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A mixture cognitive diagnosis model (CDM), which is called mixture multiple

strategy-Deterministic, Inputs, Noisy “and” Gate (MMS-DINA) model, is proposed

to investigate individual differences in the selection of response categories in

multiple-strategy items. The MMS-DINA model system is an effective psychometric

and statistical approach consisting of multiple strategies for practical skills diagnostic

testing, which not only allows for multiple strategies of problem solving, but also allows

for different strategies to be associated with different levels of difficulty. A Markov

chain Monte Carlo (MCMC) algorithm for parameter estimation is given to estimate

model, and four simulation studies are presented to evaluate the performance of the

MCMC algorithm. Based on the available MCMC outputs, two Bayesian model selection

criteria are computed for guiding the choice of the single strategy DINA model and

multiple strategy DINA models. An analysis of fraction subtraction data is provided as

an illustration example.

Keywords: Bayesian inference, cognitive diagnosis, classification, Markov chain Monte Carlo, multiple-strategy

models

1. INTRODUCTION

Multiple classification latent class models, namely cognitive diagnosis models (CDMs), have been
developed specifically to diagnose the presence or absence of multiple fine-grained skills required
for solving problems in an examination (Doignon and Falmagne, 1999; Junker and Sijtsma, 2001;
Tatsuoka, 2002; de la Torre and Douglas, 2004; Templin and Henson, 2006; DiBello et al., 2007;
Haberman and von Davier, 2007; de la Torre, 2009, 2011; Henson et al., 2009; von Davier,
2014; Chen et al., 2015). Compared with the traditional item response theory models, one of
the advantages of multiple classification latent class models is that they can provide effective
measurement of student learning and progression, design better teaching instruction, and conduct
possibly intervention guidance for different individual and group needs.

However, most CDMs only consider the probability that examinees solve a problem in one way.
In fact, examinees may solve a problem in different ways. Fuson et al. (1997) found that the children
at elementary schools used more than one strategy to solve the problem of multi-digit addition and
subtraction. Moreover, in eye-movement studies, Gorin (2007) expounded that the subjects often
used very different cognitive strategies when solving similar reading tasks. More specifically, an
example of a multiple-strategy used by de la Torre and Douglas (2008) in educational research is
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on the analysis of fraction subtraction data including responses
of 2,144 examinees to 15 fraction subtraction items. The
attributes required for the fraction subtraction are as follows:
(a) performing basic fraction subtraction operation; (b)
simplifying/reducing; (c) separating whole number from
fraction; (d) borrowing one from whole number to fraction;
(e) converting whole number to fraction; (f) converting mixed
number to fraction; (g) column borrowing in subtraction (de
la Torre and Douglas, 2008). As an illustration, they use two
strategies to solve 4 4

12 − 2 7
12 . Strategy 1 requires attributes a, b,

c, and d. Strategy 2 requires attributes a, b, and f. The detailed
calculation processes were shown in de la Torre and Douglas
(2008).

de la Torre and Douglas (2008) proposed a multiple strategy-
Deterministic, Inputs, Noisy “and” Gate (MS-DINA) model to
address the problem of fraction subtraction, where the DINA
model (Haertel, 1989; Doignon and Falmagne, 1999; Junker and
Sijtsma, 2001; de la Torre and Douglas, 2004; de la Torre, 2009)
was the most popular and widely used model among various
CDMs which assumed that examinees were expected to answer
an item correctly only when they possessed all the required
attributes. TheMS-DINAmodel is a straightforward extension of
the DINAmodel that allows incorporating multiple strategies for
cognitive diagnosis based on competing assumptions. However,
as de la Torre and Douglas (2008) indicated, although the
simplicity of the MS-DINA model was appealing, it made a
restrictive assumption that the item parameters were same
for different strategies, which implied that the application of
each strategy was equally difficulty. Another limitation of MS-
DINA model is that the joint distribution attributes is expressed
as a function of a higher-order continuous ability. The joint
distribution of the attributes as the most special form of the
saturated model may not be applied to all cases (Huo and de la
Torre, 2014). Moreover, the MS-DINAmodel cannot provide the
information of the strategies selected by the examinees, that is,
in the case that multiple strategies are available, the probability
of each strategy being used cannot be obtained, and the strategy
diagnosis for examinees is an important part in the multiple
strategies cognitive diagnosis.

To maximize the diagnostic results of multiple-strategy
(MS) assessment and overcome the limitation that assumes
identical item parameters across strategies, in this paper, we
propose a cognitive diagnosis framework for analyzing the
MS data. Specifically, the framework describes a psychometric
model that can exploit multiple-strategy information. The
psychometric model is a multiple-strategy model called the
mixture multiple-strategy DINA (MMS-DINA) model. The
details of the framework are laid out in section 2. In section 3,
MCMC algorithm is employed to estimate model parameters.
In section 4, four simulation studies are used to evaluate the
viability of the proposed framework and to simulate true testing
conditions to evaluate the performance of the MCMC algorithm
based on several different criteria. According to the available
MCMC outputs, two Bayesian model selection criteria are
computed to guide the choice of the single strategy DINA model
and multiple strategy DINA models. An empirical example of
fraction subtraction is used to illustrate the application of the

proposed MMS-DINA model in section 5. The final section
concludes the article with discussion and some directions for
further research.

2. MODELS

2.1. Multiple-Strategy DINA Model
The MS-DINA model (de la Torre and Douglas, 2008; Huo and
de la Torre, 2014) is a straightforward extension of the DINA
model, which allows several different strategies of solution for
each item. Let uij denote the observed item response for the
ith examinee to response jth item, where i = 1, 2, . . . ,N, and
j = 1, 2, . . . , J, uij = 1, if the ith examinee correct answer
the jth item, 0 otherwise. The ith examinee mastery attribute
profile, αi, can be represented by a vector of length K, that is,

αi = (αi1,αi2, . . . ,αik, . . . ,αiK)
′

, where

αik =





1, the ith examinee masters the kth attribute;

0, otherwise.

Suppose each item has as many as M distinct strategies that
would suffice to solve it. A strategy is defined as a subset of
the K attributes which could be used together to solve the
item. This may be coded by constructing M different matrices,
Q1, . . . ,QM , and the element in the jth row and kth column of
Qm (m = 1, 2, . . . ,M) is denoted as

qjkm =





1, if item j requires skill k ofmth strategy

0, otherwise

Let

ηijm =
K∏

k=1

α
qjkm
ik

,m = 1, 2, . . . ,M.

