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ABSTRACT
Background. Recent studies suggest machine learning represents a promising predic-
tive option for patients in intensive care units (ICU). However, the machine learning
performance regarding its actual predictive value for early detection in acute kidney
injury (AKI) patients remains uncertain.
Objective. This study represents the inaugural meta-analysis aiming to investigate the
predictive value of machine learning for assessing the risk of AKI among ICU patients.
Methods. PubMed, Web of Science, Embase, and the Cochrane Library were all
thoroughly searched from inception to June 25, 2022. Eligible studies for inclusion
were those concentrating on the predictive value and the development, validation, or
enhancement of a prediction model for AKI patients in the ICU. Measures of effects,
including c-index, sensitivity, specificity, and their corresponding 95% confidence
intervals (CIs), were employed for analysis. The risk of bias in the included original
studies was assessed using Probst. The meta-analysis in our study was carried out using
R version 4.2.0.
Results. The systematic search yielded 29 articles describing 13 machine-learning
models, including 86 models in the training set and 57 in the validation set. The overall
c-index was 0.767 (95% CI [0.746, 0.788]) in the training set and 0.773 (95% CI [0.741,
0.804]) in the validation set. The sensitivity and specificity of included studies are as
follows: sensitivity [train: 0.66 (95% CI [0.59, 0.73]), validation: 0.73 (95% CI [0.68,
0.77])]; and specificity [train: 0.83 (95% CI [0.78, 0.87])], validation: 0.75 (95% CI
[0.71, 0.79])].
Conclusion. The machine learning-based method for predicting the risk of AKI in
hospital ICU patients has excellent predictive value and could potentially serve as
a prospective application strategy for early identification. PROSPERO Registration
number ID: CRD42022362838.
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INTRODUCTION
Acute kidney injury (AKI) occurs in approximately 10–15% of hospitalized patients, with
more than 50% of patients experiencing it in intensive care units (ICU) (Ronco, Bellomo
& Kellum, 2019). This condition not only impacts acute incidence rates and mortality
but also leads to substantial medical resource utilization and high treatment costs, which
cannot be overlooked in the long-term prognosis of patients (Huang, Xu & Yang, 2020;
Silver et al., 2017). Therefore, there is a crucial need for timely and accurate prediction of
AKI risk in ICU patients. AKI is a heterogeneous clinical syndrome with multiple causes,
pathogenesis, and outcomes (Levey & James, 2017; Pickkers et al., 2021). Unfortunately,
these complexities are not adequately addressed in the current diagnosis and treatment of
AKI.

The acute renal injury network (AKIN) defines AKI as the simultaneous increase in
serum creatinine and reduction of urine volume (Hoste et al., 2018). Presently, the diagnosis
of AKI relies on the changes in serum creatinine and urine volume and some blood and
urine biomarkers related to the damage of renal tubules (e.g., SOFA score) (Ostermann
et al., 2020). However, when it comes to changes in serum creatinine and urine volume,
the assessment primarily reflects the loss of renal function rather than injury. This means
that individuals experiencing transient volume depletion may meet the diagnostic criteria
for AKI when changes in serum creatinine and urine volume are used as evaluation
criteria (Bhatraju et al., 2020; Kellum et al., 2021). Additionally, one significant drawback
of current AKI biomarker research is the absence of tissue correlation (Wen & Parikh,
2021). Both AKIN and kidney disease: improving global outcomes(KDIGO) guidelines
define oliguria as the reduction of urine volume to <0.5 ml/kg/hour (Khwaja, 2012). Thus,
the urine volume and creatinine change value need to be combined with time to have an
accurate diagnosis (Md Ralib et al., 2013; Wang & Chryssanthou, 1988). Therefore, relying
solely on changes in serum creatinine and urine volume may lead to an overestimation or
underestimation of the incidence of renal injury (Hoste et al., 2018). Nevertheless, the AKI
stage is an essential time window that may initiate key interventions to change the natural
history of kidney disease. Consequently, it is crucial to accurately and promptly identifying
the onset of AKI (Chawla et al., 2017). Given the continuing development of information
technology, nanotechnology, and biomedicine, the emergence of new and more effective
diagnostic technologies is inevitable.

