapidly leads to an unmanageable model. Further
parameter determination in such models can be a
frightening experience. Estimates come from diverse
experiments, which may be elegantly designed and
well executed but can still give rise to widely differing
values for parameters. Data can come from both
in vivo and in vitro experiments and results that hold
in one medium may not always hold in the other.
Further despite the many similarities between mam-
malian systems, significant differences do exist and so
results obtained from experiments using animal and
human tissue may not always be consistent.
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In silico models of cancer

In silico modeling of cancer has become an interest-
ing alternative approach to traditional cancer research.
In silico models of cancer are expected to predict the
complexity of cancer at multiple temporal and spatial
resolutions, with the aim of supplementing diagnosis
and treatment by helping plan more focused and effec-
tive therapy via surgical resection, standard chemo-
therapy, novel treatments. In silico models of cancer
include (1) statistical models of cancer, such as molecu-
lar signatures of perturbed genes and molecular path-
ways, and statistically inferred reaction networks; (2)
models that represent biochemical, metabolic, and sig-
naling reaction networks important in oncogenesis,
including constraint-based and dynamic approaches
for the reconstruction of such networks; and (3) mod-
els of the tumor microenvironment and tissue-level
interactions for microenvironment-tissue level
(Edelman et al., 2010; Araujo and McElwain, 2004;
Byrne et al., 2006; Bellomo et al., 2008; van Riel, 2006;
Rejniak and Anderson, 2011).

Statistical models of cancer can be broadly divided
into those that employ unbiased statistical inference
and those that also incorporate a priori constraints of
specific biological interactions from data. Statistical
models of cancer biology at the genetic, chromosomal,
transcriptomic, and pathway levels provide insight
about molecular etiology and the consequences of
malignant transformation, despite incomplete knowl-
edge of underlying biological interactions. These mod-
els are able to identify molecular signatures that can
inform diagnosis and treatment selection, for example,
with molecularly targeted therapies such as Imatinib
(Gleevec) (Edelman et al., 2010).

However in order to characterize specific biomolec-
ular mechanisms that drive oncogenesis, genetic, and
transcriptional activity must be considered in the con-
text of cellular networks that ultimately drive cellular
behavior. In microbial cells, network inference tools
have been developed and applied for the modeling of
diverse biochemical, signaling, and gene expression
networks. However due to the much larger size of the
human genome compared with microbes, and the sub-
stantially increased complexity of eukaryotic genetic
regulation, the inference of transcriptional regulatory
networks in cancer presents increased practical and
theoretical challenges (Edelman et al., 2010).

Biochemical reaction networks are constructed to
represent explicitly the mechanistic relationships
between genes, proteins, and the chemical interconver-
sion of metabolites within a biological system. In these
models, network links are based on preestablished bio-
molecular interactions rather than statistical associa-
tions; significant experimental characterization is thus

needed to reconstruct biochemical reaction networks
in human cells. These biochemical reaction networks
require, at a minimum, knowledge of the stoichiome-
try of the participating reactions. Additional informa-
tion such as thermodynamics, enzyme capacity
constraints, time-series concentration profiles, and
kinetic rate constants can be incorporated to compose
more detailed dynamic models (van Riel, 2006;
Edelman et al., 2010).

Microenvironment-tissue level models of cancer
apply an “engineering” approach that views tumor
lesions as complex micro-structured materials, where
three-dimensional tissue architecture (“morphology”)
and dynamics are coupled in complex ways to cell
phenotype, which in turn is influenced by factors in
the microenvironment. Computational approaches of
in silico cancer research include continuum models,
discrete models, and hybrid models.

In continuum models, extracellular parameters can
be represented as continuously distributed variables to
mathematically model cell�cell or cell�environment
interactions in the context of cancers and the tumor
microenvironment. Systems of partial differential equa-
tions have been used to simulate the magnitude of
interaction between these factors. Continuum models
are suitable for describing the individual cell migration,
change of cancer cell density, the diffusion of chemo-
attractants, heat transfer in hyperthermia treatment for
skin cancer, cell adhesion, and the molecular network
of a cancer cell as an entire entity. However this type of
in silico models has limited ability in investigating
single-cell behavior and cell�cell interaction.

On the other hand, “discrete” models, that is, cellular
automata models represent cancer cells as discrete enti-
ties of defined location and scale, interacting with one
another and external factors in discrete time intervals
according to predefined rules. Agent-based models
expand the cellular automata paradigm to include enti-
ties of divergent functionalities interacting together in a
single spatial representation, including different cell
types, genetic elements, and environmental factors.
Agent-based models have been used for modeling three-
dimensional tumor cell patterning, immune system sur-
veillance, angiogenesis, and the kinetics of cell motility.

Hybrid models have been created which incorporate
both continuum and agent-based variables in a modu-
lar approach. Hybrid models are ideal for examining
direct interactions between individual cells and
between the cells and their microenvironment, but they
also allow us to analyze the emergent properties of
complex multicellular systems (such as cancer). Hybrid
models are often multiscale by definition integrating
processes on different temporal and spatial scales, such
as gene expression, intracellular pathways, intercellular
signaling, cell growth, or migration. There are two
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general classes of hybrid models, those that are defined
upon a lattice and those that are off lattice.

