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Neutrophil extracellular traps (NETs) are a recently described mechanism of neutrophils
that play an important role in health and disease. NETs are an innate defense mechanism
that participate in clearance of pathogens, but they may also cause collateral damage in
unrelated host tissues. Neutrophil dysregulation and NETosis occur in multiple lung
diseases, such as pathogen-induced acute lung injury, pneumonia, chronic obstructive
pulmonary disease (COPD), severe asthma, cystic fibrosis, and recently, the novel
coronavirus SARS-CoV-2. More recently, research into immunometabolism has surged
due to the possibility of reprogramming metabolism in order to modulate immune
functions. The present review analyzes the different metabolic pathways associated
with NETs formation, and how these impact on pathologies of the airways.
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1 INTRODUCTION

Innate immunity is a primary respiratory defense line against pathogens, allergens and
environmental pollutants (1); neutrophils are a major presence in respiratory organs (2). These
cells are the first responder cell type for combating pathological insults (3, 4) or sterile lesions, in
which they contribute to healing and recovery besides participating in immune responses (5, 6).
These cells can release protease and microbicide peptide-containing granules, they produce intra-
and extracellular reactive oxygen species (ROS), and they can phagocyte microorganisms or release
chromatin traps with cytoplasmic and granular proteins which include myeloperoxidase and
elastase (7, 8). Chromatin traps, described in 2004 by using bacteria as stimuli, are termed
neutrophil extracellular traps (NETs) (9). However, there is evidence to suggest that other
microorganisms besides bacteria (viruses, fungi, protozoa) and non-microbial molecules can also
induce NETs release by human neutrophils (8, 10). Unfortunately, pulmonary dysregulation of
neutrophil NETosis occur in multipe diseases such as chronic obstructive pulmonary disease
(COPD), severe asthma, cystic fibrosis (CF), and the novel coronavirus SARS-CoV-2. In this review,
we discuss metabolic reprogramming regarding dysregulation of innate immune responses,
focusing on NETs formation in asthma, COPD, CF and SARS-CoV-2.
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2 ROLE OF METABOLIC
REPROGRAMMING IN CELLS

Cellular metabolism can be defined as a set of fundamental
biochemical processes through which cells maintain their energy
homeostasis and receive the necessary components for the
biosynthesis of macromolecules (11). Immune cell metabolism
directly influences their differentiation and function, which affects
immunity, tolerance, and the inflammatory response (12).
Inflammation entails dramatic changes in the metabolism of the
affected tissue, including nutrient depletion, increased consumption
of molecular oxygen (O2), and generation of ROS and reactive
nitrogen species (13). These changes in tissue metabolism result, at
least partially, from the massive inflammatory cell influx, especially
of the myeloid type such as monocytes and neutrophils, which
dramatically modify their functional activity in response to
proinflammatory agents (5, 14). These environmental and
functional alterations represent a major metabolic stress, which is
usually efficiently managed due to cells ability to dynamically
reprogram their metabolism (15, 16). How cells modify their
metabolic patterns to adapt to the inflammatory environment and
respond in the face of insult determines the course and prognosis of
these diseases (11, 17). If these metabolic processes are dysregulated,
the innate immune function can be significantly impaired.
Immunometabolism emerges as a new field of research at the
interface between immunology and metabolism, historically
separated disciplines (17, 18).
3 METABOLIC REQUIREMENTS FOR
NET FORMATION

Formation of NETs, or NETosis, is a cell death mechanism
(different from necrosis or apoptosis) which seems to be
essential to the innate immune response, permitting capture and
degradation of pathogens and their virulence factors (19–21).
During NETosis the neutrophil nucleus grows, its chromatin
decondenses and long DNA strands are secreted towards the
extracellular medium along with cytoplasmic granular proteins
(which also disintegrate as the nucleus dissolves) and from
chromatin (histones) (9, 22, 23). Bactericidal proteins associated
with NETs are mainly cationic and therefore with high affinity to
DNA: histones, defensins, proteinase 3, lactoferrin, cathepsin G,
neutrophil elastase (NE) and myeloperoxidase (MPO), among
others (24). Pentraxin 3 (25) and S100A8/A9 (calprotectin
complex, which constitutes 40% of the cytosolic proteins of the
neutrophil) are also associated to NETs (24).