As a sub-field of artificial intelligence, machine learning can use large data sets to
predict future events, providing greater hope for doctors to achieve an accurate diagnosis
(Rauschert et al., 2020). Based on the refined process including training, verification, and
testing, automatically adjusting model parameters can improve performance (Greener et
al., 2022). In recent years, machine learning has been increasingly employed for predicting
and diagnosing kidney diseases, including acute kidney injury in pediatric intensive care
and forecasting the survival rates of kidney transplantation (Dong et al., 2021; Naqvi et al.,
2021). However, there is currently no relevant meta-analysis confirming the effectiveness
of machine learning models in predicting AKI among ICU patients. Therefore, this study
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aims to synthesize previous research and introduce new methodologies for assessing the
predictive capabilities of machine learning in assessing the risk of AKI in ICU patients.

METHODS
We designed this systematic review according to the checklist provided by the preferred
reporting items for systematic reviews and meta-analyses guidelines (Supplemental
Material). A protocol for this study was registered on PROSPERO (https://www.crd.york.
ac.uk/PROSPERO/#myprospero), with the registration number ID: CRD42022362838.

Search strategy and inclusion criteria
We conduct a comprehensive and systematic search of PubMed, Embase, the Cochrane
Library, and Web of Science from inception through 25 June 2022. Only literature in
the English language was included. The search utilized a combination of medical subject
headings (MeSH) terms and text words related to intensive care units, acute kidney injury,
and machine learning. Two researchers (Yuanhong Du, Ping Gan) independently searched
the literature, with any discrepancies resolved by a third researcher. Furthermore, the
references of each eligible article were meticulously reviewed for potential additional
relevant research.

A study had to meet the following criteria to be included
(1) The subjects of this systematic review and meta-analysis were ICU patients, and their
modeling variables were accurately recorded.

(2) The articles included in this systematic review and meta-analysis were mainly in the
form of a case-control study, with patients with AKI in the ICU in the observation group.

(3) The articles included in this systematic review and meta-analysis were mainly in the
form of a case-control study, with patients without AKI in the ICU in the control group.

(4) The original studies incorporated in this systematic review and meta-analysis
encompassed the following design types: case-control study, cohort study, and prospective
nested case-control study.

The following cases should be excluded
(1) Research types such as meta-analyses, reviews, guidelines, expert opinions, etc.

(2) Studies that solely analyzed risk factors without constructing a complete risk model.
(3) Studies lacking the following outcome indicators for assessing the prediction

accuracy of the risk model: ROC, c-statistic, c-index, sensitivity, specificity, accuracy,
recall, precision, confusion matrix, diagnostic four-grid table, F1 score, and calibration
curve.

(4) Studies with a limited number of samples (<50 cases).
(5) Studies focused on the validation of maturity scales.
(6) Studies that examined the accuracy of single-factor prediction.

Literature screening and data extraction
The retrieved results were uploaded into the document management tool endnote.X9 for
screening process. Two investigators independently assessed the studies for inclusion based
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on their titles, abstracts, full texts, and any Supplementary Materials. Any disagreements
that arose were resolved through consultation with a third party.

Before starting data extraction, we developed a standardized data extraction form. This
form includes the following information: first author, publication year, author affiliation,
study type, patient sources, AKI diagnostic criteria, total number of AKI patients, overall
sample size, AKI sample size in the training set, training set sample size, overfittingmethods,
AKI sample size in the validation set, validation set sample size, approaches for addressing
missing data, variable screening and feature selection methods, categories of machine
learning models utilized in the literature, and variables chosen for modeling, etc. Two
investigators (Yuanhong Du, Lin-Yu Li) independently conducted the screening of studies
and data extraction from the included studies based on the provided documents. Any
disagreements were resolved with the assistance of a third party.

Quality assessment
Probast (Wolff et al., 2019) was used to assess the risk of bias in the included original
research. This tool encompasses several questions distributed across four distinct domains:
participants, predictor variables, outcomes, and statistical analyses. These questions
collectively assess the overall risk of bias and the overall usability of the studies. Each of
the four domains contains two, three, six and nine specific questions, respectively, and
each question offers three response options (yes/probably yes, no/probably no, and no
information). A domain was categorized as high risk if at least one question indicated ‘‘no’’
or ‘‘probably no’’, while it was considered low risk if all questions within the domain were
answered with ‘‘yes’’ or ‘‘probably yes’’. The overall risk of bias was rated as low when all
domains were considered low risk, and high risk when at least one domain was considered
high risk. Two investigators (Yuanhong Du, Chengjing Guan) independently assessed the
risk of bias based on Probast and cross-checked their assessments. In cases of disagreement,
a third investigator was consulted to assist in resolving the discrepancies.

