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Lessons learned: A
neuroimaging research center’s
transition to open and
reproducible science

Keith A. Bush*, Maegan L. Calvert and Clinton D. Kilts

Department of Psychiatry, Brain Imaging Research Center, University of Arkansas for Medical

Sciences, Little Rock, AR, United States

Human functional neuroimaging has evolved dramatically in recent years,

driven by increased technical complexity and emerging evidence that

functional neuroimaging findings are not generally reproducible. In response

to these trends, neuroimaging scientists have developed principles, practices,

and tools to both manage this complexity as well as to enhance the rigor and

reproducibility of neuroimaging science. We group these best practices under

four categories: experiment pre-registration, FAIR data principles, reproducible

neuroimaging analyses, and open science. While there is growing recognition

of the need to implement these best practices there exists little practical

guidance of how to accomplish this goal. In this work, we describe lessons

learned from e�orts to adopt these best practices within the Brain Imaging

Research Center at the University of Arkansas for Medical Sciences over 4 years

(July 2018–May 2022). We provide a brief summary of the four categories

of best practices. We then describe our center’s scientific workflow (from

hypothesis formulation to result reporting) and detail how each element of

this workflow maps onto these four categories. We also provide specific

examples of practices or tools that support this mapping process. Finally,

we o�er a roadmap for the stepwise adoption of these practices, providing

recommendations of why and what to do as well as a summary of cost-benefit

tradeo�s for each step of the transition.

KEYWORDS

open science, reproducible neuroimaging, FAIR, preregistration, transition,

neuroimaging

Introduction

The science of human functional neuroimaging has evolved dramatically in recent

years, driven by a pair of emerging trends. First, neuroimaging science has grown ever

more data intensive and computationally sophisticated. Indeed, with enhanced temporal

and spatial resolution, newer generation multiband-accelerated 3-Tesla functional

magnetic resonance imaging (fMRI) scanners acquire an order of magnitude more data

per imaging session compared to earlier MRI systems (Demetriou et al., 2018). Advances

in our understanding of myriad fMRI measurement confounds (Liu, 2017) necessitate

the application of more complex preprocessing pipelines (Power et al., 2015), including
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multivariate modeling and machine learning (Mitchell et al.,

2008; The Alzheimer’s Disease Neuroimaging Initiative and

Stern, 2010; Naselaris et al., 2011), as well as concurrent

acquisition of additional biosignals (e.g., respiration) in

order to identify the true neural processing representations

underlying cognition (Jo et al., 2010). Second, emerging

evidence indicates that functional neuroimaging findings are

not reproducible. Complex pipelines infuse sufficient degrees-

of-freedom into the practice of functional neuroimaging analysis

that even highly experienced, critical practitioners routinely

reach divergent conclusions – even for the same dataset and

tested hypotheses (Botvinik-Nezer et al., 2020). Moreover, large-

scale neuroimaging studies have revealed the true effect sizes for

many common brain-behavior relationships, which are an order

of magnitude smaller than previously believed (Poldrack et al.,

2017; Marek et al., 2022), a finding with harrowing implications

for recurrent error existing in the neuroimaging literature.

In response to a growing alarm within the neuroimaging

community of the risks that these emerging trends pose

to our ability to inform a mechanistic understanding of

human behavior, neuroimaging scientists have developed many

principles, practices, and tools to manage these risks. We group

these best practices under four categories: experiment pre-

registration, FAIR data principles, reproducible neuroimaging

analyses, and open science. When implemented, these best

practices enhance researcher confidence in their ability to

control error – in both the research that they conduct as

well as the scientific inferences they receive from the broader

neuroimaging research community.

While there is growing recognition of the imperative of

implementing these best practices there exits, in our opinion, a

clear absence of how procedurally to accomplish this goal (Paret

et al., 2022). This potential barrier to widespread adoption of

open science practices is echoed for other fields (Kalandadze

and Hart, 2022). In this work, we describe lessons learned

from efforts to adopt these best practices within the Brain

Imaging Research Center (BIRC) at the University of Arkansas

for Medical Sciences over 4 years (July 2018–May 2022). For

context as to the scale and complexity of these efforts, the

BIRC is comprised of 5 full-time clinical and research faculty

investigators as well as 6 full-time research and support staff.

Over the course of this adoption process, the BIRC supported

numerous National Institutes of Health, National Science

Foundation, Department of Veterans Affairs, and Brain and

Behavior Research Foundation funded neuroimaging projects.