NET formation (Figure 1) was initially described and
characterized through stimulation of human and murine
neutrophils with PMA (26). This classic NETosis mechanism
involves NADPH oxidase activation via protein kinase C (PKC)
and RAF-MEK-ERK pathways, which lead to ROS production and
activation of calcium dependent enzyme peptidil arginine deiminase
(PAD4), which is particularly abundant in mature neutrophils
(27–30). Upon activation, PAD4 translocates to the nucleus and
induces histone hypercitrullination, converting positively charged
Frontiers in Immunology | www.frontiersin.org 2
arginine side chains into uncharged histone citrulline side chains,
which reduces electrostatic force between histones and DNA and
causes chromatin decondensation (31–33). Additionally, MPO
converts hydrogen peroxide into hypochlorous acid and other
oxidants, which release NE from azurosome in azurophilic
granules, allowing its nuclear translocation where it favors
chromatin unfolding and nuclear membrane breakdown, releasing
chromatin into the cytosol (34–36). NE also cleaves and activates
gasdermin D (GSDMD), which leads to pore formation in the
granular and plasma membrane, enhancing release of NE and other
granular proteases into the cytoplasm, as well as the NE nuclear
translocation and GSDMD cleavage (37, 38). Finally, after
associating with cytosolic and granular proteins, chromatin is
secreted extracellularly (23). Other stimuli apart from PMA can
trigger the NETs formation depending on the respiratory burst,
including some classical pathogens as bacteria and its products (28,
39–41), viruses (42–44), fungi (45–47) and parasites (48–51).

Otherwise, NET release has been also described independently of
NADPH activation after stimulation with agonists as calcium
ionophores (52, 53), non-esterified fatty acids (NEFAs) (54), uric
acid (55), monosodium-urate (MSU) crystals (56) and pathogen
agents as Staphylococcus aureus (S. aureus) (57), Candida albicans
(58), Entamoeba histolytica (E. histolytica) (30) and Dengue virus
(59). Interestingly, NET release induced by MSU crystals in human
neutrophils (56) and D-lactate in bovine neutrophils (60) was
independent of respiratory burst but dependent on PAD4 activity,
suggesting that the latter can be also activated by mechanisms
independent of NADPH oxidase. NET formation independently of
NADPH oxidase and PAD4 induced by E. histolytica has also been
described in human neutrophils (61), as well as the independently of
PAD4 in a murine model of pneumonia caused by Klebsiella
pneumoniae (62). Neutrophil mitochondria also appear to play a
role in NETosis mechanisms. In this respect, NET release induced
by the calcium ionophore A23187 in human neutrophils was
triggered through a mechanism independent of NADPH oxidase
activity but dependent on mitochondrial ROS production (52).
Likewise, mitochondria participate in NET formation induced by
platelet-activating factor (PAF) in bovine neutrophils by producing
ATP necessary to activate purinergic signaling mechanism (63).
Supporting the above, ATP contributes to classical PMA-induced
NETosis, and NADPH oxidase independent NET formation
triggered by A23187 in murine neutrophils (64). Furthermore,
some studies have suggested that extracellular DNA strands could
have a mitochondrial origin, which would be also compatible with
the functional activity of the neutrophil without involving its death
(65–69).

In addition to the involvement of RAF-MEK-ERK signaling
pathways for NETosis, contribution of the PI3K/Akt axis has also
been reported with several stimuli capable of inducing NET
formation through the classical pathway (52, 70–72) and NADPH
oxidase-independent pathway (30, 52, 56). The PI3K/Akt signaling
pathway regulates classic NETosis induced by PMA (52, 70) and
immune complexes (71), as well as NADPH oxidase-independent
NETosis induced by E. histolytica (30), A23187 (52) and MSU
crystals (56). In addition, contribution of p38 MAPK in NETosis
induced by PMA, MSU crystals, histamine, bacteria and parasites
April 2022 | Volume 13 | Article 850416
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has been demonstrated (28, 29, 49, 56, 72), while TAK1 and Syk
pathways in NET formation induced by MSU crystals have also
been observed (56). Interestingly, mammalian target of rapamycin
(mTOR) mediates LPS-triggered NET formation in murine and
human neutrophils by post-transcriptional control of expression of
hypoxia-inducible factor 1´s alpha subunit (HIF-1a) (73). Although
the mechanisms through which HIF-1 participates in NETs
formation aren´t fully known, HIF-1´s role in regulating the
expression of enzymes associated with glycolytic metabolism is
widely understood (74, 75), suggesting an association between
NETosis and metabolism.