Data synthesis and statistical analysis
We performed a meta-analysis for evaluation metrics (c-index and accuracy) of machine
learning models. In cases where the c-index lacked 95% confidence intervals (CI) and
standard errors, we followed the approach described in Debray et al. (2019) to estimate
standard errors. Given the discrepancies in the included variables and inconsistent
parameters among the machine-learning models, we primarily employed the random
effects model for the c-index meta-analysis. In addition, a bivariate mixed-effect model
was used for the meta-analysis of sensitivity and specificity. The meta-analysis of this study
was performed in R4.2.0 (R Core Team, 2022).

RESULTS
Study selection
The study selection process is described in Fig. 1. Initially, we identified 1,229 distinct
records, subsequently evaluating 54 full-text papers. Ultimately, we incorporated 29
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Figure 1 Flow chart of the study selection process.
Full-size DOI: 10.7717/peerj.16405/fig-1

studies that met our inclusion criteria. For a comprehensive list of excluded studies that
satisfied the inclusion criteria, please refer to the Supplemental Material. Figure 1 provides
a visual representation of the specific screening process.

Characteristics of included studies
The 29 included studies covered 13 different types of models (NB (naive Bayes), RF
(random forest), CNN (convolutional neural networks), LR (logistic regression), SVM
(support vector machine), ANN (Artificial Neural Networks), GBDT (gradient boosting
decision tree), DT (decision tree), DL (deep learning), XGBoost (eXtreme gradient
boosting), AdaBoost (adaptive boosting), KNN (k-nearest neighbor)), with a total of
860,852 participants. These studies comprised one cohort study and 28 case-control
studies retrieved from four databases: PubMed (n= 185), Embase (n= 357), Web of
Science (n= 643), and Cochrane (n= 44). There were 13 studies from the United States,
13 from China, one from the Netherlands, one from Singapore, and one from Belgium
within the included literature. See Table 1 for characteristics of included studies.
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Table 1 Characteristics of included studies.

First
author

Year
of
publication

Country
of
author

Study
type

Source of
patients

Diagnostic
criteria
for AKI

Total
sample
size

Number of
samples in
training
set

Generation
way of
verification
set

Sun M 2019 USA Case
control

Database KDIGO 16558 11558 7:3 random sampling

Zimmerman LP 2019 USA Case
control

Database KDIGO 23950

Shawwa K 2021 USA Case
control

Database KDIGO 117003 78779 8:2 random sampling,
external validation

Hamid
Mohamadlou

2018 USA Case
control

Database KDIGO 68319 48582 3-fold cross-
validation, 10-fold
cross-validation

Shuo An 2020 China Case
control

Single center KDIGO 583 408 7:3 random sampling

Marine Flechet 2017 Belgium Case
control

Database KDIGO 4490 2123 Priori decided

Wen En Joseph
Wong

2021 Singapore Case
control

Single center AKIN 940

Jiawei He 2021 China Case
control

Database KDIGO 718 209 External validation

JOSHUA
PARRECO

2019 USA Case
control

Database KDIGO 151098 10-fold cross-
validation (10
repetitions)

Suru Yue 2022 China Case
control

Database AKIN 2415 1690 7: 3 random sampling

Sidney Le 2021 USA Case
control

Database KDIGO 12347 10-fold crossvalida-
tion

Travis R. Goodwin 2020 USA Case
control

Database KDIGO 70096 34878 8:1:1 (training, devel-
opment, and testing
datasets)

Chao Ding 2021 China Case
control

Database KDIGO 10139 5237 7:3 random sampling,
external validation

Jay L. Koyner 2018 USA Case
control

Single center KDIGO 12158 7295 6:4 random sampling

Yikuan Li 2018 USA Case
control

Database KDIGO 14470 10129 7:3 random sampling

Chun-Te Huang 2021 China
(Taiwan)

Case
control

Database KDIGO 428 3874 8:1:1 (train-
ing:validation:testing)