The latent variable ηijm denotes whether the examinee i has
the all the required attributes to apply the mth strategy to
the jth item. Let

ηij = max
{
ηij1, ηij2, . . . , ηijm, . . . , ηijM

}
.

The variable ηij is 1 if examinee i satisfies the attribute
requirements of at least one of the M strategies. Therefore, the
item response function of the MS-DINA model is given as

p
(
uij = 1 |αi

)
=
(
1− sj

)ηij g1−ηij
j , (1)

where the parameter sj is the slipping parameter, which indicates
the probability of slipping on the jth item when an examinee
has mastered all the required attributes for at least one of the
strategies. The parameter gj is the guessing parameter, which
denotes the probability of correctly answering the jth item when
an examinee does not master all the required attributes for at least
one of the strategies.
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2.2. Mixture Multiple-Strategy DINA Model
We can see that the MS-DINA model assumes that the slipping
and guessing parameters are the same for different strategies.
The assumption that the application of each strategy has equally
difficulty is too restrictive, as indicated by de la Torre and
Douglas (2004). Then, de la Torre and Douglas (2008) tried
and suggested a variant of the multiple-strategy model in order
to break the limitation mentioned above. However, one of the
issues they discussed is a feasible approach for estimating the
parameters in their model can not be provided due to the
necessary identifiability issues. Inspired by their thoughts, we
propose a multiple-strategy model to overcome the limitation
that assumes identical item parameters across strategies. One
way to solve the problem is to use a discrete mixture model.
Discrete mixture models assume that a data set is composed
of distinct subpopulations of observations that are described
by different parametric distributions (Titterington et al., 1985).
Thus, a mixture multiple-strategy-DINA (MMS-DINA) model is
proposed to allow for different strategies to be associated with
different levels of difficulty. The item response function of the
MMS-DINA model is given by

p
(
uij = 1 |αi

)
=

M∑

m=1

πmpijm =

M∑

m=1

πm

(
1− sjm

)ηijm g
1−ηijm
jm ,

(2)
swhere M is the number of strategy, pijm indicates the correct
response probability that the ith examinee adopts the mth
strategy to answer the jth item, and πm (m = 1, 2, . . . ,M) is a

mixing proportion satisfying

M∑

m=1

πm = 1. In addition to the

specific strategy, mixing proportion parameters are related to the
distribution of α. The average value of latent attributes for all
examinees (α) using strategym isµm. The parameters sjm and gjm
denote the slipping and guessing parameters for themth strategy
to the jth item, respectively. When the number of strategies is
one (i.e., M = 1), it is apparent that the MMS-DINA model in
Equation (2) reduces to the DINA model.

3. BAYESIAN INFERENCES

3.1. Bayesian Estimation
Within a fully Bayesian framework, the Metropolis-Hastings
within the Gibbs sampling algorithm (Geman and Geman, 1984;
Casella and George, 1992; Chib and Greenberg, 1995; Gilks,
1996; Patz and Junker, 1999a,b) is used to estimate the model
parameters. In fact, MCMC methods have been found to be
particularly useful in estimating mixture distributions (Diebold
and Robert, 1994), including mixtures that involve random
effects within classes (Lenk and DeSarbo, 2000). A common
MCMC strategy is to sample a class membership parameter for
each observation at each stage of the Markov chain (Robert,
1996). For the current model, a strategy membership parameter,
ci = 1, 2, . . . ,M, is sampled for each examinee i along with a
latent attribute parameter αi. Then, the item response function

of the MMS-DINA model in Equation (2) can be expressed as

p
(
uij = 1

∣∣αi, sj, gj
)
=

M∑

m=1

p (ci = m)
(
1− sjm

)ηijm g
1−ηijm
jm , (3)

where the latent variable ci takes a value in the set {1, 2, . . . ,M}

for the ith examinee, indicating which type of strategies the ith
examinee uses.

The following prior distributions for π , c, α, s, and g are
used in conjunction with the MMS-DINA model, where c =

(c1, c2, . . . , cN) , s =
(
s1, s2, . . . , sJ

)
and g =

(
g1, g2, . . . , gJ

)
,

π= (π1,π2, . . . ,πM) ∼ Dirichlet (β1,β2, . . . ,βM) ,

ci ∼ Multinominal (1 |π1,π2, . . . ,πM ) ,

µm ∼ Beta (λ1, λ2) ,

[αik |ci = m ] ∼ Bernoulli (µm) ,

sjm ∼ 4-Beta
(
vs, ts, as, bs

)
,

gjm ∼ 4-Beta
(
vg , tg , ag , bg

)
.

Based on the results of de la Torre and Douglas (2004)’s
research, we use the four-parameter Beta distribution as the
prior distribution of slipping and guessing parameters. The four
parameter Beta distribution, 4-Beta

(
v, t, a, b

)
, is a generalization

of the Beta (v, t) distribution, and it has the interval
(
a, b
)
rather

than (0, 1) as its support set. Then, the joint posterior distribution
can be written as

p
(
α, s, g,π |u

)
∝




N∏

i=1

J∏

j=1

M∑

m=1

p (ci = m) f
(
uij
∣∣αi, sjm, gjm

)



[
N∏

i=1

p (αi |µm )I(ci=m)

]

× fprior (µm)




M∏

m=1

J∏

j=1

fprior
(
sjm
)
fprior

(
gjm
)



M∏

m=1

fprior (πm) , (4)

where u = (u1, u2, . . . , ui, . . . , uN)
′

and ui =
(
ui1, ui2, . . . , uiJ

)
.

The MCMC sampling procedure is composed of the
following steps:

Step 1: Sample the mixing proportions π = (π1, sπ2, . . . ,πM)
′

.
Assuming conditional independence between the mixing
proportions and all parameters except the strategy memberships
of examinees, the mixing proportions have a full condition
posterior distribution of the form:

p
(
π
∣∣all other parameters

)
∝ p (c |π ) fprior (π) , (5)
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where nm is the number of examinees using strategy m. This full
conditional distribution is

Dirichlet (β1 + n1,β2 + n2, . . . ,βM + nM) .