Moreover, the BIRC transitioned from a Philips 3T Achieva to

a Siemens 3T MAGENTOM Prisma MRI scanning platform in

the Fall of 2021.

We commence by providing brief summaries of the four

categories of best practices. We then describe our center’s

scientific workflow (from hypothesis formulation to result

reporting) and detail how each element of this workflow maps

onto these four categories. We also provide specific examples

of practices or tools that support this mapping process. Finally,

we offer a roadmap for the stepwise adoption of these practices,

providing recommendations, based on our personal experiences,

of why and what to do as well as a summary of cost-benefit

tradeoffs for each step of the transition. The goal of this

work is to encourage and enable other human neuroimaging

research groups to adopt similar strategies to better minimize

replication failures and strengthen the inferences from this field

of human neuroscience.

Open and reproducible science
solutions

Preregistration

The practice of preregistration is the specification of a

research hypothesis, and the methodology proposed to test this

hypothesis, prior to gaining knowledge of the experimental

outcome (Nosek et al., 2018). In practice preregistering a

neuroimaging study entails (before the start of data-collection

or before observing data in a secondary data analysis) compiling

a detailed description of the experiment’s hypotheses, data

collection procedures, power analyses, data processing steps,

and planned statistical modeling. This description then has two

dissemination pathways. One path is to submit the description

to an independent registry1 that publicly timestamps, indexes,

and stores the information. Alternatively, the description may

be submitted to an academic journal as a registered report

(Nosek and Lakens, 2014; Chambers et al., 2015; Cockburn

et al., 2020). Along this pathway, the description is formally

peer-reviewed prior to the start of the research plan and, if

accepted, has the advantage of being guaranteed publication

once data collection and analysis are completed. Regardless of

the dissemination pathway, preregistration seeks to explicitly

separate confirmatory from exploratory analysis.

FAIR data principles

The FAIR acronym2 stands for the data management

principles of “findability,” “accessibility,” “interoperability,” and

“reusability” (Wilkinson and Dumontier, 2016). Findable data

are associated with globally unique and persistent identifiers, are

richly described by metadata, and are registered in a searchable

resource. Accessible data are accompanied by instructions for

accessing the data and are stored in a protocol that is open

and free to use by others. Interoperable data use a standardized

knowledge representation which can be exchanged between

applications and workflows for storage, processing, and analysis.

1 https://www.cos.io/initiatives/prereg

2 https://www.go-fair.org/
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Reusable data are described with accurate attributes and are

released with clear usage licenses. FAIR principles seek to make

data more widely actionable.

Reproducible neuroimaging

Reproducible neuroimaging3 is a framework for annotating,

versioning4, and analyzing neuroimaging data in order to

promote the re-executability of published neuroimaging

studies (Kennedy et al., 2019). This framework emphasizes

the use of containerized image processing pipelines that

enforce the reproducibility of multi-step transformations of

neuroimaging data from a raw format (acquired directly by the

MRI scanner) to a results representation (e.g., statistically

significant regions of brain activation). Reproducible

neuroimaging is built around the Brain Imaging Data

Structure5 (BIDS) standard for formatting and storing

neuroimaging data (Gorgolewski et al., 2016). The goal of this

framework is to enhance the implementation of standards

and approaches to best practice across diverse neuroimaging

research groups.

Open science

Open science is the practice of making research workflows,

data, and results transparent and publicly accessible in order

to improve scientific rigor, reproducibility, and replicability

(Munafò et al., 2017). Open science promotes the use

of open-source6, rather than proprietary software, the

public repositioning of data preprocessing and analysis

source code7, the public reposition of raw data8, and

the publication of scientific findings as preprints9 as

well as in open-access scientific journals that are freely

accessible to the scientific and general public and which

are dedicated to transparent and open reporting (Nosek

et al., 2015). Open Science practice seeks to contribute to

reducing the negative impact of intentional or unintentional

questionable research practices on scientific integrity

and reproducibility by promoting ready and widespread

access to research methods, data, and outcomes (Yamada,

2018).

3 https://www.repronim.org/

4 https://www.datalad.org/

5 https://bids.neuroimaging.io/

6 https://cran.r-project.org and https://python.org

7 https://github.com

8 https://osf.io/ and https://openneuro.org/

9 https://www.biorxiv.org/

A neuroimaging laboratory workflow

The research workflow utilized in our laboratory is akin to

that deployed in the behavioral sciences, extended and modified

to support our specific intent to identify the neural processing

mechanisms of cognition and psychopathology (see Figure 1).