The classification of hybrid models on these two
classes depends on the number of cells these models
can handle and the included details of each individual
cell structure, that is, models dealing with large-cell
populations but with simplified cell geometry, and
those that model small colonies of fully deformable
cells. Interested readers can find details on hybrid
models of cancer in the interesting recent review of
Rejniak and Anderson (2011).

For example, a hybrid model investigated the inva-
sion of healthy tissue by a solid tumor. The model
focused on four key parameters implicated in the inva-
sion process: tumor cells, host tissue (extracellular
matrix), matrix-degradative enzymes, and oxygen. The
model was considered to be hybrid since the latter
three variables were continuous (i.e., concentrations)
and the tumor cells were discrete (i.e., individuals).
This hybrid model aimed to investigate how
individual-based cell interactions (with one another
and the matrix) can affect the tumor shape (Anderson,
2005). Another model incorporated a continuous
model of a receptor signaling pathway, an intracellular
transcriptional regulatory network, cell-cycle kinetics,
and three-dimensional cell migration in an integrated,
agent-based simulation of solid brain tumor develop-
ment (Zhang et al., 2007). The interactions between cel-
lular and microenvironment states have also been
considered in a multiscale model that predicts tumor
morphology and phenotypic evolution in response to
such extracellular pressures (Anderson et al., 2006).

In silico models of tumor microenvironment inte-
grate information about the biological context in which
cancers develop. Multiple factors involved in the
development of an intrinsically complex tumor micro-
environment have been studied including extracellular
biomolecules, vasculature, and the immune system.
However rarely these methods have been integrated
with a large cell�cell communication network in a
complex tumor microenvironment. Recently, an inter-
esting effort of in silico modeling was described, in
which the investigators integrated all the intercellular
signaling pathways known to date for human glioma
and generated a dynamic cell�cell communication net-
work associated with the glioma microenvironment.
Then, they applied evolutionary population dynamics
and the Hill functions to interrogate this intercellular
signaling network and execute an in silico tumor
microenvironment development. The observed results
revealed a profound influence of the micro-
environmental factors on tumor initiation and growth
and suggested new options for glioma treatment by
targeting cells or soluble mediators in the tumor micro-
environment (Wu et al., 2012).

In silico models and inflammatory response
syndrome in trauma and infection

Trauma and infection elicit an acute inflammatory
response. In certain circumstances, the degree of the
acute inflammatory response may result in pathologic
manifestations, namely, SIRS, sepsis, and multiple
organ failure. Further research is needed for the appro-
priate management of these states. Despite longstand-
ing efforts, there has been uniform difficulty in
translating the results of basic science research into
effective therapeutic regimes. It has been suggested
that this difficulty is due in part to a failure to account
for the complex, nonlinear nature of the inflammatory
process of which SIRS/MOF represents a disordered
state. In silico modeling seems to be a promising
research approach in this field. Indeed, in silico model-
ing of inflammation has been applied in an effort to
bridge the gap between basic science and clinical trials.
Specifically, both agent-based modeling and equation-
based modeling have been utilized (Vodovotz et al.,
2008; Geris et al., 2010). Equation-based modeling
encompasses primarily ordinary differential equations
(ODEs) and partial differential equations (PDEs).
Initial modeling studies were focused on the patho-
physiology of the acute inflammatory response to
stress, and these studies suggested common underly-
ing processes generated in response to infection,
injury, and shock. Later, mathematical models
included the recovery phase of injury and gave insight
into the link between the initial inflammatory response
and the subsequent healing process. The first mathe-
matical model of wound healing dates back to the
1980s and early 1990s. These models and others devel-
oped in the 1990s investigated epidermal healing,
repair of the dermal extracellular matrix, wound con-
traction, and wound angiogenesis. Most of these mod-
els were deterministic and formulated using
differential equations. In addition, recent models have
been formulated using differential equations to ana-
lyze different strategies for improved healing, includ-
ing wound VACs, commercially engineered skin
substitutes, and hyperbaric oxygen. In addition, agent-
based models have been used in wound healing
research. For example, Mi et al. (2007) have developed
an agent-based model to analyze different treatment
strategies with wound debridement and topical admin-
istration of growth factors. Their model produced the
expected results of healing when analyzing for differ-
ent treatment strategies including debridement, release
of PDGF, reduction in tumor necrosis factor-α, and
increase of TGF-β1. The investigators suggested that a
drug company should use a mathematical model to
test a new drug before going through the expensive
process of basic science testing, toxicology, and clinical
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trials (Mi et al., 2007). Indeed, clinical trial design can
be improved by prior in silico modeling. For example,
in silico modeling has led to the knowledge that
patients who suffered from the immune-suppressed
phenotype of late-stage multiple organ failure and
were susceptible to usually trivial nosocomial infec-
tions demonstrated sustained elevated markers of tis-
sue damage and inflammation through 2 weeks of
simulated time. However anticytokine drug trials with
treatment protocols of only one dose or 1 day had not
incorporated this knowledge into their design, with
subsequent failure of candidate treatments.

Applications of in silico disease modeling

The application of mathematical modeling has been
successfully deployed in representing several patho-
physiological disorders and is known as disease
modeling. Several dynamics of pathophysiological and
cell-signaling pathways have been studied using dis-
ease modeling. Disease modeling has also been used to
study the spread of diseases and epidemics (Dezső
and Barabási, 2002; Wang et al., 2016).