Emma Schwager 2021 USA Case
control

Single center KDIGO 98472 78778 8:2 random sampling

Iacopo
VAGLIANO

2021 Netherlands Case
control

Database KDIGO 34516 8:1:1 random sam-
pling

Sai Huang 2022 China Case
control

Database KDIGO 6690 3986 Internal validation+
external validation
(continued on next page)
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Table 1 (continued)

First
author

Year
of
publication

Country
of
author

Study
type

Source of
patients

Diagnostic
criteria
for AKI

Total
sample
size

Number of
samples in
training
set

Generation
way of
verification
set

Junzi Dong 2021 USA Case
control

Multicenter KDIGO 8549 7329 derivation (70%), val-
idation (15%), and
holdout testing (15%)

Jianchao Ma 2021 China Cohort
study

Single center KDIGO 358 232

Tingting Fan 2021 China Case
control

Database KDIGO 456 228 7:3 random sampling

Khaled Shawwa 2021 USA Case
control

Database KDIGO 38223 19694 8:2 random sampling,
external validation

Kaidi Gong 2020 China Case
control

Database KDIGO 12447 9958 8:2 random sampling

Qing Qian 2021 China Case
control

Database KDIGO 9429 6286 8:2 random sampling

Wenpeng Gao 2022 China Case
control

Database KDIGO 30020 24016 4:1 random sampling

Qiqiang Liang 2022 China Case
control

Database KDIGO 58491 34520 4:1 random sampling,
external validation

Mohammad Amin
Morid

2020 USA Case
control

Database AKIN 22542 6763 3:7 random sampling

Yuan Wang 2020 China Case
control

Database KDIGO 34947 34947 6:4 random sampling,
external validation

Number of
samples in
verification
set

Modeling
variables

Model
type

5000 Creatinine level maximum/Mechanical
Ventilation/International normalized ratio
maximum/Potassium level maximum/Prothrombin
time minimum/Estimated glomerular filtration
rate/Age/Diastolic BP mean/Partial thromboplastin time
minimum/Blood urea nitrogen level maximum

LR
RF
NB
SVM
CNN

Gender/Age/Ethnicity/Creatinine Max during Day
2 and Day 3/Heart Rate Maximum/Heart Rate
Mean/Systolic BP Minimum/Systolic BP Mean/Diastolic
BP Minimum/Diastolic BP Mean/Temperature
Maximum/SpO2 Minimum/SpO2 Mean/Glucose Level
Maximum/Bicarbonate Level Minimum/Creatinine Level
Minimum/Creatinine Level Maximum/Hemoglobin Level
Minimum/Platelet Count Minimum/Potassium Level
Maximum/Partial Thromboplastin Time Minimum/Partial
Thromboplastin Time Maximum/International Normalized
Ratio Minimum/International Normalized Ratio
Maximum/Prothrombin Time Minimum/Prothrombin
Time Maximum/Blood Urea Nitrogen Level
Maximum/White Blood Cell Count Maximum/Calcium
Level Minimum/Mechanical Ventilation/Average Urine
Output/Estimated Glomerular Filtration Rate

LR Backward Selection Model/LR All Variables Model/RF
Backward Selection Model/RF All Variables Model/MLP
Backward Selection Model/MLP All Variables Model

(continued on next page)
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Table 1 (continued)

Number of
samples in
verification
set

Modeling
variables

Model
type

38224 Male/African American/ICU mortality/In-hospital
mortality/Age/Weight/Baseline serum creatinine/Baseline
serum creatinine available/Reasons for ICU admission
(Sepsis/Heart valve surgery/Myocardial infarction)

Gradient-boosting model

19737 Boosted ensembles of decision trees
175 Pneumonia within 7 days/GCS

classification/Heart failure within 7 days/GCS
difference/Torasemide/Hypertension/Coronary heart
disease/CV of GCS/Noradrenaline/Dopamine/furosemide

Nomogram

2367 Age/Baseline serum creatinine/Surgical or medical
category/Planned admission/Diabetes/Blood glucose
upon ICU admission/Suspected sepsis upon ICU
admission/Hemodynamic support upon ICU
admission/Serum creatinine/APACHE II score/Maximum
lactate Bilirubin/Hours of ICU stay/Total amount of
urine/Urine slopea/Time the mean arterial blood pressure
is above its average value/Time the mean arterial blood
pressure is below 60 mmHg/Pharmacologic hemodynamic
support

Random forest machine-learning algorithm (Baseline
model Admission model Day1 model Day1+model)