Metabolic requirements (Figure 2) for NET formation have
been an object of study in the past years, with glycolysis identified as
a pivotal metabolic pathway for its development. Initially,
Rodrıǵuez-Espinosa et al. demonstrated that NETosis induced by
PMA in human neutrophils depends on exogenous glucose and
glutamine (26). Furthermore, glycolysis inhibition through 2-deoxy-
D-glucose (2-DG) blocks PMA-triggered NET release, while the
Frontiers in Immunology | www.frontiersin.org 3
ATP synthase inhibitor oligomycin only partially reduces it (26).
Similar relevance to exogenous glucose and glycolysis was
demonstrated by Azevedo et al. in classical NETosis triggered by
PMA and amyloid fibrils in humans, further identifying a key role of
the pentose phosphate pathway, since glucose-6-phosphate
dehydrogenase provides NADPH to NADPH oxidase, for ROS
production and NETs release (76). Amini et al. also reported a
decrease in NETosis induced by granulocyte-macrophage colony-
stimulating factor (GM-CSF) + C5a due to glycolysis inhibition by
2-DG in human and murine neutrophils (77). However,
mitochondrial complex I activity was also involved in NET
release (77). More recently, Quiroga et al. also showed that
blocking glycolysis with 2-DG inhibited NETosis triggered by
PAF in bovine neutrophils (63). In addition, blocking
mitochondrial complex I activity and oxidative phosphorylation
with rotenone and carbonyl cyanide 3-chlorophenylhydrazone
(CCCP), respectively, prevented extracellular ATP release and
NETosis, and pharmacological inhibition of P2X1 purinergic
FIGURE 1 | Molecular mechanisms regulating neutrophil extracellular traps formation. Classic NETosis induced by phorbol 12-myristate 13-acetate (PMA) involved
activation of NADPH oxidase via PKC, production of reactive oxygen species (ROS) and activation of peptidyl arginine deiminase 4 (PAD4), which results in
hypercitrullination (cit) of histones and chromatin decondensation. Lipopolysaccharide (LPS) induces NET formation by mTOR/HIF-1 activation, although molecular
mechanisms have not been elucidated (?). Other stimuli like calcium ionophore A23187 and monosodium urate (MSU) crystals also trigger NET formation
independent of NADPH oxidase, involving signaling pathways like PI3K/Akt and p38 MAPK. Mitochondrial ROS (mtROS) production has been also involved in
NADPH-independent NET release. Myeloperoxidase (MPO) participates in NETosis by generating oxidative compounds necessary for the release of neutrophilic
elastase (NE). NE also helps chromatin decondensation and activates gasdermin D (GSDMD), which forms pores in the granular and plasma membrane facilitating
the release of NETs.
April 2022 | Volume 13 | Article 850416
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receptor inhibited NET formation, suggesting the role of purinergic
signaling in NETosis mechanism (63). In contrast to the above,
Zhou et al. observed an increase in glucose consumption after
Besnoitia besnoiti tachyzoite exposure in bovine neutrophils;
however, glycolysis blocking by 2-fluor-2-deoxy-D-glucose (FDG)
didn´t influence NET release (78). Interestingly, these authors also
observed a relevant role of mitochondrial ATP and P2X1 receptor-
dependent purinergic signaling for tachyzoite-triggered NETosis
(78). In agreement with previous authors, Alarcón et al. recently
showed that NET formation induced by NEFAs in bovine
neutrophils was strongly dependent on purinergic signaling, since
pharmacological inhibition of pannexin 1 channels and P2X1
receptors reduced NET release partially and totally, respectively
(54). In addition, inhibition of b-oxidation with etomoxir partially
reduced NETosis induced by NEFAs, suggesting some degree of
involvement of this metabolic pathway (54).
Frontiers in Immunology | www.frontiersin.org 4
The molecular mechanisms involved in the NET formation, as
well as the metabolic pathways on which it depends, seem to be
mainly dependent on the inducing stimulus and the inflammatory
context. However, they are not yet fully understood and are still
being studied.
4 METABOLIC ADAPTATIONS IN
NEUTROPHILS DURING AIRWAYS
PATHOLOGICAL CONDITIONS