Infectious diseases

By now the reader is expected to be familiar with
the meaning and the basics of in silico model (ing). In
this section, we discuss the application of in silico
modeling in the understanding of infectious diseases
and in the proposition/development of better treat-
ments for infectious diseases. In fact, it is worthy of
note that the applications of in silico modeling can
help far beyond just the understanding of the dynam-
ics (and sometimes, statics) of infectious diseases, and
far beyond the proposition/development of better
treatments for infectious diseases. In silico modeling
can be helpful even in the understanding of better pre-
vention of infectious diseases.

The process of infection is defined as the level of a
pathogen within the host which in turn is determined
by the growth rate of the pathogen and its interaction
with the host’s immune response. Initially, no patho-
gen is present but just a low-level nonspecific immu-
nity within the host. On infection, the parasite grows
abundantly over time with the potential to transmit
the infection to other susceptible individuals.

Triad of infectious diseases as the source of
parameters for in silico modeling of infectious
diseases

To comprehensively understand in silico modeling
in the domains of infectious diseases, one should first

understand the “triad of infectious diseases,” and the
characteristics of “infectious agent,” “host,” and “envi-
ronment” on which the models and always based. In
fact, modeling of infectious diseases is just impossible
without this triad, after all, the model would be built
on some parameters (also called variables, in a more
general language), and those parameters always have
their origin from the so-called “triad of infectious dis-
eases.” At this point, a good question would be: What
is “triad of infectious diseases?”

By “triad of infectious diseases,” we mean the inter-
actions between (1) agent, which is the disease-causing
organism—the pathogen; (2) host, which is the infected
organism, or in the case of preinfection, the organism
to be infected is the host—thus in this case host is the
animal the agent infects; and (3) environment, which is
a kind of the link between the agent and the host—
essentially, the environment is an umbrella word for
the entirety of the possible media through which the
agent reaches the host (Park, 2009).

Now that we have set the direction, and we (now)
know what in silico modeling of infectious diseases are
fundamentally based on, let us proceed gradually and
get a better understanding of the parameters on which
most in silico infectious disease models are based. To
discuss the parameters in an orderly manner, we just
categorize them under each of the three components of
the “triad of infectious diseases” and summarize them
in the next subsection. It must be emphasized at this
point that (1) even though all the possible parameters
for in silico modeling of infectious diseases can be suc-
cessfully categorized under the characteristics of one of
any of the three components of the “triad of infectious
diseases”—agent, host, and environment, (2) the para-
meters discussed in the next subsection are by no mean
the entirety of all the possible parameters that can be
included in in silico modeling of infectious diseases—in
fact, several parameters exist that this section cannot
possibly enumerate them all, and that is why we have
discussed the parameters using categorical approach.

Parameters for in silico modeling of infectious
diseases

Parameters derived from characteristics of agent

Some of the parameters for in silico modeling of
infectious diseases are essentially a measure of infec-
tivity (ability to enter the host), pathogenicity (ability
to cause divergence from homeostasis/disease), viru-
lence (degree of divergence from homeostasis caused/
ability to cause death), antigenicity (ability to bind to
mediators of host’s adaptive immune system), and
immunogenicity (ability to trigger adaptive immune
response) (Scott and De Groot, 2010) of the concerned
infectious agent. The exact measure (and thus the
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units) used can vary markedly depending on the inten-
tions for which the in silico infectious diseases model
is built, as well as the assumptions on which the in sili-
co disease model is based. From the knowledge of
agent’s characteristics, one should know that unlike
parameters related to the other characteristics of agent,
the parameters related to infectivity find their most
important use only in the modeling of preinfection
stage in infectious disease modeling.

Finally, some of the agent-related parameters of great
importance in in silico modeling of infectious diseases
are the concentration of agent’s antigen�host’s antibody
complex, case fatality rate, the strain of the agent, other
genetic information of the agent, etc.

Parameters derived from characteristics of host

The parameters originating from characteristics of
host can also be so diversified and be based on the
intentions for which the in silico infectious diseases
model is built and the assumptions on which the in
silico disease model is based, but then the parameters
could be grouped and explained under host’s geno-
type (the allele at host’s specified genetic locus),
immunity/health status (biological defenses to avoid
infection), nutritional status (feeding habits/food
intake characteristics), gender (often categorized as
male, or female), age, and behavior (host’s behaviors
that affect its resistance to homeostasis disruptors).

Typical examples of host-related parameters are the
alleles at some specifically targeted genetic loci; the
total white blood cell counts; differential white blood
cell counts, and/or much more sophisticated counts of
specific blood cell types; blood levels of some specific
cytokines, hormone, and/or neurotransmitters; daily
calories, protein, and/or fat intake; daily amount of
energy expended and/or duration of exercise; etc.

Parameters derived from characteristics of
environment

At first, parameters originating from the environ-
ment might seem irrelevant to the in silico modeling of
infectious diseases, but they are. Even after the prein-
fection stage, the environment still modulates the hos-
t�agent intersections. For example, the ability (and
thus the related parameters) of the agent to multiply
and/or harm the host are continually influenced by
the host’s environmental conditions, and in a similar
way, the host’s defense against the adverse effects of
the agents are modulated by host’s environmental con-
ditions. But somehow, not so many of these para-
meters have been included in in silico infectious
disease models in the recent past. A few examples of
these parameters are host’s ambient temperature,
host’s ambient atmospheric humidity, altitude, host’s
light�dark cycle, etc.