509 Age/Gender/Ethnicity/Ethnicity/Diabetes Mellitus/Ischemic
Heart Disease/Congestive Heart Failure/Pre-ICU eGFR/Pre-
ICU eGFR/Type of surgery/Blood transfusion/Lowest ICU
Haemoglobin in 1st 48 h/Lowest ICU bicarbonate in 1st 24
hours/ICU sepsis/Mean Arterial Pressure ≤ 70mmHg

The generalized structural equation model (gSEM)

509 Non-renal SOFA/creatinine on day
3/hypertension/diuretics/delta creatinine/emergency
department/non-renal SOFA at day3/baseline
creatinine/renal toxic drugs/AKI stage/Charlson
score/age/delta urine output/diabetes mellitus/creatine
at day1/chronic obstructive pulmonary disease/chronic liver
disease/APS-III/APS-II/heart failure/BMI/non-renal SOFA
at day1/urine output at day3/mechanical ventilation/urine
output at day1/male/chronic kidney disease/surgery

Recurrent neural network-long short-term memory (RNN-
LSTM), decision tree, logistic regression.

(continued on next page)
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Table 1 (continued)

Number of
samples in
verification
set

Modeling
variables

Model
type

Creatinine minimum, Creatinine maximum, BUN
minimum, BUN maximum, Glucose minimum, Glucose
maximum, Potassium minimum, Potassium maximum,
Sodium minimum, Sodium maximum, Chloride
minimum, Chloride maximum, Calcium minimum,
Calcium maximum, Bicarbonate minimum, Bicarbonate
maximum, Anion gap minimum, Anion gap maximum,
Magnesium minimum, Magnesium maximum, Phosphate
minimum, Phosphate maximum, Hgb minimum, Hgb
maximum, Hct minimum, Hct maximum, Platelets
minimum, Platelets maximum, WBC minimum, WBC
maximum, Bilirubin minimum, Bilirubin maximum,
AST minimum, AST maximum, ALT minimum, ALT
maximum, Alkphos minimum, Alkphos maximum,
PT minimum, PT maximum, PTT minimum, PTT
maximum, Lactate minimum, Lactate maximum, Albumin
minimum, Albumin maximum, Prealbumin minimum,
Prealbumin maximum, Minimum temperature, Maximum
temperature, Minimum RR, Maximum RR, Minimum HR,
Maximum HR, Minimum BP, Maximum BP

Gradient boosted trees (GBT), logistic regression, and deep
learning

725 Age, gender,ethnicity,obesity, congestive heart failure,
hypertension, diabetes, aminoglycoside, glycopeptide
antibiotics, nonsteroidal antiinflammatory drugs (NSAIDs),
stain, ACEI/ARBs, APSIII, SAPSII, heart rate, systolic
pressure, diastolic pressure, respiratory rate, temperature,
SpO2, anion gap, bicarbonate, bilirubin, creatinine,
chloride, glucose, lactate, platelets, potassium, prothrombin
time (PTT), activated partial thromboplastin time (APTT),
BUN, white blood cell (WBC), neutrophils, lymphocytes,
Gram-positive bacteria, Gram-negative bacteria, and
mechanical ventilation

Nomogram model

Convolutional neural network
35218 Recurrent additive network for Temporal Risk Prediction
4902 Serum albumin, CKD, AKI stage, SOFA score, lactate, RRT

during the first day
Nomogram

4863 Gradient boosting machine (GBM) model,
(continued on next page)
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Table 1 (continued)

Number of
samples in
verification
set

Modeling
variables

Model
type

4341 Multinomial naïve Bayes (NB), support vector machine
(SVM), logistic regression, gradient boosting decision tree
(GBDT), knowledge-guided convolutional neural networks
(CNN)

764 Time span in ICU/Age/BMI/gender/SBP/DBP/Pulse
pressure/Oximetry/Respiratory rate/Pulse
rate/Temperature/Vasopressin/Norepinephrine
/Dopamine/Epinephrine/Dobutamine/FIO2
/PEEPCPAP/PAW/MAPS/TOTRR/VTEXH/MVEXH/

Random forest (RF) machine learning algorithm

19694 Neural network, gradient boosting, logostic regression,
random forest
Random forest/gradient boosted trees/logistic
regression/LSTM

2704 Highest heart rate, Highest respiratory rate, Lowest diastolic
blood pressure, Lowest systolic blood pressure, Highest
FIO2 of ventilator, Haemoglobin level, Haematocrit level,
Platelet count, Serum urea nitrogen level, Phosphorus level,
Magnesium level, SCr level, Baseline SCr level.