4.1 Cystic Fibrosis (CF)
CF is a monogenic multiorganic disease that affects epithelial
organs, with mortality often occurring from airway disease (79).
Pulmonary damage is a consequence of chronic airway
FIGURE 2 | Metabolic pathways involved in NETosis. Various metabolic routes have been implicated in the release of NETs. Glycolysis is an essential metabolic pathway
for NADPH oxidase-dependent and -independent NETosis triggered by various stimuli. Pentose phosphate pathway has also been shown to participate in classical
NETosis, by providing the NADPH necessary to produce reactive oxygen species (ROS) by the NADPH oxidase complex. Other metabolic pathways associated with
mitochondrial activity also appear to be partially involved in NET formation, including hydrolysis of glutamine by glutaminase (GLS) and subsequent anaplerotic reactions to
form a-ketoglutarate (a-KG) that enters the tricarboxylic acid (TCA) cycle, and b-oxidation of fatty acids to supply acetyl-coenzyme A (CoA) to the TCA cycle. In addition,
the adenosine triphosphate (ATP) synthesized in mitochondria as a product of oxidative phosphorylation (OXPHOS) would be released into the extracellular space through
pannexin 1 (Panx1) channels and would enhance NET formation through purinergic signaling mechanisms dependent on P2X1 receptors.
April 2022 | Volume 13 | Article 850416
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inflammation associated with bacterial colonization (80). In the
disease, the CF transmembrane conductance regulator (CFTR)
gene, encoding a chloride-bicarbonate transmembrane anion
channel, suffers autosomal recessive mutations (81). In this
disease, NETs have a deleterious effect in inflammation and
lung destruction instead of working in their antimicrobial
capacity. Some studies have shown that extracellular DNA
concentration correlates with lung neutrophil concentration,
and therefore can be used to measure pulmonary inflammation
and severity of disease (82, 83). Neutrophils fail to clear
infections in cases of CF, due to reduction of CD16-CD14
receptors and functional changes (84). The same authors
observed an increase in lipid raft assembly, granule
mobilization and CD11b and CD66 expression. Studies on
metabolic reprogramming in CF airway neutrophils may
explain how such dysfunctional phenotype develops. The
mTOR pathway is activated in CF airway neutrophils (85), and
glucose transporter 1 (Glut1) and inorganic phosphate
transporter 1 (PiT1) expression both increase (86), all of which
promotes glucose utilization in the airways (87). Other authors
have also shown that airway neutrophils in CF patients respond
to excess free glucose and amino acids, concomitantly increasing
Glut1 expression. CF cases also increase production of resistin, a
regulatory protein (88) closely related to insulin resistance (89).
While insulin resistance impairs glucose uptake by cells, anabolic
reprogramming of CF airway neutrophils allows them to
efficiently uptake and utilize glucose, fueling their pro-survival
pathways (84, 85). Unfortunately, resistin also diminishes
neutrophils´ bactericidal ability because it inhibits actin
polymerization and ROS production, as has been observed for
the pathogens Pseudomonas aeruginosa and S. aureus which are
closely associated to CF (90). On the other hand, the mechanisms
that regulate NET formation, especially during chronic lung
inflammation, as occurs in CF, are not well understood. One
study showed that the G protein-coupled receptor (GPCR)
CXCR2 mediates NET formation (91) independently of
NADPH oxidase, but with involvement of Src family kinases.
Pulmonary blockade of CXCR2 inhibits NET formation and
ameliorated lung function in vivo, with no effect on neutrophil
recruitment, proteolytic activity or antibacterial defense of the
host. Those authors concluded that CXCR2 is a receptor that
mediates NET formation independently of NADPH
oxidase (91).
4.2 Chronic Obstructive Pulmonary
Disease (COPD)
Chronic obstructive pulmonary disease (COPD) is a leading
cause of worldwide morbidity and mortality (92). Chronic
exposure to cigarette smoke, environmental pollutants or other
inhaled irritants, is its primary cause (93). Neutrophils correlate
directly with severity and inflammation and seem to be key
effectors in the pathophysiology of the disease (94, 95).
Progressive destruction of lung parenchyma, as well as poor
responses in infective exacerbations, are thought to be due to
Frontiers in Immunology | www.frontiersin.org 5
dysregulated functions of neutrophils in COPD patients, which
has been proven in vitro (96). NETs formation is increased in the
sputum of stable COPD patients, which correlates with airway
neutrophil numbers and extracellular DNA concentration,
limited lung function and disease severity (97–99). Likewise,
expression of PAD4 gene is up-regulated in neutrophilic COPD
cases, compared to non-neutrophilic patients (100). Increased
expression of PAD4 has been described in lung samples from
COPD patients (101), which leads some authors to support that
NETs formation could be a feature of the NET-COPD phenotype
(102). Furthermore, peripheral blood neutrophils from e-
cigarette users had a high susceptibility to NETosis induction,
and there were more NETs-related proteins in these subjects´
sputum compared to nonsmokers (103).