Infectious diseases in silico model proper, a typical
approach/scenario

Now that we know the parameters for in silico
infectious disease modeling, the next reasonable ques-
tion would be “What form does a typical in silico
infectious disease model take?” So, this subsection
attempts to answer this very important question.

To answer this question, we start by employing the
reader to view in silico model as a system of well-
integrated functional equations/formulae. Then, these inte-
grated functional equations/formulae should be seen as
been so highly integrated that, ultimately, they could alto-
gether be seen as a single gigantic functional equation/for-
mula. From this big single functional equation, it is then
possible (at least through the aid of a computer) to make
any of the contained variables the subject of the equation
depending on what one wants to obtain from the model.
This is essentially an in silico model, and it is basically
characterized by the possibility of computationally work-
ing with any (and sometimes, close to infinite) number of
possible data points within the reasonable limits one set.

So the equations behind a typical infectious disease
in silico model could take the form

H5β link function
� �

f Að Þ link function
� �

g Eð Þ1ε. . . ð22:1Þ
where H is the output from a smaller equation that is
based on host parameters, β is a constant, f and g are
link functions which may be same as or different from
each other and other link functions in this system of
equations, A is the output from a smaller equation that
is based on agent parameters, g is a link function
which may be same or different from other link func-
tions in this system of equations, E is the output from
a smaller equation that is based on environment para-
meters, and Ɛ is a random error parameter.

Readers should know that we use the term “link
function” to refer to any of the various possible forms
of mathematical operations or functions. Which means
that based on the complexity of the model, a particular
“link function” might be as simple as a mere addition
or as complex as several combinations of an operator
with high-degree polynomials.

H in Eq. (22.1) could have resulted from a smaller
model/function of the form

H5βh link functionð Þ fh1 h1ð Þ link functionð Þ fh2 h2ð Þ
link functionð Þ. . . fhx hxð Þ link functionð Þ1 ε. . .

ð22:2Þ
where βh is a constant; fh1, fh2, . . . fhx are link functions
that may be the same or different (individually) from
(every) other link functions in this system of equations;
h1, h2, . . . hx are a set of host’s parameters (e.g., age,
gender, white blood cell count, cytokine level, etc.);
and Ɛ is a random error parameter.
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A in Eq. (22.1) could have resulted from a smaller
model/function of the form

A5βa link functionð Þ fa1 a1ð Þ link functionð Þ fa2 a2ð Þ
link functionð Þ. . . fax axð Þ link functionð Þ1 ε. . .

ð22:3Þ
where βa is a constant; fa1, fa2, . . . fax are link functions
which may be the same or different (individually)
from (every) other link functions in this system of
equations; a1, a2, . . . ax are a set of agent’s parameters
(e.g., case fatality rate, agent’s genotype, etc.); and Ɛ is
a random error parameter.

In a similar way, E in Eq. (22.1) could have resulted
from a smaller model/function of the form

E5βe link functionð Þ fe1 e1ð Þ link functionð Þ fe2 e2ð Þ
link functionð Þ. . . fex exð Þ link functionð Þ1 ε. . .

ð22:4Þ
where βe is a constant; fe1, fe2, . . . fex are link functions
which may be the same or different (individually)
from (every) other link functions in this system of
equations; e1, e2, . . . ex are a set of environmental para-
meters (e.g., host’s ambient temperature, host’s ambi-
ent atmospheric humidity, etc.); and Ɛ is a random
error parameter.

Specific examples of infectious diseases in silico
model

Muñoz-Elı́as et al. (2005) have documented (through
their paper Replication dynamics of Mycobacterium
tuberculosis in chronically infected mice) a successful in
silico modeling of infectious diseases (specifically,
tuberculosis). In their in silico modeling of tuberculosis
in mice, the researchers investigated both the static
and dynamic of host�pathogen/agent equilibrium
(i.e., mice-mycobacterium tuberculosis static and
dynamic equilibrium). The rationale behind their study
was that a better understanding of host�pathogen/
agent interactions would make possible the develop-
ment of better antimicrobial drugs for the treatment of
tuberculosis (as well as provide similar a understand-
ing for the cases of other chronic infectious diseases).
They modeled different types of host�pathogen/agent
equilibriums (ranging from completely static equilib-
rium, all the way through semidynamic, down to
completely dynamic scenarios) by varying the rate of
multiplication/growth and the rate of death of the
pathogen/agent (M. tuberculosis) during the infection’s
chronic phase. Through their in silico study (which
was also verified experimentally), Muñoz-Elı́as et al.
(2005) documented a number of remarkable findings.
For example, they established that “viable bacterial
counts and total bacterial counts in the lungs of chroni-
cally infected mice do not diverge over time” and

explained that “rapid degradation of dead bacteria is
unlikely to account for the stability of total counts in
the lungs over time, because treatment of mice with
isoniazid for 8 weeks led to a marked reduction in the
viable counts without reducing the total count.”

Readers who are interested in the further details on
the generation of this in silico model for the dynamics
of M. tuberculosis infection, as well as the complete
details of the parameters/variables considered, and
the comprehensive findings of the study should refer
to the article of Muñoz-Elı́as et al. published in infec-
tion and immunity (Muñoz-Elı́as et al., 2005).