Step 2: Sample a strategy membership ci for each examinee,
where i = 1, . . . ,M. Assuming independence of examinees, the
full condition posterior distribution of ci can be written as

p
(
ci = m

∣∣all other parameters
)
∝ p

(
ui
∣∣ci = m,αi, sm, gm

)

p (αi |µm, ci = m )

∝




J∏

j=1

p
uij
ijm

(
1− pijm

)1−uij




K∏

k=1

Bernoulli (αik;µm) πm,

(6)

where ui =
(
ui1, . . . , uiJ

)′
is the item response vector for

examinee i across items, J and K are respectively the numbers
of item and attribute, and Bernoulli (αik;µm) is the Bernoulli
density evaluated at αik with parameter µm.
Step 3: Sample attribute mean µm for each strategy. Assuming
the attribute distribution parameters are independent of all
parameters expect the attribute vectors for examinees in mth
strategy, the full conditional distribution of µm can be written as

p
(
µm

∣∣all other parameters
)
∝

[
N∏

i=1

p (αi |µm )I(ci=m)

]
fprior (µm) ,

(7)
which results in the following full conditional distribution for
µm :

µm ∼ Beta

(
N∑

i=1

K∑

k=1

αikI (ci = m) + λ1, (N × K)

−

N∑

i=1

K∑

k=1

αikI (ci = m) + λ2

)
. (8)

where I (·) denotes the indicator function. I (ci = m) = 1 if
the ith examinee choose the mth strategy to answer the item,
0 otherwise.
Step 4: Sample a latent variable αi for each examinee, where
i = 1, . . . ,N. Assuming independence of examinees, the full
conditional distribution of αi can be written as

p
(
αi

∣∣all other parameters
)
∝ p

(
ui
∣∣ci = m,αi, sm, gm

)

p (αi |µm, ci = m )

∝




J∏

j=1

p
uij
ijm

(
1− pijm

)1−uij




K∏

k=1

Bernoulli (αik;µm) . (9)

Step 5: Sample item parameters sjm and gjm for each strategy and
each item. Assuming conditional independence across items, the
full conditional distribution of sjm and gjm can be written as

p
(
sjm, gjm

∣∣all other parameters
)

∝

[
N∏

i=1

p
(
uj
∣∣ci = m,αi, sjm, gjm

)
]
fprior

(
sjm
)
fprior

(
gjm
)

∝

{
N∏

i=1

[
p
uij
ijm

(
1− pijm

)1−uij
]I(ci=m)

}
[
Beta

(
sjm; vs, ts, as, bs

)]

×
[
Beta

(
gjm; vg , tg , ag , bg

)]
, (10)

where uj =
(
u1j, . . . , uNj

)′
is the item response vector for item j

across examinees, N is the number of examinees.

3.2. Bayesian Model Assessment
Within the Bayesian framework, the deviance information
criterion (DIC; Spiegelhalter et al., 2002) and the logarithm of
the pseudo-marignal likelihood (LPML; Geisser and Eddy, 1979;
Ibrahim et al., 2001) are considered to compare three different
models (the DINA model, the MS-DINA model, and the MMS-
DINA model). As an explanation, we only provide the most
complicated calculation process of DIC and LPML in the MMS-
DINAmodel, and the calculation formulas of DIC and LPML for
the DINA model and MS-DINA model are similar. These two
criteria are based on the log-likelihood functions evaluated at
the posterior samples of model parameters. Therefore, the DIC
and LPML of the MMS-DINA model can be easily computed.
Let � =

(
�ij, i = 1, . . . ,N, j = 1, . . . , J,m = 1, . . . ,M

)
, where

�ijm =
(
αi, sjm, gjm, πm

)′
. Let

{
�

(1), . . . ,�(R)
}
, where

�
(r) =

(
�

(r)
ijm, i = 1, . . . ,N, j = 1, . . . , J ,m = 1, . . . ,M),

�
(r)
ijm =

(
α

(r)
i , s

(r)
jm , g

(r)
jm ,π

(r)
m

)′
for i = 1, . . . ,N, j = 1, . . . , J,

m = 1, . . . ,M and r = 1, . . . ,R, which denotes rth MCMC
sample from the posterior distribution in (4). The joint likelihood
function of the responses can be written as

L (u |� ) =

N∏

i=1

J∏

j=1

M∑

m=1

πmp
(
uij
∣∣αi, sjm, gjm

)
, (11)

where p
(
uij
∣∣αi, sjm, gjm

)
is the response probability. The

logarithm of the joint likelihood function in (11) evaluated at�(r)

is given by

log L
(
u
∣∣∣�(r)

)
=

N∑

i=1

J∑

j=1

log

M∑

m=1

π (r)
m p

(
uij

∣∣∣α(r)
i , s

(r)
jm , g

(r)
jm

)
.

(12)
Since the joint log-likelihoods for the responses,

log

M∑

m=1

π
(r)
m p

(
uij

∣∣∣α(r)
i , s

(r)
jm , g

(r)
jm

)
, i = 1, . . . ,N, j = 1, . . . , J,

and m = 1, . . . ,M are readily available from MCMC sampling
outputs,
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log

M∑

m=1

π
(r)
m p

(
uij

∣∣∣α(r)
i , s

(r)
jm , g

(r)
jm

)
in (12) is easy to compute.

Now, we calculate DIC as follows

DIC =D̂ev(�)+2PD = D̂ev(�)+2
[
Dev(�)− D̂ev(�)

]
, (13)

where

Dev(�) = −
2

R

R∑

r=1

log L
(
u
∣∣∣�(r)

)
and D̂ev(�)

= −2 max
1≤r≤R

log L
(
u
∣∣∣�(r)

)
.

In (13), Dev(�) is a Monte Carlo estimate of the posterior
expectation of the deviance function Dev(�) = −2 log L (u |� ) ,

D̂ev(�) is an approximation of Dev(�̂), where �̂ is the posterior
mode, when the prior is relatively non-informative, and PD =

Dev(�) − D̂ev(�) is the effective number of parameters. Based
on our construction, both DIC and PD given in (13) are always
non-negative. The model with a smaller DIC value fits the data
better.