Logistic regression and random forest

1220 Shock index/SpO2/Blood urea nitrogen/Serum creatinine
rate of change/Bilirubin/PaCO2/Anion gap/White blood
cell count/Serum albumin/Serum chloride/Gentamicin
trough/Number of vasoactive drugs administered/Number
of high nephrotoxic potential drugs administered/Mean
airway pressure/Time since admission

126 uNAG, sCysC, sex, age, body mass index (BMI), preexisting
clinical conditions of each patient, admission type,
baseline sCr, baseline estimated glomerular filtration
rate (eGFR), blood laboratory values at ICU admission
(hemoglobin, serum glucose, procalcitonin, lactate,
Creactive protein), Acute Physiology and Chronic
Health Evaluation (APACHE) II score at ICU admission,
Sequential organ failure assessment score (SOFA) at ICU
admission, use of nephrotoxic drugs within 5 days before
ICU admission (nonsteroidal anti-inflammatory drug,
angiotensin-converting enzyme inhibitor, angiotensin
receptor blocker, immunosuppressant, sulfadiazine,
aminoglycoside, vancomycin, acyclovir, amphotericin,
allopurinol, or polymyxin), administration of radiographic
contrast before ICU admissi

Nomogram

228 T2DM/microangiopathy/preexisting CHF/history of
hypertension/RR/urine output/GCS/DBP

Nomogram

(continued on next page)

Du et al. (2023), PeerJ, DOI 10.7717/peerj.16405 10/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.16405


Table 1 (continued)

Number of
samples in
verification
set

Modeling
variables

Model
type

18529 Hospital Admit BMI/Chronic kidney disease/Congestive
heart failure,nonhypertensive/Coagulation and
hemorrhagic disorders/Cardiac dysrhythmias/Age
at ICU Admit/Weight (kg) Hosp Admit/Cardiac
arrest and ventricular fibrillation/Cancer of brain
and nervous system/admitdiagnosis_Heart valve
disorders/Baseline creatinine combined/Pulmonary
heart disease/admitdiagnosis_Septicemia (except
in labor)/Chronic ulcer of skin/Acute myocardial
infarction/BMI increase/admitdiagnosis_Respiratory
failure; insufficiency; arrest (adult)/admitdiagnosis_Other
and unspecified benign neoplasm/Other nutritional,
endocrine, and metabolic disorders/baseline creatinine
available/Weight increase/Chronic obstructive
pulmonary disease and bronchiectasis/Disorders
of lipid metabolism/Nephritis; nephrosis; renal
sclerosis/Hypertension with complications and
secondary hypertension/Diseases of white blood
cells/admitdiagnosis_Other fractures/Other endocrine
disorders/Diabetes mellitus with complications/Coronary
atherosclerosis and other heart disease

Gradient-boosting model

2489 LR, SVM, DT, RF, NN, XGB, VOTE
3143 Age, sex, body mass index (BMI)), Blood Urea Nitrogen

(mg/dL), International Normalized Ratio, Glucose (mg/dL),
Partial Thromboplastin Time (s), Hemoglobin (K/µL),
Platelet Count (K/µL), Potassium (mg/dL), White Blood
Cell Count (K/µL), Bicarbonate (mg/dL), Calcium
(mg/dL), Prothrombin Time (s), Creatinine (mg/dL)
and Urine Output (mL), Oxygen saturation (%))

LightGBMm, logistic regression, Random forest, support
vector machine, eXtreme gradient boosting, convolutional
neural network

6004 Length of stay, serum creatinine, diuretic, albumin,
bicarbonate, sepsis, chloride, white blood cell count (WBC),
blood urea nitrogen (BUN), glucose (GLU), systolic blood
pressure (SBP), diastolic blood pressure (DBP), arterial
pressure, heart rate (HR), respiratory rate (RR), body
temperature (BT), mean arterial pressure (MAP), weight,
height, mechanical ventilation, renal replacement therapy
(RRT), hyperensort, sodium levels, potassium levels, SOFA
scores, APS III scores, SAPS II scores