Although glycolysis is the primary energy source for
neutrophils, their few mitochondria are functional and
contribute to ATP and ROS production, which are necessary
for migration (104, 105). Some authors suggest that alterations of
mitochondrial function and impaired glucose metabolism both
may lead to defects in neutrophil migration and function in cases
of COPD (1). Of the latter, one study demonstrated elevated
glucose levels in the sputum of COPD patients, and this glucose
increased further in response to exacerbations or experimental
rhinovirus infection. Furthermore, they showed that increased
glucose concentration in sputum samples could support bacterial
growth, suggesting that increased glucose in the airways in
response to viral infection could in turn facilitate secondary
bacterial infections (106). However, in this study the production
of NETs was not quantified, so we could not make an association
between sputum glucose and NET formation, but as glycolysis is
important in the production of this phenomenon, we could infer
that there is an alteration of neutrophil cellular metabolism in
COPD patients. Ultimately, the mechanisms of NET formation
in COPD are still being explored and more studies are needed to
understand this phenomenon. Some authors claim that it is
unclear whether neutrophils undergo NETosis after migration
into the lungs, or rather, whether they are constitutively primed
to undergo this response during COPD-related inflammation
while still in circulation (107). Cellular metabolic changes could
also be important in defective innate immune responses in
COPD, and unraveling these neutrophilic metabolic changes
could lead to novel unconventional therapies for this pathology.
4.3 Severe Asthma
Asthma is a chronic inflammatory airway disease of enormous
importance, with approximately 350 million cases around the
world (108). It represents 1.1% of total global disease and produces
loss of 26.2 million disability-adjusted life years according to
WHO (109). The disease is generally characterized by airway
inflammation, hyperresponsiveness, and reversible airflow
obstruction (110, 111). The type and degree of airway
inflammation and airway remodeling are heterogeneous, as are
symptoms. Thus, various phenotype models have been developed
(112), representing observable clinical characteristics which
April 2022 | Volume 13 | Article 850416
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include age of onset (early or late onset), possible comorbidities
(obesity and others), exacerbating factors (infections, allergens,
and exercise among others), and response to treatment (for
example, response to steroids) (113). Airway infiltration with
eosinophils and mast cells -and their role in disease progression-
is well described, and neutrophil infiltration has also been assessed
in many clinical studies and is associated with disease severity
(114). Marked relative neutrophilia in the sputum (more than
60%) is a more frequent finding in older adults. These patients are
predominantly male, develop late-onset asthma, have more severe
lung disease, resistance to treatment with corticosteroids, and a
higher risk of hospitalization (115). They also had more
comorbidities, including hypertension, osteoporosis, gastro-
esophageal reflux disease, smoking, and obesity (115–118).

Neutrophils and NET secretion are fundamental in the
pathogenesis of early asthma according to murine models of
asthma (119–122). However, evidence for NETs in the
pathogenesis of early asthma in human patients is still scarce.
Peripheral blood NETs concentration is higher in children with
asthma, particularly during episodes of symptom exacerbation,
and studies showed that asthmatic children´s neutrophils can
produce more NETs than healthy controls in vitro (123). In
addition, extracellular DNA was higher in severe asthma cases´
sputum samples than in those of mild to moderate asthma (100).
In that study, NETs levels were not only higher in asthmatic
patients than in healthy controls: extracellular DNA
concentration also correlated with asthma severity. IL-1b, IL-8
and gene expression levels of inflammasome components (such
as NLRP3) sputum concentrations were also higher in patients
with elevated extracellular DNA concentrations. Other authors
also reported high concentrations of extracellular DNA in the
sputum of severely asthmatic patients, with airway NETs and
markers of inflammasome activation (124). However, as
demonstrated in another study, circulating NETs seem to be
better indicators of asthma severity than alveolar NETs
concentration (125). Therefore, further clinical investigations
are needed to elucidate the role of NETs in the progression of
asthma. Nevertheless, studies have shown a cytotoxic effect of
NETs in lung epithelial and endothelial cells (126–128). NETs
can also impair lung epithelial barrier functions (129), induce
release of proinflammatory mediators from dendritic cells, and
of proteases from neutrophils (130). Authors suggest that NETs
may act directly on airway epithelial cells, inducing secretion of
inflammatory factors, aggravating airway inflammation and
worsening respiratory symptoms (124, 126). Other studies
have also shown that the protease contained in NETs activates
proinflammatory cytokines, thus aggravating the inflammatory
response (131). Thus, all these studies suggest that NETs destroy
the integrity of the airway epithelium, increase cytokine
secretion, and lead to asthma progression.