Another one of the many other notable works in the
domain of infectious diseases in silico modeling is the
study by Navratil et al. (2011). Using PPIs data that
authors obtained from available literature and public
databases, the authors (after first curating and validat-
ing the data) computationally (in silico) re-examined
virus�human protein interactome. Interestingly, the
authors were able to show that onset and the pathogen-
esis of some disease conditions (most especially, chronic
disease conditions) that are often believed to be of
genetic, lifestyle, or environmental origin, are in fact
modulated by infectious agents.

The reader may also be interested in a few other
studies or reviews such as Chavali et al. (2008) and
Watterson and Ghazal (2010) which involve applica-
tions of in silico techniques in the better understanding
of infectious agents. But we warn that these two arti-
cles do not deal completely/exactly with in silico
modeling of infectious disease(s).

Model of bacterial and viral dynamics

Models have been constructed to simulate bacterial
dynamics, such as growth under various nutritional
and chemical conditions (Brookmeyer et al., 2005), che-
motactic response (Andrews et al., 2006), and interac-
tion with host immunity (Ben-David et al., 2005).
Clinically important models of bacterial dynamics
relating to peritoneal dialysis (Hotchkiss et al., 2004),
pulmonary infections (Henson, 2003), and particularly
of antibiotic treatment and bacterial resistance (Hupert
et al., 2002) have also been developed.

Baccam et al. (2006) utilized a series of mathematical
models of increasing complexity, which incorporate
target cell limitation and the innate interferon
response, the model is applied to examine influenza A
virus kinetics in the upper respiratory tracts of experi-
mentally infected adults showing the models to be
applicable to improve the understanding of influenza
A virus infection and estimated that during an upper
respiratory tract infection, influenza virus initially
spreads rapidly with one cell, on average, infecting
B20 others (Daun and Clermont, 2007).
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Model parameter and spread of disease: model
parameters are one of the main challenges in mathe-
matical modeling since all models do not have a physi-
ological meaning. Sensitivity analysis and bifurcation
analysis give us the opportunity to understand how
model outcome and model parameters are correlated,
how the sensitivity of the system is with respect to cer-
tain parameters and the uncertainty in the model out-
come yielded by the uncertainties in the parameter
values (Bernard et al., 2004). Uncertainty and sensitiv-
ity analysis was used to evaluate the input parameters
play on the basic productive rate (Ro) of the severe
acute respiratory syndrome (Chowell et al., 2006) and
tuberculosis (Sanchez and Blower, 1997). The control
of the outbreak depends on identifying the disease
parameters that are likely to lead to a reduction in R.

Challenges in in silico modeling of infectious
diseases

Difficulty in finding the most appropriate set of
parameters for the in silico modeling of infectious dis-
eases is often a challenge. But this challenge hopes to
subside with the advancement in infectonomics and
high-throughput technology. However another impor-
tant challenge lies in the understanding (and the provi-
sion of reasonable interpretations for) the results from
all the complex interaction of parameters considered.

Neuronal diseases

In this subsection, we focus on the application of in
silico modeling to improve knowledge of neuronal dis-
eases and thus improve the applications of neurological
knowledge in the solving of neuronal health problems.
It is not an overstatement to say that one of the many
aspects of life sciences where in silico disease modeling
would have the biggest applications is in the better
understanding of the pathophysiology of nervous sys-
tem (neuronal) diseases. This is basically because of the
inherently delicate nature of the nervous system and
the usual extra need to be much sure of how to proceed
prior to attempting to treat neuronal disease conditions.
By these, we mean that the need to first model neuronal
disease conditions in silico prior to deciding on or sug-
gesting (for example) a treatment plan is, in fact, rising.
This is not unexpected, after all, it is better to much
sure of what would work (say through in silico model-
ing) than to try what would not work.

Pathophysiology of neuronal diseases as the source
of parameters for in silico modeling of neuronal
diseases

Obtaining appropriate parameters for the in silico
modeling of a nervous system (neuronal) disease is

rooted in a good understanding of the pathophysiology
of such neuronal disease. But since comprehensive
details of pathophysiology of neuronal diseases are
beyond the scope of this book, we only present the
basic idea that would allow the reader to understand
how in silico modeling of a nervous system (neuronal)
disease can be done. We encourage readers who are
interested in more details of the pathophysiology of
neuronal disease to proceed to available textbooks and
articles (de la Torre, 2008).

To give a generalized explanation and still concisely
present the basic ideas underlying the pathophysiol-
ogy of neuronal diseases, we proceed by systematically
categorizing the mediators of neuronal diseases patho-
physiology under (1) nervous cell characteristics,
(2) signaling chemicals and body electrolytes, (3) host/
organism factors, and (4) environmental factors.
Readers need to see all these categories as been highly
integrated pathophysiologically rather than see them
as been spate entities—and that we have only grouped
them this way to make simple the explanation of how
the parameters for in silico modeling of neuronal dis-
eases are generated.