LettingGij,max = max
1≤r≤R

[
− log

M∑

m=1

π
(r)
m p

(
uij

∣∣∣α(r)
i , s

(r)
jm , g

(r)
jm

)]
,

a Monte Carlo estimate of the conditional predictive ordinate
(CPO; Gelfand et al., 1992; Chen et al., 2000) is given by

log ̂(CPOij) = −Gij,max

− log

[
1

R

R∑

r=1

exp

{
− log

M∑

m=1

π (r)
m p

(
uij

∣∣∣α(r)
i , s

(r)
jm , g

(r)
jm

)

−Uij,max

}]
. (14)

Note that the maximum value adjustment used in log ̂(CPOij)
plays an important role in numerical stabilization in computing

exp

{
− log

M∑

m=1

π
(r)
m p

(
uij

∣∣∣α(r)
i , s

(r)
jm , g

(r)
jm

)
− Gij,max

}
in (14). A

summary statistic of the ĈPOij is the sum of their logarithms,
which is called the LPML and given by

LPML =

N∑

i=1

J∑

j=1

log ̂(CPOij). (15)

The model with a larger LPML has a better fit to the data.

3.3. The Accuracy Evaluation of Parameter
Estimation
To implement the MCMC sampling algorithm, chains of length
10,000 with an initial burn-in period 5,000 are chosen. Fifty
replications are used in the following simulation studies. Three
indices are used to assess the accuracy of the parameter estimates.
Let ϑ be the parameter of interest. Assume thatM = 50 data sets
are generated. Also, let ϑ̂ (m) and SD(m) (ϑ) denote the posterior

mean and the posterior standard deviation of ϑ obtained from
themth simulated data set form = 1, . . . ,M.
The Bias for parameter ϑ is defined as

Bias (ϑ) =
1

M

M∑

m=1

(
ϑ̂ (m) − ϑ

)
, (16)

and the mean squared error (MSE) for parameter ϑ is defined as

MSE (ϑ) =
1

M

M∑

m=1

(
ϑ̂ (m) − ϑ

)2
, (17)

and the average of posterior standard deviation can be defined as

SD (ϑ) =
1

M

M∑

m=1

SD(m) (ϑ) . (18)

In addition, four criteria are used to assess the accuracy of
the examinee classification methods. These criteria include the
following: (h) the marginal correct classification rate for each
attribute; (t) the proportion of examinees classified correctly
for all K attributes; (v) the proportion of examinees classified
correctly for at least K − 1 attributes; (z) the proportion of
examinees classified incorrectly for K − 1 or K attributes.

4. SIMULATION

4.1. Simulation 1
This simulation study is conducted to evaluate the parameter
recoveries of the proposed model using the MCMC algorithm as
the number of examinees increases. Here, we fix the test length
and the numbers of attributes.

4.1.1. Simulation Designs
The following manipulated conditions are considered. Test
length is fixed at 20, and 2 strategies with 5 attributes are used in
this simulation. The correspondingQmatrix of the 20 items is the
same as de la Torre (2008, p. 605); and the number of examinees,
N = 500, 1,000, and 2,000. Fully crossing different levels produce
3 simulation conditions (1 test length× 3 sample sizes). The true
values of slipping and guessing parameters are set to be 0.3 and
0.1, respectively. Assuming independence among examinees and
independence among attributes, the true value of αik is generated
from Bernoulli (0.5) . We can obtain a N × 5 matrix α, where
α = (α1,α2, . . . ,αi, . . . ,αN)

′

, and the ith row vector αi denotes
the ith examinee’s true cognitive state. The hyper-parameters of
the prior distributions are fixed as follows: β1 = β2 = 0.01, and
λ1 = λ2 = 0.5.We assume the priors of the slipping and guessing
parameters to follow a 4-Beta (1, 2, 0.1, 0.5) based on de la Torre
and Douglas (2004)’s paper. Response data are simulated using
the MMS-DINA model. About 50 replications are considered to
evaluate the parameters recovery in this simulation.

To evaluate the convergence of parameter estimations,
we only consider the convergence in the case of minimum
sample sizes. That is, the number of examinees is 500. Two
methods are used to check the convergence of our algorithm.
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TABLE 1 | Evaluating the accuracy of the item parameters based on different sample sizes in simulation study 1.

Strategy 1 Strategy 2

Sample s1 g1 s2 g2

size ABias AMSE ASD ABias AMSE ASD ABias AMSE ASD ABias AMSE ASD

500 0.101 0.010 0.057 0.078 0.011 0.021 0.100 0.010 0.057 0.101 0.014 0.022

1,000 0.086 0.007 0.048 0.063 0.009 0.018 0.097 0.009 0.049 0.091 0.010 0.018

2,000 0.079 0.006 0.044 0.058 0.008 0.016 0.089 0.008 0.046 0.083 0.006 0.015

Note that the ABias, AMSE, and ASD denote the average Bias, average MSE, and average SD for all item parameters.

One is the “eyeball” method to monitor the convergence by
visually inspecting the history plots of the generated sequences
(Hung and Wang, 2012), and the other method is to use the
Gelman-Rubin method (Gelman and Rubin, 1992; Brooks and
Gelman, 1998) to check the convergence of the parameters. The
convergence of Bayesian algorithm is checked by monitoring
the trace plots of the parameters for consecutive sequences
of 10,000 iterations. The trace plots show that all parameter
estimates converge quickly. We set the first 5,000 iterations
as the burn-in period. In addition, the values of the potential
scale reduction factor R̂ (PSRF; Brooks and Gelman, 1998) are
calculated. We find the PSRF (Brooks and Gelman, 1998) values
of all parameters are less than 1.2, which ensures that all chains
converge as expected.

4.1.2. Recovery Results Based on Minimum Sample

Sizes
As an illustration, we only show the Bias, MSE, and SD for all
of the slipping and guessing parameters based on 500 examinees.
In the case of the strategy 1, the Bias is between 0.083 and 0.110
for the slipping parameters and between 0.053 and 0.096 for the
guessing parameters. The MSE is between 0.007 and 0.019 for the
slipping parameters and between 0.004 and 0.013 for the guessing
parameters. The SD are about 0.057 and 0.020 for the slipping
and guessing parameters. In the case of the strategy 2, the Bias is
between 0.087 and 0.107 for the slipping parameters and between
0.069 and 0.114 for the guessing parameters. The MSE is between
0.007 and 0.011 for the slipping parameters, between 0.006 and
0.018 for the guessing parameters. The SDs are about 0.057 and
0.022 for the slipping and guessing parameters.

