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Hypoxia is a characteristic of tumor microenvironment (TME) and is a major contributor
to tumor progression. Yet, subtype identification of tumor-associated non-malignant
cells at single-cell resolution and how they influence cancer progression under hypoxia
TME remain largely unexplored. Here, we used RNA-seq data of 424,194 single
cells from 108 patients to identify the subtypes of cancer cells, stromal cells, and
immune cells; to evaluate their hypoxia score; and also to uncover potential interaction
signals between these cells in vivo across six cancer types. We identified SPP1+
tumor-associated macrophage (TAM) subpopulation potentially enhanced epithelial–
mesenchymal transition (EMT) by interaction with cancer cells through paracrine pattern.
We prioritized SPP1 as a TAM-secreted factor to act on cancer cells and found a
significant enhanced migration phenotype and invasion ability in A549 lung cancer
cells induced by recombinant protein SPP1. Besides, prognostic analysis indicated
that a higher expression of SPP1 was found to be related to worse clinical outcome
in six cancer types. SPP1 expression was higher in hypoxia-high macrophages based
on single-cell data, which was further validated by an in vitro experiment that SPP1
was upregulated in macrophages under hypoxia-cultured compared with normoxic
conditions. Additionally, a differential analysis demonstrated that hypoxia potentially
influences extracellular matrix remodeling, glycolysis, and interleukin-10 signal activation
in various cancer types. Our work illuminates the clearer underlying mechanism in the
intricate interaction between different cell subtypes within hypoxia TME and proposes
the guidelines for the development of therapeutic targets specifically for patients with
high proportion of SPP1+ TAMs in hypoxic lesions.

Keywords: tumor microenvironment, single-cell RNA sequencing, pan-cancer, SPP1+ tumor-associated
macrophage, intercellular crosstalk network, hypoxia
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INTRODUCTION

Tumor is a complex and heterogeneous ecosystem, composed of
various cell types and its surrounding tumor microenvironment
(TME). Hypoxia is one characteristic of TME, linked to
metabolic reprogramming (Xiao et al., 2019) and increased
genomic instability (Bhandari et al., 2019), and promotes
cancer progression and drug resistance (Hompland et al.,
2021). Experimental and clinical studies suggest that T cells,
as well as cancer-associated fibroblasts (CAFs) and (TAMs),
play significant roles in cancer development and progression
under hypoxia TME. For instance, IL1β-IL1R signaling is
involved in the stimulatory effects triggered by hypoxia in breast
cancer cells, and CAFs promote cancer progression (Lappano
et al., 2020). Galectin-3 expressed and secreted from TAMs
induced by hypoxia promotes breast tumor growth (Wang
et al., 2020). T cell exhaustion, as a common phenomenon in
solid tumors, can be mediated by TME. As T cells infiltrated
cholesterol-enriched tumor tissues, it would express high levels of
immune checkpoints and become exhausted through increasing
endoplasmic reticulum stress (Ma et al., 2019). Therefore,
explaining the molecular crosstalk between various cells and
changes of cellular compositions to environmental pressure is
significant for understanding how cancer develops. However,
the interaction between tumor cells and other cells has been
obtained using cell culture models in most studies (Chen et al.,
2019), which reveals the relationship to a certain extent. Tumor
and other cells in cell culture settings are not enough to reflect
the true conditions of cancer patients’ lesions. Besides, the
molecular interaction between tumors and hypoxia TME remains
largely unknown.

Recent studies, including The Cancer Genome Atlas (TCGA)
project, have achieved molecular subtyping based on various
characteristics and identified immune infiltration by using
deconvolution on tissue samples in many cancer types (Thorsson
et al., 2019). Although these studies have revealed cell proportion
in cancer, it remains unresolved how the cells may interact
with others to influence cancer development at a very intuitive
data level and cannot effectively dissect the heterogeneity of
TME. In addition, the gene expression analysis based on
bulk cell population averages may be incomplete to reveal
the biological properties between cell types in responses to
hypoxia stress. The recently developed single-cell transcriptomic
technology has great advantages for distinguishing complex
cellular compositions and unravelling cell states in tumor
tissues (Xiao et al., 2019). Most single-cell studies have
focused on distinguishing exhausted CD8+ T cells, TAMs,
and CAFs subtypes and also studied the impact of tumor
heterogeneity on the effect of drug treatment in a specific
cancer type (Kieffer et al., 2020; Lee et al., 2020). However, the
heterogeneity and similarity of molecular interaction between
distinct cell subtypes across different cancer types and their
functional consequences on cancer-promoting effect remain
poorly characterized. Moreover, to our knowledge, the direct role
of hypoxia on the biological characteristics of each cell subtype
as well as on cellular interaction mode between them has not yet
been addressed in pan-cancer.

Here, we use single-cell transcriptomic data covering six
cancer types and perform a comprehensive analysis to identify
the cell subtypes, evaluate their hypoxia score, and to deduce their
possible interrelationships in the complex pan-cancer ecosystem
landscape. We further identify specific ligand–receptor pairs
involved in regulating tumorigenesis and identify specific
macrophage subpopulations co-occurring in multiple cancers as
key roles linking to poor prognosis and tumor malignancy. Our
study illuminates the nature of interactions between cancer cells
and the TME and proposes the guidelines for the development of
novel therapeutic interventions by targeting hypoxia and cellular
crosstalk triggered by hypoxia.

MATERIALS AND METHODS

Data Collection
The single-cell gene expression matrices in the present study
were retrieved from the following database: pan-cancer TME
blueprint1 [including the data of breast cancer (BC), colorectal
cancer (CRC), lung cancer (LC), and ovarian cancer (OV; Qian
et al., 2020)]; Gene Expression Omnibus [accession numbers:
GSE13246, GSE132257, GSE144735 (Lee et al., 2020), and
GSE144240 (Ji et al., 2020), including the data of CRC and
squamous skin cancer (SCC)]; and Genome Sequence Archive
(project number: PRJCA001063) (Peng et al., 2019), including the
data of pancreatic ductal cancer (PDAC). Level 3 RNA-seq data
and clinical data were downloaded from The Cancer Genome
Atlas (TCGA) database2. Moreover, the microarray sequencing
data of macrophages in hypoxic culture was obtained in GEO
database (accession number: GSE4630) (Boström et al., 2006).