Several investigations relate metabolomic profiles to human
asthma, focusing on metabolites as systemic biomarkers (132–
135). Metabolites have also been studied in an equine model of
asthma (136, 137), with neutrophilic phenotypic characteristics
(138, 139). Previous studies have characterized the metabolic
profile of circulating neutrophils, but those of pulmonary
Frontiers in Immunology | www.frontiersin.org 6
neutrophils are few. However, similar to severe asthma in
humans, airway neutrophilia is typical of asthmatic horses
(138, 139). NETs and evidence of oxidative stress have been
described in bronchoalveolar lavage fluid (BALF) of asthma-
affected horses (140). Albornoz et al. (137) found increased
lactate, citrate and arabitol in BALF of asthmatic horses,
suggesting elevated energy demand during exacerbation of the
disease. This lactate increase has also been previously reported
both in asthmatic children´s urine (141) and in BALF from
patients with CF (142), demonstrating that those respiratory
diseases course with similar energetic metabolic changes. In turn,
an elevated citrate concentration was observed in horses with
equine asthma (137), which could be due to an increase in
glycolysis energy flow and alterations in Krebs cycle function,
which can occur in activated inflammatory cells (143). Similarly,
an increase in arabitol accumulation was observed in equine
asthma (137). These same authors argue that this increase in
arabitol could be explained by an increase in the oxidative phase
of pentose phosphate pathway originating from large quantities
of neutrophils recruited to the inflamed airways. However, the
contribution of other cell types to metabolomic changes in BALF
cannot be ruled out.
4.4 Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2)
Severe acute respiratory syndrome coronavirus (SARS-CoV)-2
was first found in Wuhan, China (144). The worldwide
pandemic of coronavirus disease 19 (COVID-19) has affected
all of humanity, with millions of deaths. Although SARS-CoV-2
can extend to many organs, including the heart, kidneys, gut,
blood vessels and brain, it is initially a pulmonary disease (145).
Viral replication and its subsequent immune response both
contribute to COVID-19´s severity: in some patients, this
entails a cytokine storm and severe inflammatory response
syndrome (SIRS), secondary sepsis, multiorganic failure, and
eventually death (146). Since the start of the COVID-19
pandemic, progressive pathophysiologic evidence shows that
neutrophils play an important role in the disease, especially in
severe patients (147). Neutrophil defense mechanisms
(phagocytosis, ROS, NETosis among others) are differentially
active in neutrophil subsets. The capacity of these mechanisms
increases with maturation phase (148, 149). In circulation,
progressive granulation in aging neutrophils impairs their
functions and NET formation (150). The importance of this
last sentence lies in the fact that in severe SARS-CoV-2 infection
it is marked by altered abundance, phenotype and functionality
of neutrophils. High numbers of neutrophils have been found in
the nasopharyngeal epithelium, distal lung and in blood counts
(151–153). Likewise, studies show changes in gene expression in
blood neutrophils with pre-mature phenotypic markers in severe
cases of COVID-19 (154, 155).

Analysis of COVID-19 patient lung samples showed
neutrophilic mucositis, neutrophil infiltration of pulmonary
capillaries, fibrin deposition, and neutrophil extravasation of
April 2022 | Volume 13 | Article 850416
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neutrophils towards the alveolar space (156). Fox et al. (157)
observed neutrophils and platelets trapped in a fibrin mesh
within the alveolar capillaries of patients with COVID-19,
which suggests the presence of NETs (157). In turn, other
authors have detected augmented serum cell-free DNA
concentration, DNA-MPO complexes, and citrullinated histone
H3 (Cit-H3), all of which correlate with disease severity (158). In
fact, through unknown mechanisms, viable SARS-CoV-2 can
directly induce NET formation in healthy neutrophils (159).
Likewise, NET formation and alveolar epithelial necrotic cell
death both release damage-associated molecular patterns which
entail production of proinflammatory cytokines, and vice versa,
establishing a necroinflammatory loop that is responsible for
cytokine storm and sepsis (160). There are still no studies of
alterations in neutrophil cellular metabolism for the induction of
NETs, but there are metabolomic studies showing that increased
glucose concentration and glycolysis promote cytokine
production by monocytes and replication of SARS-CoV-2
(CoV-2) via a mitochondrial ROS/HIF-1a dependent
mechanism, which lead to T-cell and epithelial cell death.
Therefore, people with hyperglycemia (for example, diabetics)
have an increased risk of developing severe COVID-19 disease,
which suggests that metabolism plays an important role in the
disease progression of COVID-19 infection (161, 162). Of the
latter, it is known that the tricarboxylic acids (TCA) cycle
produces metabolites used in the synthesis of amino acids,
lipids and nucleotides, all of which viruses need to replicate
(163). In addition, mTOR complex 1 (mTORC1) has been shown
to regulate mitochondrial activity and the anabolic metabolism,
while on the contrary, mTORC1 inhibitors can decrease TCA
cycle metabolite concentrations (164). Mullen et al. (165) suggest
that SARS-CoV-2 readjusts carbon input into the TCA cycle,
which results in a reduction of the oxidative metabolism of
glutamine and increases the input of pyruvate, via pyruvate
carboxylase. These same authors demonstrated that inhibition
of mTORC1 produces a decrease in SARS-CoV-2 infection,
which could justify a potential therapeutic option for treating
patients with COVID-19; however, further studies are needed to
understand the mechanism of inhibition and its potential
applications and efficacy in patients.
5 CONCLUSION

Recent advances in the field of immunometabolism emphasize the
plasticity of neutrophil biology in health and disease. In addition,
neutrophil-mediated innate immunity has been redefined since
the identification of NETs. NETosis plays an important role in
physiological and pathological conditions, and their metabolic
implications (Table 1) must be understood in order to enable
exploration of possible therapeutic interventions. Although
formation of NETs is in essence a useful antimicrobial defense
strategy, dysregulation of the process may entail tissular adverse
effects and hence contribute to NETopathic lung inflammation.
Frontiers in Immunology | www.frontiersin.org 7
Novel therapeutic strategies targeted at neutrophils, such as
inhibitors of neutrophil recruitment or NET formation, may
help reduce the severity of multiple pulmonary diseases,
including asthma, COPD, CF and COVID-19.
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TABLE 1 | Molecular mechanisms and metabolic pathways possibly altered in
leucocytes in airway diseases.