When something goes wrong with (or there is a
marked deviation from equilibrium in) a component of
any of the four categories above, the other components
(within and/or outside the same category) try hard to
make adjustments so as to annul/compensate for the
undesired change. For example, if the secretion of a
chemical signal suddenly becomes abnormally low, the
target cells for the chemical signal may develop
mechanisms to use the signaling chemical more effi-
ciently and the degradation rate of the signaling chem-
ical may be reduced considerably. Through these, the
potentially detrimental effects of reduced secretion of
the chemical signal are annulled, through the compen-
sation from the other components. This is just a very
simple example—much complex regulatory and
homeostasis mechanisms exist in the neuronal system.
But despite the robustness of those mechanisms, things
still go out of hand sometimes, and disease conditions
result. The exploration of what happens in/to each
and all of the components of this giant system in dis-
ease conditions is called the pathophysiology of the
neuronal disease, and it this pathophysiology that
“provides” parameters for the in silico modeling of
neuronal diseases.

Parameters for in silico modeling of
neuronal diseases

Parameters derived from characteristics of
nervous cell

Some of the important parameters (that are of ner-
vous cell characteristics origin) for a typical in silico

454 22. In silico disease model: from simple networks to complex diseases

II. Animal biotechnology: tools and techniques



modeling of a neuronal disease [e.g., Alzheimer’s dis-
ease (AD)] are the population (or relative population)
of specific neuronal cells (such as glial cells—microglia,
astrocytes, etc.), motion of specific neuronal cells (e.g.,
microglia), amyloid production, aggregation, and
removal of amyloid (Edelstein-Keshet and Spiros, 2002),
morphology of specific neuronal cells, status of neuro-
nal cell receptors, generation/regeneration/degenera-
tion rate of neuronal cells, status of ion neuronal cells’
channels, etc. Based on their relevance to the patho-
physiology of the neuronal disease being studied, many
of these parameters are often considered in the in silico
modeling of the neuronal disease. And more impor-
tantly, their spatiotemporal dynamics are often seri-
ously considered.

Parameters derived from characteristics of signaling
chemicals and body electrolytes

The importance of signaling chemicals and electro-
lytes in the nervous system makes parameters related to
them very important. The secretion, uptake, degrada-
tion (Edelstein-Keshet and Spiros, 2002), and diffusion
rates, of various neurotransmitters and cytokines are
often very important parameters in the in silico model-
ing of neurodiseases. Other very important parameters
are the concentration gradients of the various neuro-
transmitters and cytokines, the availability and concen-
tration of second messengers, and the cells’/system’s
electrolyte status/balance. The spatiotemporal dynam-
ics of all of these are also often seriously considered.

Parameters derived from host/organism factors

The parameters under host/organism factors can be
highly varied depending on the intentions and the
assumptions governing the in silico disease modeling.
Nonetheless, one could basically group and list the
parameters collectively under genotype (based on
allele at specified genetic locus), nutritional status
(feeding habits/food intake characteristics, e.g., daily
calories, protein, etc., intake), gender (male or female),
age, and behavior (host’s behaviors/lifestyle that influ-
ences homeostasis and/or responses to stimuli).

Parameters derived from environmental factors

A few examples of these parameters are ambient
temperature, altitude, light�dark cycle, social network,
type of influences from people in network, etc.

Neuronal disease in silico model proper, a typical
approach/scenario

Just like other in silico models, the neuronal disease
in silico model is also based on what could be viewed
as a single giant functional equation, which is
composed of highly integrated simpler functional
equations.

So, the equations behind a typical neuronal disease
in silico model could take the form

N5β link functionð Þ f Cð Þ link functionð Þ g Sð Þ
link functionð Þ j Hð Þ link functionð Þ k Eð Þ1 ε. . .

ð22:5Þ

where N could be a parameter that is directly a mea-
sure of the disease manifestation; β is a constant; f, g, j,
and k are link functions which may be the same or dif-
ferent from other link functions in this system of equa-
tions; C, S, H, and E are the outputs from smaller
equations that are based on parameters from neuronal
cell characteristics, signaling molecules and electrolyte
parameters, host parameters, and environment para-
meters, respectively; and Ɛ is a random error
parameter.

Reader should know that each of N, C, S, H, and E
could have resulted from smaller equations that could
take forms similar to those (Eqs. (22.2)�(22.4))
described under in silico modeling of infectious dis-
eases (previous subsection).

Specific examples of neuronal disease in silico
model

In their work, Edelstein-Keshet and Spiros (2002)
used in silico modeling to study the mechanism and/
formation of AD. The target of their in silico modeling
was to explore and demystify how various parts
implicated in the etiology and pathophysiology of AD
work together as a whole. Employing the strength of
in silico modeling, the researchers were able to tran-
scend the difficulty of identifying detailed disease
progression scenarios, and they were able to test a
wide variety of hypothetical mechanisms, at various
levels of detail.

Readers who may be interested in the complete
details of the assumptions that govern in silico model-
ing of AD, the various other aspects of the model, and
more detailed account of the findings would love to
look at the article of Edelstein-Keshet and Spiros.

Several other interesting studies have applied in sili-
co modeling techniques to investigate various neuronal
diseases. A few examples include the work of Altmann
and Boyton (2004) who investigated multiple sclerosis
(a very common disease resulting from demyelination
in the central nervous system) using in silico modeling
techniques; Lewis et al. (2010) who used in silico
modeling to study the metabolic interactions between
multiple cell types in AD condition; and Raichura
et al. (2006) who applied in silico modeling techniques
to dynamically model alpha-synuclein processing (in
normal and) in Parkinson’s disease state(s).