Single-Cell RNA-Seq Data Processing
The raw gene expression matrices were processed using Seurat
(v3.2.0) R toolkit. The following quality control steps were
applied: (1) genes expressed by <50 cells were not considered
and (2) cells that had either fewer than 800 (low-quality cells),
over 6,000 expressed genes (possible doublets or multiplets), or
over 10% of reads mapping to mitochondrial RNA were filtered
out. The sample and remaining cell number in each cancer type
is listed in Supplementary Table 1. We obtained the S and G2/M
phase score of each cell using the CellCycleScoring function,
then normalized the gene expression matrices and regressed
out confounding factors such as cell cycle, mitochondrial gene
percentage, and total UMI counts using the SCTransform
wrapper in Seurat. We constructed principal components (PCs)
using highly variable genes generated in the former steps, then
selected the first 30 PCs for graph-based clustering with functions
FindNeighbors and FindClusters in Seurat. To obtain major cell
clusters, the resolution parameter of FindClusters function was
set to a small value; to obtain subclusters, we extracted the data
of major cell types and reperformed RunPCA, FindNeighbors,
and FindClusters. The resolution for each cluster and subcluster
analysis is presented in Supplementary Table 2. For visualization

1http://blueprint.lambrechtslab.org
2https://portal.gdc.cancer.gov/
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of clustering analysis, we performed t-distributed stochastic
neighbor embedding (t-SNE) using RunTSNE function in Seurat.
As the CRC samples are from different platforms, to increase the
accuracy of cell-type designation, we jointly applied a canonical
correlation analysis (CCA) before cell-type identification.

We discriminated differentially expressed genes (DEGs) based
on Wilcoxon rank-sum test and Model-based Analysis of
Single-cell Transcriptomics (MAST) using the Seurat function
FindAllMarkers; each cluster was compared to the union of the
rest clusters. Genes with a P-value < 0.05 were considered as
DEGs detected by both Wilcoxon and MAST methods.

Cell Type and Subtype Annotation
The clusters and subclusters were annotated based on the
top-ranking DEGs among the canonical marker genes known
from previous studies and literatures. To improve the accuracy
of the annotation, we implemented reference-based cell
type annotation with SingleR (v1.4.0) and celldex (v1.1.0)
R package. Highly expressed markers in each cluster were
identified for specific T/NK cells, fibroblasts, myeloid cells,
mast cells, endothelial cells, B/plasma cells, and epithelial cells
(Supplementary Table 2). To facilitate the identification of
numerous cell types, each subcluster was labeled according
to the sequence of cells in the cluster tag. Subclusters 0,
1, 2, 3, and 4 of stromal cells were labeled FS1, FS2, FS3,
FS4, and FS5 in each cancer type. Subclusters 0, 1, 2, 3,
and 4 of cancer cells were labeled CS1, CS2, CS3, CS4,
and CS5 in each cancer type. Subclusters 0, 1, 2, 3, and
4 of macrophages/monocytes/dendritic cells were labeled
M-S1/Mon-S1/DC-S1, M-S2/Mon-S2/DC-S2, M-S3/Mon-
S3/DC-S3, M-S4/Mon-S4/DC-S4, and M-S5/Mon-S5/DC-S5
in each cancer type. Subclusters 0, 1, 2, 3, and 4 of CD8 T
cells/CD4 T cells/natural killer cells were labeled CD8-S1/CD4-
S1/NK-S1, CD8-S2/CD4-S2/NK-S2, CD8-S3/CD4-S3/NK-S3,
CD8-S4/CD4-S4/NK-S4, and CD8-S5/CD4-S5/NK-S5 in each
cancer type. Detailed information of cluster including subcluster
annotation and cell type markers used in this pipeline are
addressed in Supplementary Table 2. In some subclusters, we
also found few cells expressing markers from other cell types,
which we define as unknown clusters and were removed from
further analysis.

Evaluation of Developmental Trajectory
of Myeloid Cells
In order to reveal the cell state transitions, we constructed
cell trajectory for monocytes and macrophages using
Monocle (v2.18.0) R package (Trapnell et al., 2014).
We first excluded dendritic cell clusters from myeloid
cells, then substituted Monocle variable genes with
the union of DEGs in each subcluster. Dimensional
reduction and cell ordering were performed using
reduceDimension and orderCells function. The myeloid
cells’ cell differentiation trajectory was deduced with the
default parameters of Monocle after dimension reduction
and cell ordering.

Definition of Gene Signature Scores
Involved in Cell-Specific Function
To make a comparison with the transcriptional signatures of
tumor cells, we used the hallmark gene sets from MsigDB3

to define cell characteristics by calculating gene set variation
analysis (GSVA) score (Hänzelmann et al., 2013). GSVA scores
of gene signatures (CAF related, M1/M2 macrophages, pro-
inflammatory, anti-inflammatory, etc.) were obtained from
previous researches (Azizi et al., 2018; Chen and Song, 2019)
to distinguish the features of each cluster in fibroblasts and
myeloid cells, respectively. Hypoxia and glycolysis scores were
also calculated by GSVA using gene signatures (Wei et al., 2020)
across cells and samples in each cancer type. The cytotoxicity
and exhaustion activity scores were defined as described in a
previous study (Guo et al., 2018). All gene signatures are listed
in Supplementary Table 3.

Gene Signatures of SPP1+
Tumor-Associated Macrophage Cluster
Specific gene signatures of SPP1+ TAM clusters were identified
by performing a differential analysis (overlap of Wilcoxon
rank-sum test and MAST) between myeloid cell clusters in
CRC, LC, and SCC. Differentially expressed genes between
clusters (one cluster vs. all other clusters) with an adjusted
P-value < 0.05 were selected. We used the DEGs in SPP1+
cluster from CRC, LC, and SCC for detecting if these
genes were expressed specifically in SPP1+ cluster, and we
excluded the genes if it showed an expression level higher
than 1 in more than 10% of tumor cells or fibroblasts
in CRC, LC, or SCC, respectively. Then, the overlapped
genes between three cancer types were defined as SPP1+
TAM signature (Supplementary Table 3). SPP1+ TAM
signature score was calculated in bulk RNA-seq data as
described above.

Cell–Cell Interaction Analysis
In order to reveal the molecular mechanism of crosstalk
between cells in TME, CellPhoneDB (Efremova et al., 2020)
(v2.1.4) was used to calculate ligand–receptor interaction scores
in each cell subcluster. This method infers the potential
interaction strength between two cell subclusters based on
gene expression level and provides the significance through
permutation test (1,000 times). To identify biologically relevant
interactions, only receptors and ligands expressed in more
than a 10% threshold of the cells in the specific cluster were
considered for the analysis; log-normalized gene expression
matrices were input to CellPhoneDB and ran with the
statistical method. We prioritized interactions that were highly
enriched between different cell types based on the number of
significant pairs, then manually selected biologically relevant
pairs by considering the P-value (P-value < 0.05) and mean
expression of the average ligand and receptor level in the
present clusters.