We first formulate a hypothesis regarding a human brain-

behavior relationship based on our theoretical understanding of

the relevant extant literature. This hypothesis then informs the

design of a neuroimaging experiment toward the goal of testing

the falsifiable hypothesis. We define a neuroimaging experiment

as a protocol (written procedure) for participant recruitment,

screening, enrollment, and assessment, and that describes the

methods of administration of common and/or novel behavioral

tasks that purport to engage the neural processing network of

interest. The experimental protocol also includes considerations

specific to neuroimaging, such as MRI contraindications, as

well as concurrent signal acquisitions that may be necessary to

independently validate the veracity of the association of neural

processing observations with the imposed processing demand or

that are needed to isolate and remove imaging confounds and

artifacts. Following institutional review board (IRB) approval

of the protocol, we conduct imaging and non-imaging data

collection and storage as per the protocol. Neuroimaging data

analysis follows from stepwise best practice approaches to image

processing and includes curation, minimal preprocessing (skull-

stripping and spatial normalization of structural images as

well as despiking, slice-time correction, motion correction, and

transformation to the spatially normalized anatomic image for

functional images). From these processed data we typically

conduct whole-brain analyses to characterize between-group

differences in neural activation responses to task demand

(e.g., psychopathology vs. health control groups). Finally, we

compile our findings into a manuscript and submit for peer-

review. This workflow is denoted by the gray boxes and arrows

depicted in Figure 1.

Prior to July 2018, our center’s workflow had not

incorporated best practices for open and reproducible science.

Our data was stored in non-standard formats (different even

between principal investigators within the same center). Our

experimental paradigms and processing pipelines were written

in closed-source programming languages (Presentation and

Matlab), which were maintained locally without comprehensive

version control that could not be reviewed or linked to

manuscripts. Also, our center had never released a manuscript

preprint and had only occasionally published in open-access

journals. This then-common approach represented the starting

point for the planned transition.

The transition plan

In July of 2017, compelled by concerns surrounding

the neuroimaging research reproducibility crisis inspired
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FIGURE 1

Neuroimaging workflow in the Brain Imaging Research Center in the context of transition to open and reproducible science best practices. Gray

blocks represent the key steps in the workflow of a typical neuroimaging experiment, from inception to reporting. Blue text and dashed box

indicate components of the four categories of open and reproducible best practices that map onto this workflow. Modules of transition (1–7)

are reported according to the order (stepwise) of their implementation. The BIDS standard, highlighted in red, denotes the data structure around

which the four categories of best practices revolve.

by Eklund et al. (2016) as well as growing concerns that our

failure to be open and transparent in our work would lead

to costly errors or replication failures in the future, our

imaging center committed to transitioning to the use of best

practices in open and reproducible science. We committed

to a lengthy period of literature review through which we

identified the four categories of best practices, described above.

We also identified critical tools and resources that we would

need in order to achieve best practice outcomes. Across the

four categories, we identified seven modules of work that

would be necessary to achieve a transition to best practices.

We qualitatively rank-ordered these modules according to

the expected implementation difficulty given the skillsets and

resources available within our imaging center as well as the

expected benefits to the center once implemented. We then

laid out a stepwise, one step per module, plan for the center’s

transition to best practices, depicted in Figure 1, prioritizing

those modules with the highest perceived benefits to costs

ratio. We enumerate this plan below and provide details of the

reasoning behind the proposed sequencing of the steps as well as

our appraisal of accrued costs and benefits.

Open science: Transition to open-source
analysis code and public code reposition
(step 1)