We consider the criteria (h) in this simulation study, and
the results show that the marginal correct classification rates
are consistently high for the MMS-DINA model. Based on the
criteria (t) through (z), we find that the MMS-DINA model
consistently classifies examinees correctly high at least K − 1
attributes and produces few severe misclassifications. Thus, the
classification method on the MMS-DINA model is effective.

4.1.3. Item Parameters Recovery Based on Different

Sample Sizes
Given the total test length, when the number of individuals
increases from 500 to 2,000, the average Bias, MSE, and SD for
slipping and guessing parameters decrease. For example, under
the first strategy, the average Bias of all slipping parameters
decreases from 0.101 to 0.079, the average MSE of all slipping

parameters decreases from 0.010 to 0.006, and the average SD
of all slipping parameters decreases from 0.057 to 0.044. The
average Bias of all guessing parameters decreases from 0.078 to
0.058, the average MSE of all guessing parameters decreases from
0.011 to 0.008, and the average SD of all guessing parameters
decreases from 0.021 to 0.016. The evaluation results of the
accuracy of item parameter estimation for different numbers of
examinees are given in Table 1. We find that as the number of
individuals increases, the estimates of item parameters become
more accurate. In summary, the estimation of this algorithm is
effective and accurate under the condition of simulation study 1.

4.2. Simulation 2
This simulation study is conducted to assess the parameter
recoveries of the proposed model using the MCMC algorithm as
the number of items increases. Here, we fix the sample size and
the numbers of attributes.

4.2.1. Simulation Designs
The following manipulated conditions are considered. The
number of examinees is fixed at 1,000, and the number of items,
J = 20 or 30. Two strategies with five attributes are considered
in this simulation. The corresponding Qmatrix of the 20 items is
the same as de la Torre (2008, p. 605), and the Qmatrix of the 30
items is shown in Table 2. Fully crossing different levels have two
conditions (2 test lengths× 1 sample size).

The true values and prior distributions for the parameters
are the same as the simulation 1. To implement the MCMC
sampling algorithm, chains of length 10,000 with an initial burn-
in period 5,000 are chosen. Fifty replications are considered
in this simulation. The following conclusions can be obtained.
Given the total number of examinees, when the number of items
increases from 20 to 30, the average Bias, MSE, and SD for
slipping and guessing parameters increase. For example, for the
first strategy, the average Bias of all slipping parameters increases
from 0.086 to 0.093, the average MSE of all slipping parameters
increases from 0.007 to 0.009, and the average SD of all slipping
parameters increases from 0.048 to 0.051. The average Bias of all
guessing parameters increases from 0.063 to 0.087, the average
MSE of all guessing parameters increases from 0.009 to 0.014, and
the average SD of all guessing parameters increases from 0.018 to
0.023. The evaluation results of the accuracy of item parameter
estimation for different numbers of items are specified in Table 3.
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TABLE 2 | The Q matrix design in simulation 2.

Item Attribute

Strategy A Strategy B

1 1 1 0 0 0 0 1 0 1 1

2 1 0 1 0 0 0 0 1 1 1

3 1 0 0 1 0 0 1 1 0 1

4 1 0 0 0 1 0 1 1 1 0

5 0 1 1 0 0 1 0 0 1 1

6 0 1 0 1 0 1 1 0 0 1

7 0 1 0 0 1 1 1 0 1 0

8 0 0 1 1 0 1 0 1 0 1

9 0 0 1 0 1 1 0 1 1 0

10 0 0 0 1 1 1 1 1 0 0

11 1 1 1 0 0 0 0 0 1 1

12 1 1 0 1 0 0 1 0 0 1

13 1 1 0 0 1 0 1 0 1 0

14 1 0 1 1 0 0 0 1 0 1

15 1 0 1 0 1 0 0 1 1 0

16 1 0 0 1 1 0 1 1 0 0

17 0 1 1 1 0 1 0 0 0 1

18 0 1 1 0 1 1 0 0 1 0

19 0 1 0 1 1 1 1 0 0 0

20 0 0 1 1 1 1 0 1 0 0

21 1 1 0 0 0 1 0 0 0 0

22 1 0 1 0 0 0 1 0 0 0

23 1 0 0 1 0 0 0 1 0 0

24 1 0 0 0 1 0 0 0 1 0

25 0 1 1 0 0 0 0 0 0 1

26 1 0 0 0 0 0 1 1 0 0

27 0 1 0 0 0 1 0 0 0 1

28 0 0 1 0 0 1 0 0 1 0

29 0 0 0 1 0 1 1 0 0 0

30 0 0 0 0 1 1 0 1 0 0

4.3. Simulation 3
This simulation study is conducted to evaluate the recoveries of
the proposed model using the MCMC algorithm as the number
of attributes increases. Here, the sample size and the test length
are fixed.

4.3.1. Simulation Designs
The following manipulated conditions are considered. The
number of examinees is fixed at 1,000, and the number of items
is fixed at 40, that is, J = 40. Two strategies with seven attributes
are considered in this simulation. The corresponding Q matrix
of the 40 items is shown in Table 4. The true values and prior
distributions for the parameters are the same as the simulation
1. To implement the MCMC sampling algorithm, chains of
length 10,000 with an initial burn-in period 5,000 are chosen.
Fifty replications are considered in this simulation. The recovery
results of item parameters are shown in Table 5.

We find that when the number of attributes increases, the
maximums of the average Bias, MSE, and SD for all of the

TABLE 3 | Evaluating the accuracy of the item parameters based on different

numbers of items in simulation study 2.

Strategy 1

s1 g1

Test length ABias AMSE ASD ABias AMSE ASD

20 0.086 0.007 0.048 0.063 0.009 0.018

30 0.093 0.009 0.051 0.087 0.014 0.023

Strategy 2

s2 g2

Test length ABias AMSE ASD ABias AMSE ASD

20 0.097 0.009 0.049 0.091 0.010 0.018

30 0.106 0.012 0.051 0.103 0.016 0.023

Note that the ABias, AMSE, and ASD denote the average Bias, averageMSE, and average

SD for all item parameters.

slipping parameters are 0.085, 0.011, and 0.039, respectively, and
the maximums of the average Bias, MSE, and SD for all of the
guessing parameters are 0.097, 0.019, and 0.021, respectively. In
summary, it is found that the MCMC algorithm can provide
accurate parameters and can be used to guide practice through
the three different simulation studies.