3http://www.gsea-msigdb.org/gsea/msigdb/
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Survival Analysis
The samples were grouped into high and low groups according
to the specific gene expression, signature score, or percentage of
particular cell types by the median values. Macrophage fractions
were estimated by CIBERSORT4 with default parameters to
eradicate the effects of different cell proportions.

For SPP1 expression, we performed survival analysis using
the top and bottom 50% expression as high and low groups. For
SPP1 expression and TAM proportion, the samples with top and
bottom 50% SPP1 expression and TAM proportion were defined
as high and low groups, respectively. The R package “survival”
was used to perform the overall survival analysis and produce
Kaplan–Meier survival plots. HR and the 95% CI were generated
using Cox proportional hazards models.

Cell Culture, RNA Isolation, and qPCR
The human A549 lung cancer cells were cultured in RPMI-
1640 replenished with 10% fetal bovine serum (FBS). All cells
were cultured at 37◦C in a humidified 5% CO2 incubator.
The digested cells were counted and inoculated in six-well
plates until cell attachment, and then, cells were cultured in a
medium added with 100 ng/ml recombinant TNFSF12 (R&D
Systems) or 200 ng/ml recombinant SPP1 (R&D Systems),
respectively. After 48-h culture, the total RNA was isolated
from cells using TRIzol reagent (Magen) according to the
manufacturer’s protocol. Reverse-transcribed complementary
DNA was synthesized using the Evo-M-MLV RT Kit (AG11705,
Accurate Biotechnology). qRT-PCR was performed using the
Applied Biosystems QuantStudio 1 Real-Time PCR System
(Thermo Fisher) and the PowerUpTM SYBR Green Mix (Thermo
Fisher). The fold-change in the expression of target genes was
calculated by the 2−11Ct method. The primer sequence is listed
in Supplementary Table 4.

Wound Healing Assay
We conducted a wound healing assay based on the description
of a previous research (Grada et al., 2017). The dissociated
cells by trypsin were counted (8 × 105) and inoculated in
six-well plates. The cells were cultured until a 90–100% fused
cell monolayer formed after 24 h. We then scratched the
cells in the fused monolayer with a pipette tip causing an
experimental injury and created a linear thin scratch “wound.”
Subsequently, cells were cultured in FBS-free medium treated
with 100 ng/ml recombinant TNFSF12 (R&D Systems) or
200 ng/ml recombinant SPP1 (R&D Systems), respectively. The
wound healing was observed, and images were photographed
in 8–15 fields of view that were randomly selected under the
MF53-N inverted microscope (MSHOT) in 24 and 48 h. We did
three biological repeat experiments. Finally, images of healing
were measured and analyzed using ImageJ software (National
Institutes of Health).

Cell Invasion Assay
Matrigel (BD) was diluted by FBS-free 1640 medium and coated
on Transwell membrane filter inserts (Corning) to enable analysis

4https://cibersort.stanford.edu

of cell invasion. The dissociated cells by trypsin cells were
washed by PBS for three times and resuspended by FBS-free 1640
medium. A 200-µl cell suspension with 1 × 105 cells treated
with 100 ng/ml recombinant TNFSF12 or 200 ng/ml recombinant
SPP1 was inoculated in the upper chamber, respectively, and
700 µl 1640 medium with 10% FBS was added to the lower
chamber and cultured at 37◦C in a 5% CO2 environment.
After 24 h, the upper chamber was washed with PBS, and
cells were fixed with methanol for 30 min then dyed with 5%
crystal violet for 30 min. The images were photographed in five
fields of view that were randomly selected under the MF53-N
inverted microscope (MSHOT). We did three biological repeat
experiments. Finally, images of invasive cells were measured and
analyzed using ImageJ software (National Institutes of Health).

Cell Viability Assays
Logarithmically growing cells were plated into a 96-well plate
at a density of 1 × 103 cells/well and 100 ng/ml recombinant
TNFSF12 (R&D Systems) or 200 ng/ml recombinant SPP1 (R&D
Systems) was added after 12 h and then incubated for 0, 24, 48,
72, 96, and 120 h. Recombinant protein was added to cultured
media once, and the media were not changed for 24, 48, 72,
96, and 120 h. Before proliferation ability was detected, 10 µl
of Cell Counting Kit-8 (CCK8) solution (GlpBio) was added to
the cultures. After incubation for 1 h in a humidified incubator
containing 5% CO2 at 37◦C, absorbance was detected at 450 nm.

Hypoxia Treatment of THP-1-Derived
Macrophages
Human monocyte cell THP-1 were cultured in RPMI-1640
replenished with 10% FBS, and 100 U/ml penicillin and
100 mg/ml streptomycin were added. All cells were cultured at
37◦C in a humidified 5% CO2 incubator. For cell differentiation,
THP-1 monocytes were seeded at 8 × 105 cells/well in six-
well plates and directly differentiated into macrophages by 24-
h incubation with 100 ng/ml phorbol 12-myristate 13-acetate
(PMA, Sigma), followed by a 24-h rest period in complete
RPMI-1640 medium without PMA. At the end of 48 h, THP-1
macrophages were used as M0 macrophages. The total RNA was
immediately isolated from cells using TRIzol reagent (Magen)
according to the manufacturer’s protocol.

THP-1-derived M0 macrophages were cultured in a six-well
plate and incubated at 37◦C under normoxia (21% O2 and 5%
CO2) or hypoxia (1% O2, 5% CO2, and balanced N2) in a hypoxic
environment chamber (Maworde), respectively, for 24 h. The
total RNA was immediately isolated from cells using TRIzol
reagent (Magen) according to the manufacturer’s protocol.

Statistical Analysis
All statistical analyses and graphical representation of data
were performed in the R environment (version 4.0.3) or
using GraphPad Prism software (version 7.0). The correlation
analysis including gene expression, gene signature score, and
cell proportion between the two groups used in this study was
based on Spearman correlation. For the cell subtype abundance
correlation matrix, we defined the number ratio of cell subtype
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to the belonging major cell type as the relative abundance of
each cell subtype, then computed the Spearman correlation
coefficient between the relative abundance of each cell subtype
in six cancer types.

For the difference analysis between groups, we used Wilcoxon
rank-sum test throughout the analysis on single-cell and bulk
RNA-seq data. For the differential gene analysis between hypoxia-
high and -low groups in TCGA, we used edgeR (Robinson et al.,
2010) to get DEGs and used Metascape (Zhou et al., 2019) for
gene enrichment analysis. For the cell experiment, the unpaired
two-tailed t-test was used to compare the difference between
experimental groups and control groups.