Prior to July 2018, Matlab (a proprietary language associated

with annual licensing costs) was the primary programming

language used within our center. Our center also had

no standardized software maintenance and version control

practices. Our first task was to integrate our legacy proprietary

code base with git, a free and open source version control

system for tracking software changes and updates (Chacon and

Straub, 2022). Further, we started publicly repositing much of

our legacy source code on Github (e.g., see https://github.com/

kabush/CTER) and commenced linking relevant source code

within manuscripts submitted for peer-review. Our second task

was to re-implement our analysis pipelines in an open-source

language, Python. Due to in-house computer science expertise,

this module of work had relatively low implementation costs

for our center. However, the costs of executing this transition

step would vary by laboratory depending on one’s access to

computer science or software engineering expertise. For newly

forming neuroimaging labs, we recommend a priori adoption of

open-source languages, such as Python and R, which have large

and growing neuroimaging processing and analysis software

ecosystems (Brett et al., 2009; Muschelli et al., 2019). While

implementation costs will vary, the benefits of implementing

this transition step were perceived to be high. Versioning and

reposition tools such as git and Github facilitate collaboration

among teams of software developers. They also promote the

sharing of source code externally (e.g., within manuscripts

or amongst peers). Specific to the academic setting, code

repositories assist in the transfer of software projects between

training personnel, particularly when trainee turnover is high

(∼4 years for doctoral students) relative to the lifespan of the

project, thus minimizing the cost of lost intellectual capital.

Public sharing of code also facilitates the detection of software

or processing errors and thereby facilitates greater rigor and

reproducibility of scientific analyses (Ince et al., 2012) and

promotes trust in research outcomes (Stodden, 2011).
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Open science: Transition to preprinting
manuscripts prior to peer-review (step 2)

The easiest open and reproducible science practice

to implement is the publishing of preprints of scientific

manuscripts prior to peer-review. Many preprint servers

exist on which to disseminate one’s work (e.g., arXiv, bioRxiv,

psyRxiv). The direct costs of preprinting are minimal and reflect

the effort of uploading the manuscript to the preprint server

and a short time delay (typically several days) required for

moderators to review the manuscript prior to public reposition

(and assignment of a digital object identifier, DOI). The indirect

cost of preprinting stems from the potential risk of publicly

exposing a flaw in one’s work, rather than the flaw being

detected and fixed privately within the peer-review process

(Kaiser, 2017). The benefits of preprinting arise from the

ability to rapidly share one’s work with the public and receive

feedback while maintaining ownership and attribution of the

ideas and results contained within the manuscript (Sarabipour

et al., 2019). An additional indirect benefit of preprinting is

the potential detection of flaws prior to formal peer-review

as was demonstrated by a highly publicized exchange of

preprinted manuscripts analyzing task data within a large,

publicly-available neuroimaging dataset (Bissett et al., 2020,

2021; Garavan et al., 2020). Finally, many science publishers

now allow manuscript submission to their peer-review process

directly from preprint servers, significantly reducing the time

and effort of submission10 With a favorable benefit-cost ratio,

our center has transitioned to preprinting all manuscripts prior

to peer-review.

FAIR data: Format in-house data to the
BIDS standard (step 3)

The single most important module that we implemented

throughout the transition process was formatting of our

center’s raw data in BIDS (Gorgolewski et al., 2016). BIDS

is a new standard (circa 2016) for organizing neuroimaging,

psychophysiological, behavioral, and demographic data to

enable ease-of-sharing and software interoperability across

datasets and imaging technologies. The person-hour cost of

constructing our formatting infrastructure was formidable.

Learning the BIDS specification, implementing software

pipelines to map the data (e.g., see https://github.com/kabush/

CTER2bids), and validating that the resultant mappings met

the BIDS standard consumed many months of effort across

multiple imaging center team members. Indeed, despite in-

house computer science expertise, this module of work was the

single most costly step in the transition process. The benefits

10 https://www.biorxiv.org/submit-a-manuscript

of mapping our data to BIDS, however, far exceed the costs.

First, our center now has access to BIDS-Apps (Gorgolewski

et al., 2017), which are containerized data processing and

analysis tools built to operate seamlessly on validated BIDS

datasets (see Steps 4 and 5). Moreover, custom analysis code

can now be written in-house to operate on the BIDS standard,

which dramatically reduces the number of variables, e.g.,

naming, structuring, and formatting, that previously pertained

to adapting in-house code to projects across PIs within our

imaging center.

Reproducible neuroimaging: Transition
to containerized preprocessing pipelines
(step 4)

Immediately following our transition to BIDS, we replaced

our in-house minimal image preprocessing pipeline with

fMRIPrep (Esteban et al., 2019), a well-validated, widely used,

and robust pipeline for functional neuroimaging data built

upon the BIDS-Apps framework. We also implemented in-

house data quality assurance processes based upon MRIQC

(Esteban et al., 2017), a BIDS-App tool for deriving quantitative

measures of image quality to support automated, data-

driven inclusion/exclusion decisions for statistical analysis.