4.4. Simulation 4
In this simulation study, we use the DIC and LPML model
assessment criteria to evaluate model fitting.

4.4.1. Simulation Designs
In this simulation, the number of examinees N = 1, 000 is
considered and the test length is fixed at 20. The Q matrix from
de la Torre (2008, p. 605)’s paper is used in this simulation study.
Three cognitive diagnosis models will be considered. That is,
the DINA model, the MS-DINA model, and the MMS-DINA
model. Therefore, we evaluate the model fitting in the following
three cases.

Case 1: True model: DINA model vs. Fitted model: DINA
model, MS-DINA model, and MMS-DINA model;
Case 2: True model: MS-DINA model vs. DINA model, MS-
DINA model, and MMS-DINA model;
Case 3: True model: MMS-DINA model vs. Fitted model:
DINA model, MS-DINA model, and MMS-DINA model.

The true values and prior distributions for the parameters are the
same as the simulation 1. To implement the MCMC sampling
algorithm, chains of length 10,000 with an initial burn-in period
5,000 are chosen. The results of the Bayesian model assessment
based on the 50 replications are shown in Table 6. Note that the
following results of DIC and LPML are based on the average
of 50 replications.

From Table 6, we find that when the DINA model is the
true model, the DINA model fits the data best as we expected.
The average DIC and LPML for the DINA model are 17605.31
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TABLE 4 | The Q matrix design in simulation 3.

Item Attribute

Strategy A Strategy B

1 1 1 1 0 0 0 0 1 1 0 0 0 0 0

2 0 1 0 0 0 0 1 0 1 0 0 0 0 0

3 0 0 1 0 0 0 0 1 0 0 1 0 0 0

4 1 0 0 1 0 0 0 1 0 0 0 1 0 0

5 0 0 1 0 1 0 0 0 0 0 1 0 0 0

6 0 0 0 0 0 1 0 1 0 0 0 0 0 1

7 1 0 0 0 0 0 1 0 0 0 1 1 1 0

8 0 1 0 1 0 0 0 1 0 0 0 0 0 0

9 1 0 1 0 0 0 0 1 0 1 0 0 0 0

10 0 0 0 1 0 0 0 0 0 1 0 0 0 0

11 1 0 0 0 1 0 0 1 0 0 0 0 1 0

12 0 0 1 0 0 1 0 0 0 0 0 1 0 0

13 0 0 0 0 0 0 1 0 0 0 0 0 1 0

14 0 1 1 0 0 0 0 0 0 0 0 0 0 1

15 1 1 0 0 0 0 0 1 1 1 0 0 0 0

16 0 1 0 0 1 0 0 1 1 0 1 0 0 0

17 0 1 0 0 0 0 0 1 1 0 0 1 0 0

18 0 0 1 1 0 0 0 1 1 0 0 0 1 0

19 0 0 0 0 1 0 0 0 0 1 0 0 1 1

20 1 0 0 0 0 1 0 0 1 1 1 0 0 0

21 0 0 1 0 0 0 1 0 0 1 0 1 0 1

22 0 0 0 1 1 0 0 1 1 0 0 0 0 1

23 0 0 0 1 0 1 0 0 1 1 0 0 0 1

24 0 0 0 1 0 1 0 0 0 1 1 1 0 0

25 0 0 0 1 0 0 1 0 0 0 1 0 1 1

26 0 0 0 0 1 1 0 0 1 1 0 0 0 0

27 0 0 0 0 1 0 1 0 0 1 0 0 1 0

28 0 0 0 0 0 1 1 0 1 0 0 1 0 0

29 1 0 0 0 0 0 0 0 1 0 0 0 0 1

30 1 1 0 1 0 0 0 0 0 1 1 0 0 0

31 1 1 0 0 1 0 0 0 0 1 0 1 0 0

32 1 1 0 0 0 1 0 0 1 0 1 0 0 0

33 1 1 0 0 0 0 1 0 0 0 1 0 1 0

34 0 1 1 1 0 0 0 0 0 0 1 1 0 0

35 0 0 1 0 1 0 1 0 0 0 1 0 1 0

36 0 0 1 0 0 1 1 0 0 1 0 0 0 1

37 0 1 1 0 0 0 1 0 0 0 1 0 0 1

38 0 0 1 1 1 0 0 0 0 0 0 1 1 0

39 0 0 0 1 0 1 1 0 0 0 0 1 0 1

40 0 0 0 1 1 1 0 0 0 0 0 0 1 1

and −9544.81. The second best fitting model is the MMS-
DINA model. The differences between DINA model and MMS-
DINA model in the average DIC and LPML are −2708.68
and 791.37, respectively. The differences between DINA model
and MS-DINA model in the average DIC and LPML are
−3316.56 and 2502.22, respectively. This indicates that the
MMS-DINA model is more sufficient fitting compared with
the MS-DINA model if the data are generated from a simple
DINA model. When the MS-DINA model is the true model,

the MS-DINA fitting the data generated from the MS-DINA
is better than the DINA model and the MMS-DINA model.
The DINA model is worst model. The differences between MS-
DINA model and MMS-DINA model in the average DIC and
LPML are −36.04 and 1474.36, respectively, and the differences
between MS-DINA model and DINA model in the average
DIC and LPML are −4452.13 and 2081.16, respectively. When
the MMS-DINA is the true model, the average DIC difference
between MMS-DINA model and MS-DINA (DINA) model is

Frontiers in Psychology | www.frontiersin.org 8 June 2021 | Volume 12 | Article 568348

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Zhang et al. Multiple Strategic Cognitive Diagnosis Model

TABLE 5 | Evaluating the accuracy of the item parameters when the examined

attributes increase.

Strategy 1

s1 g1

Test length×Examinee ABias AMSE ASD ABias AMSE ASD

40× 1000 0.077 0.008 0.033 0.095 0.015 0.017

Strategy 2

s2 g2

Test length×Examinee ABias AMSE ASD ABias AMSE ASD

40× 1000 0.085 0.011 0.039 0.097 0.019 0.021

Note that the ABias, AMSE, and ASD denote the average Bias, averageMSE, and average

SD for all item parameters.

TABLE 6 | The results of Bayesian model assessment in simulation 4.