RESULTS

Global Cellular Landscape of Six Cancer
Types Revealed by scRNA-Seq Analysis
After strict quality control (QC) and filtration, we collected
25,318, 15,347, 6,019, 14,991, and 21,447 single cells originating
from normal tissues; 57,486, 32,509, 17,732, 40,940, and
25,772 tumor-derived cells in CRC, LC, OV, PDAC, and SCC,
respectively; and 24,160 tumor-derived cells in BC. We divided
all cells for each cancer type into 6–10 major clusters and
identified epithelial cells, stromal cells (fibroblasts, pericytes, and
endothelial cells), and immune cells (T/NK cells, B/plasma cells,
myeloid, and mast cells) as the major cell types (Figure 1).
We observed that the cell proportion of each cell type was
different among cancer types. T/NK cells were only 4% in SCC,
7% in PDAC, and 10% in OV, while they were 32% in CRC,
42% in LC, and 45% in BC (Supplementary Figure 1A and
Supplementary Table 1). Besides, the proportion of cells in
each patient also varied, indicating intertumoral heterogeneity
(Supplementary Figure 1B).

Hypoxia Score of Cell Subtypes in
Stromal Cells, Myeloid Cells, and T Cells
In order to evaluate the hypoxia level of these major cell types
in the TME, we performed a subcluster analysis on cells from
cancer tissues and calculated hypoxia score in each subtype across
cancer types. Subclustering of stromal cells mainly revealed
three broad classes: pericytes, myofibroblasts, and fibroblasts
(Supplementary Figure 2A). As there were few fibroblasts (710
cells) in SCC, we failed to subcluster stromal cells in this cancer,
and the remaining studies of stromal cells focused on the other
five cancer types. We named fibroblast clusters in order in the
form of labels (e.g., FS1 and FS2 are clusters 0 and 1, respectively).
According to the markers from previous studies (Costa et al.,
2018; Kieffer et al., 2020) and significant up-regulated genes in
each cluster, we then termed fibroblasts into collagen-related
CAFs, chemokine-related CAFs, and interleukin (IL) signal-
related CAFs in specific cancer types. IL signal-related CAFs
[FS5 (cluster 4) in BC] up-expressed inflammatory signatures
such as interferon response and inflammatory response in
BC (Figure 2A). Collagen-related CAFs [FS1 (cluster 0) in
six cancer types] exhibited the highest extracellular matrix

(ECM) remodeling score (Supplementary Figure 2B). However,
there was no consistent trend among CAFs in hypoxia scores
across cancer types.

Myeloid cells were investigated in two aspects, including
identification of subtypes and evaluation inflammatory features.
Using conventional marker genes, we identified dendritic
cells, monocytes, and macrophages and found the common
subsets across all cancer types (Supplementary Figure 2C).
We distinguished the pro-inflammatory and anti-inflammatory
monocyte/macrophages according to the markers/gene sets
referenced in previous studies (Azizi et al., 2018; Figure 2B and
Supplementary Figure 3A). However, some specific TAMs had
a mixed phenotype, expressing both pro-inflammatory and anti-
inflammatory signatures as well as M1 and M2 gene signatures
(Figure 2B and Supplementary Figures 2C, 3A), consistent with
previous studies (Lee et al., 2020). The noteworthy phenomenon
was that SPP1 was expressed higher in one subtype, such as M-S1
(cluster 0) in BC; M-S3 (cluster 2) in CRC; M-S1 (cluster 0)
and M-S2 (cluster 1) in LC; M-S1 (cluster 0) and M-S5 (cluster
4) in OV; M-S2 (cluster 1) in PDAC; and M-S3 (cluster 2) in
SCC, which were universal across six cancer types (Figure 2B
and Supplementary Table 2). We named these subtypes as
SPP1+ TAMs and found matrix metallopeptidase 9 (MMP9),
associated with ECM remodeling, was also highly expressed in
SPP1+ TAMs (Figure 2B). It was worth noting that the hypoxia
score was higher in SPP1+ TAMs compared with other subtypes
(Figure 2B). Given the above characteristics of SPP1+ TAMs,
they might play a central role in tumor progress under the
influence of hypoxia TME.

As TAMs can be either tissue-resident or monocyte-
derived (Yona et al., 2013), a cell trajectory analysis was
employed to explore the lineage trajectories of the macrophage
and monocyte populations (Figure 2C and Supplementary
Figure 3B). The Monocle trajectory analysis suggested that
some TAM clusters could be monocyte derived, such as M-S1
and M-S2 derived from Mon-S4 in BC and M-S1, M-S3, and
M-S4 derived from Mon-S7 in SCC, while others appeared
to be tissue-resident macrophages in origin, such as M-S1 in
CRC (Figure 2C). Taken together, our findings illustrate that
TAMs may undergo different transcriptional reprogramming like
the pro- and anti-inflammatory differentiation axis and also
suggest a more complex phenotype of TAMs in the TME across
different cancer types.

Subclustering of T/NK cells led to the identification of CD4+ T
cells, CD8+ T cells, and NK cells (Supplementary Figure 3C). We
intended to identify the exhaustion status of CD8+ T cells from
the gene expression of key inhibitory receptors (PDCD1, TIGIT,
HAVCR2, LAG3, and CTLA4) (Supplementary Figure 3C).
However, cells expressing exhaustion genes also highly express
cytotoxicity markers (GZMB and IFNG) in CD8+ T cells, which
further confirmed that one specific subcluster highly exhibited
both cytotoxicity score and exhaustion score (Supplementary
Figure 3D). As shown in Supplementary Figure 3D, CD8-
S3 (cluster 4) in CRC expressed both higher cytotoxicity
and exhaustion scores compared with other clusters. This
observation appeared to an activation-dependent exhaustion
expression program similar to the previous scRNA-seq study
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FIGURE 1 | Cell-type identification in pan-cancer. t-SNE map of single cells from cancer tissues to visualize cell-type clusters based on the expression of known
marker genes [T/NK cells (CD2, CD3D, CD3E, CD3G, FGFBP2, XCL1, FCGR3A, KLRD1, and KLRF1), fibroblasts (FAP, PDPN, COL1A2, DCN, COL3A1, COL6A1,
and LUM), myeloid cells (CD14, CD16, and CD68), mast cells (CMA1, MS4A2, TPSAB1, TPSB2, and CPA3), endothelial cells (PECAM1, VWF, ENG, PLVAP, and
SELE), B/plasma cells (SLAMF7, CD79A, BLNK, FCRL5, and CD79A), and epithelial cells (EPCAM, KRT19, KRT7, KRT18, KRT1, DMKN, and KRT6C)].