The implementation cost of this step was low, requiring

the installation of Singularity11, an engine for executing

containerized software, on our high-performance computer

system (a 96 core Dell PowerEdge R630 server running the

CentOS operating system) as well as the programming of simple

interfaces to execute these tools on our data (e.g., see https://

github.com/kabush/birc-preproc). The benefit of implementing

this step is that our minimal image preprocessing pipeline is

now both well-validated and reproducible, and thus of high

value to controlling error and the ultimate goal of developing

transparent, reproducible workflows.

Open science: Public reposited data
(step 5)

An additional benefit of mapping our datasets to BIDS is

the ease with which we can now reposit and publicly share

our neuroimaging data on-line via OpenNeuro (Markiewicz

et al., 2021). All data uploaded to OpenNeuro must pass BIDS

validation and, once validated, receives a digital object identifier

(DOI). Thus, OpenNeuro reposited data comports with the

four FAIR principles of findability, accessibility, interoperability,

and reusability. Assuming that appropriate legal and ethical

authorizations have been obtained, the effort cost of publicly

11 https://sylabs.io/guides/3.5/user-guide/
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repositing de-identified data (given that it is already formatted to

the BIDS standard) on OpenNeuro is negligible. The benefits of

repositing data on OpenNeuro are twofold. First, repositing data

publicly allows the dataset to be linked to the data availability

statements of manuscripts when submitting to peer review,

thereby giving reviewers direct access to the raw materials

that support the scientific inferences. Second, permanently

repositing BIDS formatted data yields an immutable record of

the institutional knowledge that went into acquiring the dataset.

This maintains the dataset’s integrity over time even as the staff

and trainees that built them transition out of the center.

FAIR data: Establish data dictionaries
(step 6)

The BIDS standard establishes the structure of

neuroimaging data but not its content (Kennedy et al.,

2019). However, the FAIR data principle of interoperability

aims to promote semantically rich datasets in which the

meaning of each reported data element is defined (Wilkinson

and Dumontier, 2016). This semantic annotation is achieved

by linking each data element to a unique identifier from a

publicly available, consistent, and controlled vocabulary (i.e.,

ontology). Ontologically-augmented BIDS datasets have been

termed ReproBIDS (Kennedy et al., 2019). Due to restrictions

posed by the COVID-19 pandemic and the replacement of

our core 3T MRI system, our ability to enroll, assess, and scan

subjects was limited. We used this time to construct a center-

wide data dictionary which assigns both a publicly accessible

ontology and unique ontological identification number to the

subscale-level for all participant assessment instruments as well

as neuroimaging modalities, psychophysiological modalities,

and behavioral tasks for all current and planned studies within

our center. The person-hour cost of this data dictionary

construction was substantial and the short-term benefits have

been limited to an important understanding of the quality of

data collected in-house. However, the long-term benefits of

ReproBIDS, for example through the use of machine learning to

conduct automated post-hoc mining of neuroimaging datasets

(Wilkinson and Dumontier, 2016), are anticipated to be large.

Preregistration: Open science framework
registry (step 7)

In the final transition step, our center is migrating to

preregistration of upcoming research studies using, where

appropriate, either the Open Science Framework registry or

clinicaltrials.gov. We also now encourage Center investigators

to budget – in all upcoming research proposals – initial effort

related to formally preregistering the study’s aims. At present we

have multiple study preregistrations in development and review.

As preregistration entails assembling a document (study abstract

and methods) of similar depth and detail as would be necessary

to submit a manuscript for consideration of publication as

a journal article, preregistration can be thought of as front-

loading the effort of writing a journal manuscript without the

results and conclusion. The Open Science Framework registry

provides a template12 to guide neuroimaging scientists through

the technical details of best practices reporting of both fMRI

and psychometric data collection. Therefore, the absolute effort

cost of preregistration is low, but the distribution of cost is

disproportionately front-loaded to the study’s inception. The

potential benefits of preregistration, however, are manifold

(Nosek et al., 2019). By pre-specifying all planned aspects

of a study, preregistration clarifies planned versus unplanned

data analyses which mitigates questionable research practices

(Yamada, 2018) such as “hypothesizing after results are known”

(Kerr, 1998) (aka HARKing) and p-hacking (Simmons et al.,

2011) that promote publication bias and increase the prevalence

of false-positive findings in the literature. Preregistration

also incentivizes the publication of null findings (Allen and

Mehler, 2019), which improves our long-term understanding

of true effect sizes derived via meta-analyses (Ioannidis,

2005).