True Model DINA MS-DINA MMS-DINA

Fitted DINA DIC 17605.31 20921.87 20313.99

model LPML −9544.81 −12047.03 −10336.18

MS-DINA DIC 26998.25 22546.12 22582.16

LPML −13805.85 −11724.69 − 13199.05

MMS-DINA DIC 21264.30 21023.73 19944.07

LPML −11851.35 −11393.62 −10126.66

The meaning of the bold values is the model with the best-fitting data among the three

candidate models.

about −1079.66 (−1320.23), and the average LPML difference
between MMS-DINA model and MS-DINA (DINA) model is
about 1266.96 (1724.69). This shows that when the data come
from the mixture multiple strategy model, the DINA model
with a single strategy is obviously ineffective in fitting this
batch of data. The MS-DINA model has better fitting than the
DINA model. No matter which models (DINA and MS-DINA)
generate data, the MMS-DINA model is better fitting model
than the other not true models. The MMS-DINA model is
effective under many conditions of model fitting. In summary,
the Bayesian assessment criterion is effective for identifying
the true models, and it can be used in the subsequent real
data study.

5. EMPIRICAL EXAMPLE ANALYSIS

5.1. Data
To study the applicability of the mixture multiple-strategy DINA
model, we consider a real data including responses by 528
middle school students to answer 15 fraction subtraction items,
which is a subset of the data originally used and described by
Tatsuoka (2002). The Q-matrix design is given in de la Torre and
Douglas (2008) research. Two strategies are considered to solve
the 15 items, where the attribute definition is the same as in the
introduction. The prior distributions described in the simulation

TABLE 7 | MMS-DINA model parameter estimates for the fraction

subtraction data.

Strategy 1 Strategy 2

sj1 gj1 sj2 gj2

Item Estimate SD Estimate SD Estimate SD Estimate SD

1 0.13 0.02 0.12 0.05 0.13 0.01 0.11 0.01

2 0.12 0.01 0.22 0.03 0.14 0.02 0.18 0.02

3 0.10 0.02 0.20 0.02 0.11 0.02 0.12 0.02

4 0.11 0.03 0.18 0.02 0.13 0.02 0.11 0.02

5 0.20 0.01 0.25 0.03 0.13 0.01 0.23 0.01

6 0.21 0.02 0.10 0.01 0.17 0.02 0.12 0.02

7 0.10 0.01 0.13 0.01 0.13 0.02 0.12 0.02

8 0.10 0.02 0.21 0.03 0.12 0.03 0.14 0.03

9 0.10 0.01 0.19 0.02 0.12 0.01 0.14 0.01

10 0.15 0.03 0.17 0.01 0.12 0.02 0.11 0.02

11 0.15 0.01 0.19 0.02 0.11 0.03 0.12 0.03

12 0.16 0.02 0.12 0.03 0.13 0.01 0.11 0.01

13 0.13 0.03 0.15 0.00 0.15 0.02 0.12 0.02

14 0.15 0.01 0.11 0.01 0.13 0.01 0.12 0.01

15 0.17 0.01 0.11 0.02 0.11 0.02 0.11 0.02

section are used for the relevant parameters of the MMS-DINA
model. Parameter estimates are based on averaging the estimates
from 5 parallel chains with randomly chosen starting values. The
standard deviations are obtained by averaging the sample SDs of
the parameters from the separate chains. Each of these parallel
chains is run for 10,000 iterations with the first 5,000 iterations
as burn-in.

5.2. Bayesian Model Assessment
Three comparative models, the DINA model, the MS-DINA
model, and the MMS-DINA model, are used to fit the fraction
subtraction data. The deviance information criterion (DIC;
Spiegelhalter et al., 2002) and the logarithm of the pseudo-
marignal likelihood (LPML; Geisser and Eddy, 1979; Ibrahim
et al., 2001) are computed on the “CODA” R package (Plummer
et al., 2006). Based on the comparable values of the DIC, that
is, 5941.12 for the DINA model vs. 6652.13 (7306.29) for the
MMS-DINA model (MS-DINA model). The LPMLs for the
DINA model, MS-DINA model, and the MMS-DINA model are
−2970.56, −3653.14, and −3326.06, respectively. The second
best fitting model is also the MMS-DINA model. Based on the
above model assessment results, we find that the DINAmodel fits
the data most appropriately. The two multiple strategy models
may show the over-fitting phenomenon, which results in that the
data fitting is not as good as the simple DINAmodel. In addition,
the MMS-DINA model is preferred for this data set because its
relatively flexible formulation do not lead to worse fit compared
with the MS-DINA model.

5.3. Results
The estimated posterior means and the SDs for the MMS-
DINA model are shown in Table 7. The estimates of the slipping
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parameters range from 0.10 to 0.23 and the estimates of the
guessing parameters range from 0.10 to 0.25. For the item 2,
the students choose two strategies to answer the item, in which
the first strategy examines four attributes (attributes 1, 2, 3, and
4), and the second strategy examines two attributes (attributes
1 and 6). We know that the more attributes an item measures,
the lower the probability that the specific examinee will answer
correctly. This is because the examinee can answer the item
correctly if they have mastered all the attributes. If the examinee
answers correctly the item with more attributes, the examinee
is more likely to guess correctly the item. Therefore, for item 2,
the estimate of the guessing parameter under the first strategy is
0.22, which is higher than the estimate of the guessing parameter
under the second strategy is 0.18. Similarly, for item 4, the first
strategy examines five attributes (attributes 1, 2, 3, 4, and 5)
and the second strategy examines three attributes (attributes 1,
5, and 6). The corresponding estimates of guessing parameters
are 0.18 and 0.12, respectively. When the number of attributes
examine under the two strategies is the same, the estimates of
the guessing parameters of the two strategies are basically the
same. For example, four attributes are examined under both
strategies for item 15. The probability of guessing under both
strategies is the same as 0.11. In addition, the three items with
the easiest slipping are items 6, 5, and 15 when using the strategy
1, and the corresponding estimates of the slipping parameters are
0.21, 0.20, and 0.17, respectively. When using the strategy 2, the
three items with the easiest slipping are items 6, 13, and 2. The
corresponding estimates of the slipping parameters are 0.17, 0.15,
and 0.14, respectively.