(Guo et al., 2018). Unexpectedly, the exhausted CD4+ T cells
[CD4-S5 (cluster 4) in BC; CD4-S9 (cluster 8) in CRC; CD4-
S6 (cluster 5) in LC; CD4-S4 (cluster 3) in PDAC; and CD4-S4
(cluster 3) in SCC] were distinguished across five cancer types.
As a previous study (Scharping et al., 2021) showed that T
cell exhaustion was driven under hypoxic environment, it was
suggested that there may be an association between hypoxia
and exhaustion. We then preformed a correlation analysis and
found that hypoxia score was highly correlated with exhaustion
score but not cytotoxicity score in T cells across six cancer
types (Figure 2D).

Transcriptional Heterogeneity of
Malignant Cells and the Association With
Hypoxia
We obtained the malignant epithelial cell subclusters and DEGs
of each subcluster. We next explored how expression states
varied among different cancer cells within the same cancer
type, and the GSVA reflecting the activity of cancer-related

hallmark pathways was applied. GSVA distribution of some
subclusters revealed a significant enrichment of genes related
to epithelial–mesenchymal transition (EMT) and angiogenesis,
while some subclusters were highly enriched in cell cycle-related
hallmarks: E2F/MYC targets and G2M checkpoint, indicating
intratumoral heterogeneity (Figure 3). Notably, it was observed
that subclusters with high hypoxia was the same as the subclusters
with EMT program.

Crosstalk Between Stromal and Myeloid
Cells and Cancer Cells
To decipher the molecular associations underlying cell–
cell interactions, we constructed a cellular communication
network between different cell subtypes using potential ligand–
receptor (L–R) pair interactions (Supplementary Figure 4A
and Supplementary Table 5). Importantly, the numbers of
interaction between cancer cells and myeloid cells were predicted
to be the most universal within the cellular network across
six cancer types (Supplementary Figure 4A). Besides, we
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FIGURE 2 | Subtype classification and characteristics of non-malignant cells across cancer types. (A) Hallmark gene set scores for interferon gamma response (top)
and inflammatory response (bottom), computed for all fibroblast clusters in BC. FS1, FS2, FS3, FS4, and FS5 are subclusters 0, 1, 2, 3, and 4 in stromal cells, see
Materials and Methods and Supplementary Figure 2A. ****p ≤ 0.0001, two-sided Wilcoxon rank sum test. (B) Heatmap of Z-score-normalized log2 (count+ 1)
expression of canonical marker genes for myeloid cells. The color of the square on the top map indicates the average hypoxia score for each myeloid cell cluster (low
to high, light green to green). (C) The branched trajectory of myeloid cell state transition in cancer (BC), colorectal cancer (CRC), and squamous skin cancer (SCC)
inferred by Monocle 2. Each dot corresponds to one single cell, colored according to its cluster label. Subclusters 0, 1, 2, 3, and 4 of macrophages/monocytes were
labeled M-S1/Mon-S1, M-S2/Mon-S2, M-S3/Mon-S3, M-S4/Mon-S4, and M-S5/Mon-S5 in each cancer type, see Materials and Methods. (D) Correlation scatter
plot between gene set variation analysis (GSVA) scores of hypoxia, cytotoxicity, or exhaustion.
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FIGURE 3 | Heatmap showing different hallmark gene sets enriched in the cancer cell subclusters by GSVA, colored by Z-score-transformed mean GSVA scores.

next analyzed whether there was any correlation between the
respective proportions between these subclusters across patients
and found some co-occurring cell subclusters (Supplementary
Figure 4B and Supplementary Table 6), such as proportions
between some fibroblast and cancer cell subclusters that were
correlated in BC and OV.

Given that crosstalk between cancer cells and myeloid cells as
well as stromal cells was predicted to be universal, we focused an
analysis on interactions between these cell types and interrogated
how they influenced each other in a particular way to promote
cancer progression (Figure 4A and Supplementary Figure 5).
In BC and OV, the stromal cells were the widespread cell types
interacting with cancer cells (Figure 4A and Supplementary
Figure 5). Insulin-like growth factor 1 (IGF1) may be secreted
by stromal cells to regulate cancer cell growth through binding
their receptors on the cancer cell. Insulin-like growth factor
1 receptor (IGF1R) gene expressed by cancer cells was highly
associated with estrogen response signatures in BC, which may
demonstrate that the binding effect of IGF1 on IGF1R as
well as activating estrogen signaling enhanced cancer growth
(Figure 4B). Protein tyrosine phosphatase receptor type S
(PTPRS) was highly expressed in OV cancer cells and correlated
with MYC/E2F targets, indicating that pleiotrophin (PTN) was
secreted by fibroblasts binding to its receptor to promote the
cancer cell growth (Figure 4B). Correspondingly, the expression
of IGF1R and PTPRS was positively correlated with estrogen
response-related gene ESR1 and MYC target gene SLC2A1 in BC
and OV, respectively, (Figure 4B). Furthermore, the proportion
of cancer cell subcluster [CS1 (cluster 0)] and stroma cell
subcluster (FS3 and FS4) also displayed positive correlations in
BC (Figure 4C). These results showed that fibroblasts potentially
promoted tumor cell proliferation by expressing and secreting
different growth factors.

Obviously, some L–R pairs between myeloid cell and
cancer cell interaction were universal. For example, TNFSF12-
TNFRSF12A and SPP1-CD44 were shown in LC, CRC, and
SCC (Figure 4A and Supplementary Figure 5), indicating

that myeloid cells might express and secrete TNFSF12 and
SPP1, signaling to their receptors TNFRSF12A and CD44 on
cancer cells, respectively. Conversely, we also predicted the
interaction between ligand on cancer cells and receptor on
myeloid cells. The result showed TAMs would receive activated
signals from cancer cells through GAS6-AXL, RPS19-C5AR1,
FAM3C-LAMP1, CD47-SIRPA, and VEGFA-NRP1/NRP2 L–R
pairs in TME (Supplementary Table 5). Besides, these receptors
of TAMs were correlated with M2 macrophage polarization
(Figure 4D), suggesting cancer cells could possibly serve as
the potential source of the ligand for activation of M2-like
TAMs in TME. It is worth noting that hypoxia score also had
a positive correlation with M2 macrophage polarization, which
could speculate that hypoxia is a potential factor affecting cell
communication (Figure 4D). Overall, these results indicated
that tumor cells and macrophages formed a positive feedback
interaction via ligand–receptor signaling in the TME.