A more specific example of a molecular level in sili-
co AD model can be found in Ghosh et al. (2010, 2012).
Among the amyloid proteins, amyloid-β (Aβ) peptides
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(Aβ42 and Aβ40) are known to form aggregates that
deposit as senile plaques in the brains of AD patients.
The process of Aβ aggregation is strongly nucleation-
dependent and is inferred by the occurrence of a “lag-
phase” prior to fibril growth that shows a sigmoidal
pattern. Ghosh et al. (2010) dissected the growth curve
into three biophysically distinct sections to simplify
the modeling and to allow the data to be experimen-
tally verifiable. Stage I is where the prenucleation
events occur whose mechanism is largely unknown.
The prenucleation stage is extremely important in dic-
tating the overall aggregation process where critical
events such as conformation change and concomitant
aggregation take place, and it is also the most experi-
mentally challenging to decipher. In addition to mech-
anistic reasons, this stage is also physiologically
important as low-molecular weight species are impli-
cated in AD pathology. The rate-limiting step of nucle-
ation is followed by growth (stage II, Fig. 22.1). The
overall growth kinetics and structure and shape of the
fibrils are mainly determined by the structure of nucle-
ating species. An important intermediate along the
aggregation pathway, called “protofibrils” have been
isolated and characterized that have propensities to
both elongate (by monomer addition) as well as to lat-
erally associate (protofibril�protofibril association) to
grow into mature fibrils (stage III in the growth curve).

Simulation of the fibril growth process in Aβ42 aggrega-
tion. Ghosh et al. (2010) generated an ODE-based
molecular simulation (using mass-kinetics methodol-
ogy) of this fibril growth process to estimate the rate
constants involved in the entire pathway. The

dynamics involved in the protofibril elongation stage
of the aggregation (stage III of the process) were esti-
mated and validated by in vitro biophysical analysis.

Preliminary identification of nucleation mass: Ghosh
et al. (2012) next used the rate constants identified
from stage III to create a complete aggregation path-
way simulation (combining stages I, II, and III) to
approximately identify the nucleation mass involved
in Aβ aggregation.

In order to model the Aβ system, one needs to esti-
mate the rate constants involved in the complete
pathway and the nucleation mass itself. It is difficult
to iterate through different values for each of these
variables to get close to the experimental plots (fibril
growth curves measured via fluorescence measure-
ments with time) due to the large solution space and
finding the nucleation phase cannot be done indepen-
dently without estimating the rate constants along-
side. However having separately estimated the
postnucleation stage rate constants as mentioned
above reduces the overall parameter estimation
complexity.

The complete pathway simulation in Ghosh et al.
(2012) was used to study the lag times associated with
the aggregation pathway and hence predict possible
estimates of the nucleation mass. The following strat-
egy was used: estimate the prenucleation rate con-
stants that give the maximum lag times for each possible
estimate of the nucleation mass. This led to four dis-
tinctly different regimes of possible nucleation masses
corresponding to four different pairs of rate constants
for the prenucleation phase (regime 1: n5 7,8,9,10,11;
regime 2: n5 12,13,14; regime 3: n5 15,16,17; regime 4:
n5 18,19,20,21). However it was experimentally
observed that the semilog plot of the lag times against
the initial concentration of Aβ is linear and this charac-
teristic was used to figure out what values of nucle-
ation mass are most feasible for the Aβ42 aggregation
pathway. The simulated plots show a more
stable relationship between the lag times and the initial
concentrations, and the best predictions for the nucle-
ation mass was reported to be in the range 10,11,. . .,16.

Such molecular pathway level studies are extremely
useful in understanding the pathogenesis of AD in
general and can motivate drug development exercises
in the future. For example, the characterization of the
nucleation mass is important as it has been observed
that various fatty acid interfaces can arrest the fibril
growth process (by stopping the reactions beyond the
prenucleation stage). Such in-depth modeling of the
aggregation pathway can suggest what concentrations
of fatty acid interfaces should be used (under a given
Aβ concentration in the brain) to arrest the fibril for-
mation process leading to direct drug dosage and
interval prediction for AD patients.

FIGURE 22.1 Flow Chart showing use of bio-informatics in dis-
ease modeling.
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Possible limitations of in silico modeling of
neuronal diseases

Despite that we have mentioned several possible
parameters for in silico modeling of neurodiseases, it
is worthy of note that finding a set of the most reason-
able set of parameters for the modeling is, in fact, a big
challenge. On the other hand, understanding (and thus
finding reasonable biological interpretations for) the
results from the complex interaction of all parameters
considered is also a big challenge. In addition, a num-
ber of assumptions that models are sometimes based
on still have controversial issues. Accurately modeling
the spatiotemporal dynamics of neurons and neuro-
transmitters transmitters (and other chemicals/
ligands) also constitutes a huge challenge (Edelstein-
Keshet and Spiros, 2002).

Conclusion

Understanding the complex systems involved in a
disease will make it possible to develop smarter thera-
peutic strategies. Treatments for existing tumors will
use multiple drugs to target the pathways or perturbed
networks that show an altered state of activity. In
addition, models can effectively form the basis for
translational research and personalized medicine.