In order to depict individual tendency of which strategy
the examinees used, we use the probability plots of examinees
choosing different strategies to show the selection tendency of
all 528 examinees. In Figure 1, We find that 432 examinees use
the first strategy to answer all 15 items. Compared to the first
strategy, the number of examinees who adopt the second strategy
is relatively small, only 96 examinees.

6. CONCLUSIONS AND DISCUSSION

The goal of this article is to investigate a discrete mixture
version of multiple-strategy model for cognitive diagnosis. A
unique feature of the mixture model (MMS-DINA model)
presented in this article is its capacity to break the limitation
that assumes identical item parameters across strategies. The
model-based approach presented in this article provides a
natural generalization of the DINA model that allows it to
account for the strategies to have different item parameters for
each item. In the simulation studies, two simulation designs
to examine the accuracy of the algorithm estimation from
three different perspectives. The simulation results indicate that
MCMC algorithm can be used to obtain accurate parameter
estimates. Thus, this research provides researchers a tool that
allows them to explore the practicability of the MMS-DINA
model, which can in turn pave the way for the applications
of CDMs in practical education settings to inform instruction
and learning. In addition, two Bayesian model assessment

FIGURE 1 | The probabilities of examinees choosing different strategies. The

y-axis indicates the probabilities of all examinees using the first strategy to

answer items. 0 indicates that examinees use the first strategy to answer item

with 0% probability, while 1 indicates that examinees use the first strategy to

answer items with 100% probability.

criterion are considered to evaluate the model fitting among
DINA model, MS-DINA model and MMS-DINA model. We
find that when the data are generated from the simple single-
strategy DINA model, the MMS-DINA model fits the data
better than the MS-DINA model. This may be because each
strategy is selected with a certain probability in the MMS-
DINA model, unlike the MS-DINA model, which randomly
chooses one strategy from multiple strategies. In this way, the
Q matrix used in the MS-DINA model may be inconsistent
with the Q matrix of the DINA model that generates data,
resulting in the biased estimates and poor fitting. However,
when the data are generated from MMS-DINA model, the
DINA model is the worst fitting model. The worst fitting
result is attributed to the relatively simple model structure,
which leads to the phenomenon of under-fitting. Finally, we
draw a valuable conclusion that no matter which models
(DINA and MS-DINA) generate the data, the MMS-DINA
is better fitting model than other not true models. However,
in the real data analysis, the DINA model is preferred for
this data set because its relatively simple formulation do not
lead to worse fit compared with the MS-DINA model and
MMS-DINA model.

Classificationmethods based on CDMs play an important role
in cognitive diagnosis, because it is desired in some educational
settings to classify examinees as masters or non-masters of
multiple discrete latent attributes. In simulation study, as an
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illustration, we consider the MMS-DINA model is used in the
situation that 500 examinees answer 20 items, indicating that
it classifies few examinees correctly on all K skills but classifies
high ability examinees almost or exactly correctly with few
severe misclassification.

Because there are a large number of parameters in MMS-
DINA model, we can only rely on MCMC algorithm to estimate
the parameters. However, the computational burden of the
MCMC algorithm becomes intensive especially when a large
number of examinees or the items is considered, or a large
number of the MCMC sample size is used. Therefore, it is
desirable to develop a standing-alone R package associated
with C++ or Fortran software for more extensive large-scale
assessment program. In addition, the convergence of Bayesian
algorithm need to be further investigated in the next studies.
Firstly, for the PSRF value, we use a relatively relaxed 1.2 as a
cutoff for determining the convergence of Bayesian estimation
based on the previous literature (Brooks and Gelman, 1998;
Fagua et al., 2019). In fact, we cannot decide whether 1.2
as a cutoff is really sufficient to determine the convergence.
Educational psychologists have to bemore careful when choosing
1.2 as a cutoff. This is because the effective sample size (ESS)
can be only small, which can result in the summary statistics for
the chain that provide only poor approximations of the Bayesian
estimates. More specifically, the mean of the chain might not
be very close to the expected value of the posterior distribution
from the perspective of Bayesian point estimation. Therefore, in
more substantive applications of the model, a more conservative
PSRF cutoff (e.g., PSRF < 1.05) should ideally be used (Gelman
et al., 2014; Vehtari et al., 2019; Zitzmann and Hecht, 2019).
However, if we use a more conservative criterion for the PSRF,
it is unknown how long it will take to achieve a PSRF of 1.05,
and it will be a great challenge for our MMS-DINA model due
to the large number of unknown parameters to be estimated.
In order to achieve a cutoff of 1.05 for PSRF, we need to run
a longer Markov chains to achieve the required number of ESS
for convergence, but this process is very time-consuming and
requires a large amount of computer memory. These require us
to do a lot of simulation studies in later stages to give the definite
results. Secondly, we also need to further investigate whether
the obtained standard errors are accurate by using the coverage
rate. However, these studies are beyond the purpose of this study
to analyze the different solution strategies of the examinees by
constructing a MMS-DINA model.

There are several avenues for further research on multiple-
strategy models. In this paper, we focus on the comparison of
multiple-strategy models under the most commonly used DINA
model framework, and explore the cognitive process of solving

items using different strategies among examinees, without
focusing on the comparison of other multiple strategy cognitive
diagnostic models, such as MS high-order DINA model, or

some saturated type MS CDMs which are MS generalized DINA
models, or MS loglinear cognitive model and so on. As Li
et al. (2016) point out, it needs to be further explored to find
the most appropriate model to fit data among the numerous
cognitive diagnosis models. Therefore, in the later research, we
will focus on the comparison of different MS CDMs to find
out the advantages, disadvantages, and application scope of each
model. In addition, the different classification methods may be
helpful in both item selection and final examinee classification
(Xu et al., 2003; Cheng, 2009). Also, note that a strategy is
merely defined by the set of attributes required by a particular
approach to solving a problem. One can imagine that a strategy
might instead be determined by a set of attributes as well as a
procedure and sequence for using them. So depending on how
the attributes are defined, this will not always be the case, and
one may consider different methods of using the same attributes.
In addition, in this study, we only analyze two strategies. When
the number of strategies increase, the performance of our MMS-
DINA model needs to be further investigated. For example, we
need to investigate that whether the identification conditions
are satisfied as the number of strategies increases, as well as
whether the parameter estimates are recovered well. In addition,
the computational efficiency may be reduced due to the large
number of parameters with the increased strategies.
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