Tumor-Associated Macrophages
Potentially Promote
Epithelial–Mesenchymal Transition of
Cancer Cells
In order to study the specific effect of macrophages on tumor
cells through the common L–R pairs (TNFSF12–TNFRSF12A and
SPP1–CD44), we further calculated the correlation between the
TNFRSF12A or CD44 expression and hallmark signature scores
in cancer cells. The results revealed that angiogenesis, glycolysis,
and EMT were the biological process most correlated with CD44
expression, while the TNFα signaling via NFκB, angiogenesis,
IL6_JAK_STAT3 pathway, and EMT were correlated with
TNFRSF12A in cancer cells across CRC, LC, and SCC (Figure 5A
and Supplementary Table 7). As SPP1 was mainly expressed in
macrophage (Supplementary Figure 6A), we further detected
that the relative abundances of SPP1+ TAMs [M-S2 (cluster 1) in
LC and M-S3 (cluster 2) in CRC] and cancer cell subclusters with
high EMT [CS1 (cluster 0) in LC and CS2 (cluster 1) in CRC] were
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FIGURE 4 | The intercellular interactions between non-malignant cells and cancer cells. (A) Significant ligand–receptor genes accounting for specific intercellular
interactions in BC, LC, and SCC. P-values are indicated by circle size. The means of the average expression level of interacting molecule (ligand or receptor genes) 1
in cluster 1 and interacting molecule 2 in cluster 2 are indicated by color. Subclusters 0, 1, 2, 3, and 4 of stroma cells were labeled FS1, FS2, FS3, FS4, and FS5 in
each cancer type. Subclusters 0, 1, 2, 3, and 4 of cancer cells were labeled CS1, CS2, CS3, CS4, and CS5 in each cancer type. Subclusters 0, 1, 2, 3, and 4 of
macrophages/monocytes/dendritic cells were labeled M-S1/Mon-S1/DC-S1, M-S2/Mon-S2/DC-S2, M-S3/Mon-S3/DC-S3, M-S4/Mon-S4/DC-S4, and
M-S5/Mon-S5/DC-S5 in each cancer type. Endo is endothelial cells. (B) Correlation scatter plot between main receptors expressed on cancer cells and specific
pathways as well as genes in BC and OV. (C) Correlation between proportional changes in specific stromal cell cluster and cancer cell cluster in BC. (D) Heatmap
depicts the correlations between M2 macrophage polarization and hypoxia as well as main receptors expressed on macrophage.
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correlated together in LC and CRC, which further strengthens the
function of SPP1+ TAMs in promoting EMT (Supplementary
Table 2 and Figure 5B).

To evaluate the functional significance of the above key L–R
interactions in lung cancer, A549 lung cancer cells were exposed
to human recombinant protein SPP1 or TNFSF12 for 24 and
48 h, respectively. Compared with the control, cells exposed to
recombinant protein TNFSF12 exhibited significantly enhanced
migration and invasion ability but a slightly reduced proliferation
of lung cancer cells (Figures 5C–E and Supplementary
Figures 6B–D). In line with the phenotypic changes, TNFSF12
treatment led to a decreased expression of the epithelial marker
E-cadherin (CDH1) (Figure 5E). It is known that VEGF is
an NFκB-inducible protein and is one of the most potent
angiogenic factors crucial for tumor metastasis (Leung et al.,
1989), and qRT-PCR analysis showed that VEGFA expression was
remarkably upregulated in lung cancer cells with recombinant
protein TNFSF12 treatment at 48 h (Figure 5E). However,
TNFRSF12A expression was reduced after TNFSF12 treatment,
which needs a further extensive study to investigate its molecular
mechanism. We observed an enhancement of cell migration
and invasive behavior in lung cancer cells induced after SPP1
treatment (Figures 5C,D and Supplementary Figures 6B,C). By
performing qRT-PCR, we observed that cancer cells exposed to
SPP1 exhibited a significantly increased gene expression in EMT-
related molecule CD44 and glycolytic genes including SLC2A1
and ENO2 at 48 h (Figure 5F).

To further verify our single-cell analysis and in vitro
experiment results, we then extended our analysis to TCGA
LUAD database and found that TNFSF12 expression was
positively correlated with EMT score, but negatively correlated
with proliferation score (Supplementary Figure 6E). There was
a strong correlation between SPP1 expression and glycolysis,
EMT score, and related genes (Supplementary Figure 6E),
which further reinforced that SPP1+ TAM-derived SPP1 might
participate in facilitating glycolysis and EMT in lung cancer cells.
Taken together, our results of the paracrine interactions analysis
and in vitro experiment highlight the cancer-promoting role of
SPP1 and TNFSF12 signaling.

SPP1 Is Upregulated in Hypoxia Tumor
Microenvironment and Associated With
Poor Prognosis
As SPP1+ TAMs were revealed to harbor higher hypoxia score
(Figure 2B) and co-occur with EMT cancer cells (Figure 5B),
we focused on exploring the functions of SPP1 and SPP1+
TAMs. SPP1 was upregulated in macrophage derived from tumor
samples compared with that from normal tissues (Figure 6A);
we reasoned that SPP1 was a specific TME-induced expression
program in TAMs. These findings were further confirmed by
TCGA cancer samples, which showed that compared with
adjacent normal tissues, a much higher expression of SPP1
in tumor tissues was observed in corresponding cancer types
(Supplementary Figure 7A). Meanwhile, PDAC and LC were
found to harbor a higher proportion (>50%) of SPP1+ TAMs
(Supplementary Figure 7B). Using clinical data collected from

the TCGA project, we confirmed that patients with a higher level
of SPP1 gene expression showed worse prognosis in six cancer
types, including lung cancer studied in this study (Figure 6B),
and a higher proportion of SPP1+ TAMs was also associated with
a worse clinical outcome (Supplementary Figure 7C), suggesting
the clinical impact of SPP1 and SPP1+ TAMs in cancer.

As showed above, SPP1 and MMP9 were co-expressed
in SPP1+ TAMs (Figure 2B); we reasoned that SPP1+
TAMs might participate in ECM remodeling. Using the ECM
remodeling signatures, we assessed the functional phenotypes
of each macrophage subtypes across different cancer types. As
expected, the SPP1+ TAMs showed preferential ECM remodeling
(Supplementary Figure 7D), while other TAMs exhibited lower
performance. Due to the role of ECM remodeling in cancer
glycolysis, angiogenesis, and metastasis, we investigated the
association between SPP1+ TAM signature, SPP1 expression with
glycolysis, and EMT program, respectively, and found that there
was a positive correlation between them in multiple cancer types
(Figure 6C). These results may underscore the potential cancer-
promoting role of SPP1+ TAMs in complex TME.