Summarizing the costs and benefits
of transition

Perhaps the greatest barrier to making the transition to open

and reproducible science is the uncertainty surrounding the

costs and benefits of the process. To assist others in planning

their own transition we have summarized (see Table 1) the cost-

benefit tradeoff for each step of the road-map described in

Section “ The Transition Plan”. For simplicity and clarity, we

have reduced the costs and benefits to a 3-point Likert scale

of {Low, Medium, High} that approximates the authors’ post-

hoc estimate of the time and effort that the imaging center

invested (or will invest) in making the transition (Cost) as

well as the amount of time saved, or is anticipated to be

saved (Benefit) in combination with end-goal benefits such as

increased perceived trust in the rigor and reproducibility of

the science (both internally and externally) as well as expedited

dissemination of findings. This cost-benefit summary has value

to neuroimaging scientists who want to weigh a point of entry

into the transition process or wish to migrate to adopting

those open science principles of the total that best suit their

research focus.

12 https://osf.io/6juft/
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TABLE 1 Summary of open and reproducible neuroimaging transition costs-benefits analysis.

Category Description Cost Benefit

Step 1 Open science Open-source analysis software and public repositing of analysis source code Low High

Step 2 Open science Preprint manuscripts Low Medium

Step 3 FAIR data Map data to the BIDS standard High High

Step 4 Reproducible neuroimaging Containerized preprocessing pipeline Low* High

Step 5 Open science Public data reposition Low* Medium

Step 6 FAIR data Data dictionaries High Low**

Step 7 Preregistration Open science framework registry Medium*** Medium****

*Assumes BIDS mapping was previously completed (see Step 3).

**Based on estimated short-term benefits. Long-term benefits may be much larger than those observed.

***Cost is temporally shifted from post-hoc to a priori effort.

****In progress. Only anticipated benefits listed.

Final thoughts on the transition

The Brain Imaging Research Center at the University of

Arkansas for Medical Sciences has expended significant effort

over the past 4 years incorporating best open and reproducible

practices into our scientific workflow. What began as a process

to eliminate scientific risk – the risk of serious scientific

errors, false-positive claims, replication failures, or losses of

critical institutional knowledge – evolved into a pursuit of

seamless and efficient scientific inquiry in which each step of

the scientific process, from project inception to results reporting,

is thoughtfully, rigorously, and transparently documented and

shared. This is, in our opinion, both the scientific ideal

and mandate.

However, we acknowledge that migrating a neuroimaging

laboratory to best practices in open and reproducible science

is a non-trivial undertaking associated with substantial initial

costs of effort to be borne by individuals already engaged in

challenging, time-consuming work. During transition, the lab’s

record of research productivity will suffer. Projects will need

to be implemented in both the legacy and upgraded workflows

so that scientific products, the lifeblood of the lab, continue

to be generated on a regular basis. Each member of the lab

will likely need to invest in learning additional programming,

version control, and data management skills as well as acclimate

to working with unfamiliar naming conventions and directory

structures mandated by the BIDS standard. The entire process

may be frustrating and intimidating. We also acknowledge that

while many argue for the benefits of open science practices

to investigators and science itself (Frankenhuis and Nettle,

2018), others argue that derived benefits are specious and

even sinister (Mirowski, 2018) and that some open science

practices may create a paradoxical outcome of public distrust

and misinformation (Besançon et al., 2021).

The purpose of this work is to provide a brief experience-

based depiction of the terrain that a lab will cover in their

own migration to this responsible commitment to open and

reproducible neuroimaging science. We have condensed a large

and rapidly growing literature down to four categories of tools

and practices that comprise the open and reproducible science

ecosystem. For new investigators starting their own labs, we

strongly encourage incorporating these practices into the lab’s

workflow from Day 1. For established labs, such as ours, we

provide a 7-step model of transition that prioritizes practices

with the lowest costs and highest benefits. Of the initial 5

recommended steps, only the transition to BIDS format imposes

a high cost, but it also bears the greatest number of benefits and

thus, we argue, is the single most important step a lab should

undertake. We hope that these lessons learned will inform your

own decision as to when and where, not if, you will start

the transition.
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