Biological function arises as the result of processes
interacting across a range of spatiotemporal scales.
The ultimate goal of the applications of bioinformatics
in systems biology is to aid in the development of
individualized therapy protocols to minimize patient
suffering while maximizing treatment effectiveness. It
is now being increasingly recognized that multiscale
mathematical and computational tools are necessary
if we are going to be able to fully understand these
complex interactions, for example, in cancer
(Anderson and Quaranta, 2008) and heart diseases
(Liang et al., 2009).

With these bioinformatics tools, computational theo-
ries, and mathematical models introduced in this arti-
cle, readers should be able to dive into the exhilarating
area of formal computational systems biology.
Investigating these models and confirming their find-
ings by experimental and clinical observations is a
way to bring together molecular reductionist with
quantitative holistic approaches and create an integra-
tive mathematical view of disease progression. We
hope to have shown that there are many interesting
challenges yet to be solved and that a structured prin-
cipled approach will be essential for tackling them.

Systems biology is an emerging field that aims in
understanding the biological system at the system
level with a high aspect of mathematical and statistical

modeling methods. In silico modeling of infectious dis-
ease is a rich and growing field focused on modeling
spread and containment infection with designs being a
flexible enabling adaptation to new data types.
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Long answer questions

1. Explain the role of bioinformatics in animal
biotechnology.

2. Explain the common computational methods in
systems biology.

3. Explain the concept of in silico modeling.
4. Discuss the advantages, disadvantages, and ethical

issues of in silico modeling.

5. What are the different application areas of in silico
modeling? Discuss in detail how in silico modeling
is applied in one application area.

Short answer questions

1. Describe the template-based methods to reconstruct
transcriptional regulatory networks.

2. What is the goal of in silico modeling?
3. What are the challenges in in silico modeling of

infectious diseases?
4. What are the three types of cancer models discussed

in the chapter?
5. Discuss the parameters considered for in silico

modeling of infectious diseases.

Answers to short answer questions

1. The template-based transcriptional control network
reconstruction method exploits the principle that
orthologous proteins regulate orthologous target
genes. In this approach, regulatory interactions are
transferred from a genome (such as a genome of a
model organism or well-studied organism) to the
new genome.

2. The ultimate goal of in silico modeling in biology is
the detailed understanding of the function of
molecular networks as they appear in metabolism,
gene regulation, or signal transduction.

3. There are two major challenges in modeling
infectious diseases:
a. Difficulty in finding the most appropriate set of

parameters for the in silico modeling of
infectious diseases is often a challenge.

b. Understanding the results from all the complex
interactions of parameters considered.

4. There are three types of cancer models. Continuum
models: In these models, extracellular parameters
can be represented as continuously distributed
variables to mathematically model cell�cell or
cell�environment interactions in the context of
cancers and the tumor microenvironment. Discrete
models: These models represent cancer cells as
discrete entities of defined location and scale,
interacting with one another and external factors in
discrete time intervals according to predefined
rules. Hybrid models: These models incorporate both
continuum and discrete variables in a modular
approach.

5. There are three types of parameters considered for
in silico modeling of infectious diseases:

459Answers to short answer questions
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a. Parameters derived from characteristics of agent:
Examples: concentration of the agent’s
antigen�host antibody complex; case fatality
rate; strain of the agent; other genetic
information of the agent; etc.

b. Parameters derived from characteristics of host:
Examples: the total white blood cell counts;
differential white blood cell counts, and/or much
more sophisticated counts of specific blood cell
types; blood levels of some specific cytokines,
hormones, and/or neurotransmitters; daily
calories, protein, and/or fat intake; daily amount of
energy expended and/or duration of exercise; etc.

c. Parameters derived from characteristics of
environment: Examples: host’s ambient
temperature; host’s ambient atmospheric
humidity; altitude; host’s light�dark cycle; etc.

Yes/no type questions

1. Does bioinformatics play a role in animal
biotechnology?

2. Does systems biology require computational
approaches?

3. Does network analysis is important in disease
modeling?

4. Can we develop e-cell for cellular phenotype
simulation?

5. Does computational modeling or organ require
mathematics?

6. Does metabolic modeling play a role in disease
modeling?

7. Is E-CELL a computational model of a cell and
help in analysis of biological systems in a cell?

8. Is a specific cancer can be modeled in silico?
9. Is it true that in silico disease modeling is not

helpful in drug discovery and clinical trial.
10. Is metabolic pathway modeling possible using

genomic data?

Answers to yes/no type questions

1. Yes—Bioinformatics is now essential for molecular
aspects to phenotype analysis and prediction in
animal biotechnology

2. Yes—Computational and mathematical modeling
is essential in systems biology.

3. No—Network analysis is important for
identification of pathways and key molecules in a
disease.

4. Yes—Using various in silico modeling approach of
cell, we can develop e-cell and study the
phenotype.

5. Yes—Mathematical approach is essential in
computational modeling of organ and disease for
fixing various parameters of the organ or disease.

6. Yes—Without metabolic modeling approach, in
silico disease modeling is not possible.

7. Yes—It helps in the analysis of biochemical
pathways and simulation.

8. Yes.
9. No—Computational modeling of a disease in

commonly practiced in drug discovery studies to
understand efficacy and toxicity of the drug.

10. Yes.

460 22. In silico disease model: from simple networks to complex diseases
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