As showed in Figure 6D and Supplementary Figure 7E, SPP1
expression was higher in hypoxia-high macrophages, and the
hypoxia score was higher in SPP1+ TAMs. Consistent with the
results in single-cell data, the expression of SPP1 was higher in
hypoxia-high samples than that in low ones (Supplementary
Figure 8). To further verify whether SPP1 expression is directly
regulated by hypoxic stress, we performed cell culture experiment
and confirmed that SPP1 expression was significantly upregulated
in THP-1-derived macrophages exposed to hypoxic (1% O2)
than to normoxic (21% O2) conditions for 24 h (Supplementary
Figures 7F,G and Figure 6E). We observed a higher SPP1
expression in human mononuclear cell-derived macrophages
exposed to hypoxic (1% O2) than to normoxic conditions for
24 h, which was further confirmed by an independent GEO
dataset (Boström et al., 2006; Figure 6F). Thus, we reasoned
that SPP1 was upregulated, and SPP1+ TAMs were expanded in
hypoxia TME, interacting with cancer cells to promote malignant
biological characteristics and thus bring poor survival of patients.

Hypoxia Potentially Affecting the
Biological Characteristics and Functions
of Different Tumor-Infiltrating Cell Types
To discover the hypoxia effect on gene expression spectrum
in different cell types, we compared the gene expression of
the hypoxia-high and hypoxia-low cells by DEG analysis (1.5-
fold difference, adj. p < 0.05) coupled with Reactome term
enrichment analysis (adj. p < 0.01) of DEGs across T cells,
fibroblasts, myeloid cells, and cancer cells. As the DEGs were
fewer in T cells and fibroblasts, and we mainly focused on
myeloid and cancer cells (Supplementary Table 8). Among
the DEGs in myeloid cells, SPP1 and TIMP1 were the most
significantly upregulated genes in hypoxia-high cells across
cancers (Supplementary Figure 9A). As shown in Figure 7A,
signaling by interleukins including IL4, IL13, and IL10 signals
were enriched in hypoxia-high myeloid cells, indicating that
immunosuppressive cytokines were activated in hypoxia TME.
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FIGURE 5 | Tumor-associated macrophages (TAMs) promote glycolysis, invasion, and migration phenotype of cancer cells. (A) Heatmap depicts the correlation
between CD44 or TNFRSF12A expression and hallmark signatures scores in cancer cells. (B) The correlation between proportional changes in SPP1+ TAM cluster
(M-S3 and M-S2 in CRC and LC, respectively) and epithelial–mesenchymal transition (EMT)-related cancer cells (CS2 and CS1 in CRC and LC, respectively). (C) Box
plot shows relative invasion cells per field of A549 cells treated by recombinant protein SPP1 and TNFSF12 for 24 and 48 h. ****p ≤ 0.0001, two-sided unpaired
t-test. (D) Box plot shows relative migration area of A549 cells treated by recombinant protein SPP1 and TNFSF12 for 24 and 48 h. ****p ≤ 0.0001, two-sided
unpaired t-test. (E) Relative mRNA expression of specific genes (VEGFA, CDH1, and TNFRSF12A) in A549 lung cancer cells exposed to TNFSF12 for 48 h.
**p ≤ 0.01, two-sided unpaired t-test. (F) Relative mRNA expression of specific genes (CD44, SLC2A1, and ENO2) in A549 lung cancer cells exposed to SPP1 for
48 h. *p ≤ 0.05; **p ≤ 0.01, two-sided unpaired t-test.

Besides, degradation of ECM and glycolysis were active in
hypoxia-high myeloid cells across six cancer types. However,
except glycolysis, the enriched pathways in hypoxia-high cancer
cells varied among cancer types, suggesting a tissue-specific
response to hypoxia (Supplementary Figure 9B). Moreover, we
included 25 TCGA cancer types and performed DEG analysis.
From the DEGs, there were 489 genes upregulated in hypoxia-
high tumors versus low tumors in more than 13 cancer types
(Supplementary Table 7). We found that IL signaling and ECM
degradation, as well as glycolysis, were significantly enriched in
hypoxia-high tumors (Figure 7B). Biological processes of matrix
proteoglycan, like collagen formation, collagen degradation, and
integrin cell surface interactions, were also identified in TCGA
cancers. Moreover, we found that the DEGs, upregulated in
hypoxia myeloid cells across six cancer types, interacted with

each other frequently in protein–protein interaction networks
(Figure 7C). Taken together, these results suggest that cross-
talk among these molecules up-expressing under hypoxia TME,
may play critical roles in the development and progression of
different cancer types.

In addition, we returned the key hypoxia-related molecular
characteristics of above results back to individual samples to
further inspect their relationship and distribution and found
that most of the characteristics in the individual were consistent
with the overall distribution across six cancer types (Figure 7D).
For example, the extensive association between hypoxia and
glycolysis in different types of cells was observed at the individual
level. SPP1 expression in myeloid cells along with EMT and
glycolysis program in cancer cells was higher in hypoxia-
high samples. Thus, this analysis provides a theoretical basis
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FIGURE 6 | SPP1 is related to poor prognosis and upregulated in hypoxia tumor microenvironment (TME) to promote malignant phenotype of cancer. (A) The
expression of SPP1 in macrophage from tumor and normal samples. ****p ≤ 0.0001, two-sided Wilcoxon rank sum test. (B) The Kaplan–Meier overall survival
curves of The Cancer Genome Atlas (TCGA) patients grouped by gene expression of SPP1. (C) The correlation between SPP1 expression and SPP1+ TAM
signature score with glycolysis score and EMT score in TCGA cancer samples. (D) Violin plot shows the SPP1 expression in hypoxia-high and -low macrophages in
six cancer types. (E) Relative mRNA expression of SPP1 and M1 marker genes in THP-1-derived macrophage exposed to hypoxia (1% O2) for 24 h. (F) The
expression of SPP1 in macrophage exposed to hypoxia and normoxia from GSE4630 data.

for studying the intratumoral heterogeneity and intertumoral
consistency within multiple cell types and also provides the
clinical guidance value to single patients. In general, the above
results show that hypoxia is disclosed to be the major factor

to influence the intercellular crosstalk and shows different
contributions to each cell types, participating in SPP1+ TAM
expansion, ECM remodeling, and interleukin-10 signal activation
to accelerate cancer EMT, glycolysis, and angiogenesis.
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FIGURE 7 | Molecular characteristics of different cell types across samples under the hypoxia TME. (A) Enriched Reactome gene sets of upregulated genes in
hypoxia-high myeloid cells across six cancer types. (B) Enriched Reactome gene sets of upregulated genes in hypoxia-high samples at least in 13 TCGA cancer
types. (C) The protein–protein interactions among differentially expressed genes (DEGs) upregulated in hypoxia-high myeloid cells. (D) Clustered heatmap of 18
features across pan-cancer samples. Samples are arranged from low hypoxia score to high hypoxia score with the color blue to red, respectively. For tumors, the
stage is indicated by color. Gray rectangles highlight that there were less than 50 cells in this sample. The values were normalized from 0 to 1 by Minmax.