Airway
disease

Molecular mechanisms Metabolic and
functional

consequences

References

Cystic
fibrosis (CF)

Decreased expression of CD16
and CD14 receptors,
mobilization of CD63+ NE-rich
granules, lower levels of
glutathione, expression of
CD80, MHC type II and CD294

Neutrophils
dysfunctional
phenotype

(84)

Elevated mTOR pathway
signaling

Increased
glucose utilization

(85)

Increased expression of Glut1
and PiT1

Increased
glucose utilization

(86, 87)

Increased production of resistin Decreased ROS
production and
actin
polymerization

(88, 90)

CXCR2 signaling NADPH oxidase
independent
NETosis

(91)

Chronic
obstructive
pulmonary
disease
(COPD)

Upregulation of PAD4 Increased NET
formation

(100, 101)

Impaired mitochondrial function
and glucose metabolism

Defective
neutrophil
migration and
function

(1)

Severe
asthma

Increase in energy flow through
glycolysis and alterations in TCA

Increase in
lactate and
citrate levels

(137)

Increase in oxidative phase of
pentose phosphate pathway

Increase in
arabitol

(137)

Severe
acute
respiratory
syndrome
coronavirus
2 (SARS-
CoV-2)

Elevated glucose and glycolysis Increased viral
replication and
cytokine
production via

mtROS/HIF-1a
dependent
mechanism

(161)

Carbon input readjustment into
TCA cycle

Increased input
of pyruvate and
reduced
glutamine
oxidation

(165)
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30. Fonseca Z, Dıáz-Godıńez C, Mora N, Alemán OR, Uribe-Querol E, Carrero
JC, et al. Entamoeba Histolytica Induce Signaling via Raf/MEK/ERK for
Neutrophil Extracellular Trap (NET) Formation. Front Cell Infect Microbiol
(2018) 8:226. doi: 10.3389/fcimb.2018.00226

31. Leshner M, Wang S, Lewis C, Zheng H, Chen XA, Santy L, et al. PAD4
Mediated Histone Hypercitrullination Induces Heterochromatin
Decondensation and Chromatin Unfolding to Form Neutrophil
Extracellular Trap-Like Structures. Front Immunol (2012) 3:307.
doi: 10.3389/fimmu.2012.00307

32. Nakashima K, Hagiwara T, Yamada M. Nuclear Localization of
Peptidylarginine Deiminase V and Histone Deimination in Granulocytes.
J Biol Chem (2002) 277:49562–8. doi: 10.1074/jbc.M208795200

33. Wang Y, Li M, Stadler S, Correll S, Li P, Wang D, et al. Histone
Hypercitrullination Mediates Chromatin Decondensation and Neutrophil
Extracellular Trap Formation. J Cell Biol (2009) 184:205–13. doi: 10.1083/
jcb.200806072

34. Metzler KD, Goosmann C, Lubojemska A, Zychlinsky A. Papayannopoulos
V. A Myeloperoxidase-Containing Complex Regulates Neutrophil Elastase
Release and Actin Dynamics During NETosis. Cell Rep (2014) 8:883–96.
doi: 10.1016/j.celrep.2014.06.044

35. Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A. Neutrophil
Elastase and Myeloperoxidase Regulate the Formation of Neutrophil
Extracellular Traps. J Cell Biol (2010) 191:677–91. doi: 10.1083/
jcb.201006052

36. Metzler KD, Fuchs TA, Nauseef WM, Reumaux D, Roesler J, Schulze I, et al.
Myeloperoxidase Is Required for Neutrophil Extracellular Trap Formation :
Implications for Innate Immunity. Blood (2011) 117:953–60. doi: 10.1182/
blood-2010-06-290171

37. Sollberger G, Choidas A, Burn GL, Habenberger P, Di Lucrezia R, Kordes S,
et al. Gasdermin D Plays a Vital Role in the Generation of Neutrophil
Extracellular Traps. Sci Immunol (2018) 3:eaar6689. doi: 10.1126/
sciimmunol.aar6689

38. Chen KW, Monteleone M, Boucher D, Sollberger G, Ramnath D, Condon
ND, et al. Noncanonical Inflammasome Signaling Elicits Gasdermin D-
Dependent Neutrophil Extracellular Traps. Sci Immunol (2018) 3:eaar6676.
doi: 10.1126/sciimmunol.aar6676