Logistic regression, random forest, LightGBM, XGBoost,
ensemble models

23971 Logistic regression, LightGBoost, GBDT, AdaBoost,
random forest, XGBoost

15779 Heart rate, temperature, systolic blood pressure, and
diastolic blood pressure, White blood cells, hemoglobin,
and platelets, Sodium, anion gap, blood urea nitrogen,
potassium, prothrombin, calcium, magnesium, chloride,
bicarbonate, and phosphate

Random forest, extreme gradient boosting tree, kernel-
based bayesian network, SVM, logistic regression, naïve
Bayes, k-nearest neighbor, Artificial Neural Network
(ANN)

Ensemble Time Series Model (ETSM), XGBoost
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In this study, we utilized 86 models for training, encompassing NB, RF, CNN, LR,
SVM, ANN, GBDT, DT, DL, XGBoost, AdaBoost, KNN, and Time Series Models.
Additionally, we employed 65 models for testing, which included NB, RF, CNN, LR,
SVM, ANN, GBDT, DT, XGBoost, and AdaBoost. The variable screening and feature
selection methods primarily relied on various techniques, such as LASSO regression,
stepwise regression, variable importance analysis, univariate and multivariate logistic
regressionmodels, the XGBoost package in Python, feature importance assessment, Nadam
optimizer, bootstrapped backward elimination, least absolute shrinkage, least-squares-fit
linear equations, multivariable linear and logistic regression, and backward selection.
Furthermore, we employed ten distinct testing models, namely NB, RF, CNN, LR, SVM,
ANN, GBDT, DT, XGBoost, and AdaBoost.

Quality of evidence and risk of bias
The high risk is mainly concentrated in the research object and the part of statistical
analysis. This is predominantly attributed to several factors, including a certain number of
case-control studies in the sample source of the included articles, the design of the original
study sample size in the statistical analysis part, the way of screening the prediction factors,
and the consideration of over-fitting, under-fitting, and optimal fitting of the prediction
model.

Among the 86 includedmodels, themachine learningmodels that relied on demographic
information like gender, age, and clinical examination data, including creatinine, central
venous pressure, and urine volume, exhibited a reasonable approach. These models were
particularly well-suited for analyzing records that contained essential sample characteristics,
enhancing the reliability of case records. In the process of data generation, five studies used
multivariate imputation to deal with missing values.

In the modeling process, the validation set primarily consists of internal validation
generated through random sampling. Additionally, among the 10 studies conducted, there
is a subset of studies that include independent external validation sets. Figure 2 shows the
probast quality evaluation results.

Results of individual studies
C-index
The systematic review included 29 eligible machine learning models, totaling 86 Models,
with 13 types of models in the training set and 10 types of models in the validation set.
In this meta-analysis, the training set related to C-index involves 16 articles, including
86 models, resulting in a final combined result of 0.767 (95% CI [0.746, 0.788]), while
the validation set related to C-index involves 27 articles, including 57 models, with the
combined result of 0.773 (95%CI [0.741, 0.804]) (see Fig. 3). Among the individual models
included, the training set encompassed five NB, 12 RF, five CNN, 20 LR, seven SVM, eight
ANN, 10 GBDT, twoDT, five DL, six XGBoost, two AdaBoost, 2 KNN, and two Time Series
Models. The validation set included 13 RF, 13 LR, three SVM, four ANN, 12 GBDT, one
DT, four DL, four XGBoost, and three AdaBoost models. For a comprehensive overview
of the C-index results for individual models and the overall C-index results, please refer to
Table 2.
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Figure 2 Risk of bias assessment.
Full-size DOI: 10.7717/peerj.16405/fig-2

Figure 3 The C-index of the training set and verification set.
Full-size DOI: 10.7717/peerj.16405/fig-3

Sensitivity and specificity
The training set related to sensitivity encompasses 18 articles, with a sensitivity of 0.66
(95% CI [0.59, 0.73]). In contrast, the sensitivity related to the validation set involves 10
articles, resulting in a sensitivity of 0.73 (95% CI [0.68, 0.77]).
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Table 2 The outcome of the C-index.