DISCUSSION

In the present study, we identified multiple subclusters among
different cell types that shape the heterogeneous TME and
share consistency across different cancer types. We illustrated
the cellular communication landscape between malignant and
non-malignant cells and highlighted the reciprocal relationship
between them. We distinguished that SPP1+ TAMs, expanded
under hypoxia TME, might promote the EMT and glycolysis
program of cancer cells and might be related to worse survival
in multiple cancer types. This study depicts the comprehensive
cellular interaction map of BC, CRC, OV, LC, PDAC, and SCC

and provides a framework for future discoveries of molecular
and cellular therapeutic targets to block the interactions between
cancer cells and TME to inhibit cancer development more
thoroughly and effectively.

Sufficient cells in this study enable us to distinguish different
macrophage clusters and highlight the SPP1+ TAM subtype,
which is activated under the hypoxia TME, and higher SPP1
expression was linked to poor prognosis in multiple types. Studies
have previously shown that stromal SPP1 promotes cancer cell
survival and enhances invasion behavior in glioma (Lu et al.,
2012), prostate cancer (Pang et al., 2019), and melanoma (Kale
et al., 2015), suggesting a direct effect of SPP1 on tumor cells.
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Besides, a recent study based on single-cell analysis showed
that SPP1+ TAMs were associated with tumor angiogenesis in
various cancer types (Cheng et al., 2021). Our current study
shows that EMT is the biological process in cancer cells most
associated with SPP1+ TAMs as revealed by single-cell analysis,
and the potential effect of SPP1+ TAMs on cancer cells is
further confirmed by TCGA bulk data. The results indicate
that SPP1+ TAMs may interact with cancer cells in a paracrine
pattern through expressing and secreting SPP1 then binding to
cell-surface receptor CD44, consistent with a previous work,
showing that CD44 is the receptor of SPP1 to regulate cancer
metastasis (Wai and Kuo, 2004). One study indicates that SPP1
activates JNK signaling through a CD44v6-dependent pathway
to promote clonogenicity of colorectal cancer cells, and the
CD44v6 antibody is able to potently block the activation of
JNK induced by SPP1 (Rao et al., 2013). Besides, another study
on human optic nerve head astrocytes shows that a CD44-
blocking antibody led to a significant increase of metabolic
activity caused by SPP1 signaling (Neumann et al., 2014). Our
results, combined with previous studies, suggest that the SPP1–
CD44 interaction is important for cancer progression. Thus, the
identification of SPP1 as an abundant TAM-secreted factor in
cancer, coupled with the pro-tumor impact of SPP1, suggests
that inhibiting SPP1 at transcriptional or protein level, blocking
the interaction between SPP1+ TAMs and cancer cells through
targeting SPP1 and CD44, may be an effective clinical strategy
for tumor growth and metastasis inhibition. For example,
small interfering RNA against SPP1 by intratumoral injection
significantly suppressed breast tumor growth and angiogenesis
in a mouse model (Cho et al., 2015). Blocking antibodies to
SPP1 and its specific receptors CD44 showed an inhibitory role
in cancer cell migration. Researchers showed that the blocking
antibody targeting CD44 on stromal cells reduced the SPP1-
induced breast cancer metastasis (Mi et al., 2011). SPP1-R3
aptamer was used to inactivate SPP1 and disturb surface binding
of SPP1 to its cell surface CD44 receptor and mediators of ECM
degradation, MMP-2, in human breast cancer cells (Mi et al.,
2009). However, although there are a considerable number of
therapeutic approaches by targeting SPP1 based on preclinical
studies, only a few number of findings translate into clinical
practice, and SPP1 inhibitors or combination drug therapy
should still be further investigated from bench to clinic (Wei et al.,
2017). Thus, future research is needed to elucidate the roles of
SPP1 and explore the underlying molecular mechanism of SPP1
in cancer progression.

As hypoxia is one of the key environmental stresses
in tumor tissues, resulting in aggressive cancer phenotypes
(Haider et al., 2016), we go a step further by analyzing the
association between hypoxia and cell characteristics. Although
the association between hypoxia and TAMs has been studied
by various researches (Henze and Mazzone, 2016), to our
knowledge, this is the first study to discover a strong association
between SPP1 expression as well as SPP1+ TAM abundance
and hypoxia. In exploring the link between SPP1 and hypoxia,
we observed that SPP1 gene expression was higher in hypoxia
samples both in single-cell and tissue samples (Figure 6D;
Supplementary Figure 8). SPP1 expression is also upregulated

under hypoxia conditions in cell culture system (Figures 6E,F),
which indicated that SPP1 expression was directly regulated
by hypoxia. Disordered glycolysis, as an oncogenic event, is
also higher in hypoxia cancer cells, which is consistent with
the findings of a single-cell research where glycolysis and
hypoxia signature were highly correlated in melanoma and
HNSCC cancer cells (Xiao et al., 2019). Conceivably, the cancer
EMT and glycolysis program promoted by SPP1+ TAMs may
also be accelerated by hypoxia TME, as there is a strong
correlation between the abundance of SPP1+ TAMs and EMT,
glycolysis, and hypoxia. As reported by a previous work (Colegio
et al., 2014) that M2 macrophage polarization is associated
with the hypoxia TME and thus promotes tumor growth,
we further uncover the specific molecules involved in these
processes, including NRP1/NRP2 and LAMP1 expressed on
TAMs. Moreover, hypoxia, in the current study, is disclosed
to be a factor to influence the intercellular crosstalk, metabolic
reprogramming, tumor heterogeneity, SPP1+ TAM expansion,
and T cell exhaustion, thus promoting cancer development.

CONCLUSION

In summary, our work identifies the significant cell
subpopulations and the interactions between them, which
may provide a theoretical framework for understanding that
tumor heterogeneity and diversity are driven not only by
genetic and epigenetic factors but also by a combination of
factors, including TME stress and other cell types surrounding
tumors. The intercellular interactions suggest a tight molecular
relationship between different cell types that may determine the
progression and the prognosis in cancer and also encourage the
development of therapeutic agents blocking interaction signals
between SPP1+ TAMs and cancer cells or targeting SPP1+ TAMs
in cancer patients. Although the putative interaction analysis
and correlation analysis between ligand and receptor cannot
define the accurate causality, this indicates a potential role for
cell-to-cell interactions in vivo.
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