39. Pieterse E, Rother N, Yanginlar C, Hilbrands LB, van der Vlag J. Neutrophils
Discriminate Between Lipopolysaccharides of Different Bacterial Sources
April 2022 | Volume 13 | Article 850416

https://doi.org/10.1159/000504344
https://doi.org/10.1159/000504344
https://doi.org/10.3390/ijms21030851
https://doi.org/10.1097/QCO.0b013e3283528c9b
https://doi.org/10.1084/jem.20122220
https://doi.org/10.1084/jem.20122220
https://doi.org/10.1038/nri3399
https://doi.org/10.1038/nri3399
https://doi.org/10.3389/fimmu.2013.00220
https://doi.org/10.1038/nri1785
https://doi.org/10.1155/2012/929743
https://doi.org/10.1126/science.1092385
https://doi.org/10.1007/s00281-013-0384-6
https://doi.org/10.1038/nrrheum.2017.37
https://doi.org/10.1016/j.cell.2015.02.010
https://doi.org/10.4049/jimmunol.0903002
https://doi.org/10.4049/jimmunol.0903002
https://doi.org/10.1016/j.immuni.2013.11.020
https://doi.org/10.1016/j.immuni.2013.11.020
https://doi.org/10.1074/jbc.R115.693903
https://doi.org/10.1074/jbc.R115.693903
https://doi.org/10.1084/jem.20151570
https://doi.org/10.1084/jem.20151570
https://doi.org/10.1038/nri.2016.70
https://doi.org/10.1038/nri.2016.70
https://doi.org/10.1038/nri2922
https://doi.org/10.1016/j.resp.2013.03.002
https://doi.org/10.1128/IAI.00840-10
https://doi.org/10.1016/j.micpath.2012.09.007
https://doi.org/10.1038/nrmicro1710
https://doi.org/10.1083/jcb.200606027
https://doi.org/10.1371/journal.ppat.1000639
https://doi.org/10.1084/jem.20061301
https://doi.org/10.1111/imm.12437
https://doi.org/10.1038/nchembio.496
https://doi.org/10.1038/nchembio.496
https://doi.org/10.3389/fimmu.2018.02854
https://doi.org/10.1016/j.vetimm.2021.110234
https://doi.org/10.3389/fcimb.2018.00226
https://doi.org/10.3389/fimmu.2012.00307
https://doi.org/10.1074/jbc.M208795200
https://doi.org/10.1083/jcb.200806072
https://doi.org/10.1083/jcb.200806072
https://doi.org/10.1016/j.celrep.2014.06.044
https://doi.org/10.1083/jcb.201006052
https://doi.org/10.1083/jcb.201006052
https://doi.org/10.1182/blood-2010-06-290171
https://doi.org/10.1182/blood-2010-06-290171
https://doi.org/10.1126/sciimmunol.aar6689
https://doi.org/10.1126/sciimmunol.aar6689
https://doi.org/10.1126/sciimmunol.aar6676
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Morán et al. NETs Metabolism in Airway Diseases
and Selectively Release Neutrophil Extracellular Traps. Front Immunol
(2016) 7:484. doi: 10.3389/fimmu.2016.00484

40. Yuen J, Pluthero FG, Douda DN, Riedl M, Cherry A, Ulanova M, et al.
NETosing Neutrophils Activate Complement Both on Their Own NETs and
Bacteria via Alternative and Non-Alternative Pathways. Front Immunol
(2016) 7:137. doi: 10.3389/fimmu.2016.00137

41. Skopelja-Gardner S, Theprungsirikul J, Lewis KA, Hammond JH, Carlson
KM, Hazlett HF, et al. Regulation of Pseudomonas Aeruginosa-Mediated
Neutrophil Extracellular Traps. Front Immunol (2019) 10:1670.
doi: 10.3389/fimmu.2019.01670

42. Saitoh T, Komano J, Saitoh Y, Misawa T, Takahama M, Kozaki T, et al.
Neutrophil Extracellular Traps Mediate a Host Defense Response to Human
Immunodeficiency Virus-1. Cell Host Microbe (2012) 12:109–16.
doi: 10.1016/j.chom.2012.05.015

43. Hu S, Liu X, Gao Y, Zhou R, Wei M, Dong J, et al. Hepatitis B Virus Inhibits
Neutrophil Extracellular Trap Release by Modulating Reactive Oxygen
Species Production and Autophagy. J Immunol (2019) 202:805–15.
doi: 10.4049/jimmunol.1800871

44. Hiroki CH, Toller-Kawahisa JE, Fumagalli MJ, Colon DF, Figueiredo LTM,
Fonseca BALD, et al. Neutrophil Extracellular Traps Effectively Control
Acute Chikungunya Virus Infection. Front Immunol (2020) 10:3108.
doi: 10.3389/fimmu.2019.03108

45. Rocha JDB, Nascimento MTC, Decote-Ricardo D, Côrte-Real S, Morrot A,
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