Train Test

Number cindex (95% CI) Number cindex (95% CI)

Model
NB 5 0.660 (0.550∼0.770)
RF 12 0.775 (0.732∼0.817) 13 0.791 (0.741∼0.841)
CNN 5 0.770 (0.710∼0.830)
LR 20 0.750 (0.716∼0.784) 13 0.715 (0.676∼0.753)
SVM 7 0.737 (0.645∼0.829) 3 0.638 (0.555-0.721)
ANN 8 0.783 (0.693∼0.873) 4 0.780 (0.641∼0.919)
GBDT 10 0.805 (0.749∼0.861) 12 0.787 (0.727∼0.848)
DT 2 0.843 (0.627∼1.000) 1 0.872 (0.844∼0.900)
DL 5 0.823 (0.757∼0.888) 4 0.824 (0.739–0.910)
XGBoost 6 0.792 (0.737∼0.846) 4 0.823 (0.778∼0.868)
AdaBoost 2 0.793 (0.767∼0.818) 3 0.832 (0.804∼0.860)
KNN 2 0.631 (0.626–0.635)
Time Series Model 2 0.810 (0.806∼0.814)
Overrall 86 0.767 (0.746∼0.788) 57 0.773 (0.741∼0.804)

As for specificity, the training set consists of 18 articles with a specificity of 0.83 (95%
CI [0.78, 0.87]), while the validation set related to specificity includes 10 articles, yielding
a specificity of 0.75 (95% CI [0.71, 0.79]) (see Figs. 4 and 5).

DISCUSSION
To our knowledge, this study represents the first systematic review focusing on the
utilization of machine learning for predicting the risk of AKI in ICU patients. Our
investigation incorporated 10 distinct models, including NB, RF, CNN, LR, SVM, ANN,
GBDT, DT, DL, XGBoost, AdaBoost, KNN, and Time Series Models, sourced from a pool
of 29 studies. Upon conducting a comprehensive analysis, we observed that each individual
model consistently demonstrated moderate to excellent performance. Moreover, the
overall predictive capability also revealed excellence. Consequently, our research findings
underscore the optimal practical value of employing machine learning-based methods in
identifying AKI patients within the ICU setting. These methods can serve as a promising
application avenue in this domain, offering substantial potential for improved prediction
and patient care.

At the moment, machine learning is used to predict kidney disease and evaluate acute
kidney injury (Alfieri et al., 2021; Yue et al., 2022). Additionally, there has been some
meta-analysis and investigation of the application of machine learning in the prediction
of acute renal injury and perioperative acute renal injury, with positive results (Song et al.,
2021; Zhang et al., 2022). At the same time, machine learning has been applied to numerous
studies involving ICU population (Gottlieb et al., 2022). However, there has been a notable
absence of relevant meta-analyses to provide amore evidence-based foundation. Therefore,
our research addresses this gap. Based on our findings, machine learning demonstrates

Du et al. (2023), PeerJ, DOI 10.7717/peerj.16405 14/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.16405


Figure 4 The sensitivity of the training set and verification set.
Full-size DOI: 10.7717/peerj.16405/fig-4

excellent predictive capabilities in ICU patients with acute renal injury, further highlighting
its potential in improving patient care and outcomes.

This represents the inaugural utilization of a meta-analysis to assess the application
of machine learning in diagnosing acute renal injury, potentially advancing the pursuit
of precision treatment for this condition. Additionally, following the confirmation of
feasibility, this study underscores the suitability of machine learning as a diagnostic
method for patients.

Undoubtedly, our study is not without its limitations. Firstly, despite our efforts to
conduct a thorough search, the scope of our included literature remains limited, possibly
due to our focus on English-language publications. Secondly, the inherent diversity among
the includedmodels has led to unavoidable heterogeneity. The variations in models utilized
and the inclusion of different variables in these models may account for some of the sources
of heterogeneity observed in our study.

CONCLUSION
The findings of this study underscore the effectiveness of the included prediction models
in accurately forecasting the incidence of acute renal injury. These models can serve
as a foundation for establishing predictive models, aiding in the development of effective
preoperative diagnostic strategies, and identifying key factors that contribute to the creation
of an optimal predictive model. At the same time, we anticipate the advancement of even
more precise models in the future. We also eagerly anticipate the incorporation of larger
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Figure 5 The specificity of the training set and verification set.
Full-size DOI: 10.7717/peerj.16405/fig-5

sample sizes and multicenter studies in our future research endeavors, enabling a more
in-depth exploration of the precise diagnostic efficacy of AKI across various models and
types of predictive factors.
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