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Abstract: Flexible and fully transparent thin film transistors (TFT) were fabricated via room tem-
perature processes. The fabricated TFT on the PEN exhibited excellent performance, including a
saturation mobility (µsat) of 7.9 cm2/V·s, an Ion/Ioff ratio of 4.58 × 106, a subthreshold swing (SS) of
0.248 V/dec, a transparency of 87.8% at 550 nm, as well as relatively good stability under negative
bias stress (NBS) and bending stress, which shows great potential in smart, portable flexible display,
and wearable device applications.

Keywords: thin film transistors; flexible; fully transparent; oxide

1. Introduction

The field of transparent flexible flat panel displays and wearable sensors with smart,
portable, fashion, cool and other advantages have aroused widespread concern in recent
years [1–5], as an important component, transparent flexible thin film transistor (TFT) on
metal oxides has attracted much attention [3,6–10]. Although the applications of transparent
flexible TFTs have broad prospects, some technical problems still restrict the development
and application of transparent flexible TFT to a large extent, in which the R & D of the low
temperature preparation process of TFT is the most critical. At present, most flexible TFTs
are prepared on flexible plastic substrates due to its excellent bendability and reliability,
but the flexible plastic substrate is not resistant to high temperature, even for the most
heat-resistant flexible polyimide (PI) substrate, the glass transition temperature (Tg) does
not exceed 410 ◦C, also, the translucent nature of yellow leads to its poor application in
fully transparent circuits, while the Tg of poly(ethylene 2,6-naphthalenedi-carboxylate)
(PEN) and other materials with excellent transparency is only 120 ◦C [11]. However,
the channel layer and electrodes often require thermal annealing process of more than
200 ◦C to realize the ideal quality and chemical structure of the films, which seriously
limits the development of flexible TFT. In addition, most of the current research on flexible
TFT focuses on a certain functional layer of TFT, such as electrode, dielectric layer, or
semiconductor layer, etc. [12–15]. However, the process temperature of different functional
layers is different, which may easily lead to performance deterioration of some functional
layers or the appearance of interface defects, thus reducing the reliability of TFT. Current
mainstream solutions are as follows: (i) Developing highly heat-resistant flexible substrate,
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there are some studies on the transparent flexible PI substrate with high temperature
resistance recently [16,17], but the preparation process is difficult and the cost is high,
(ii) optimizing the film preparation process to prepare films at low temperatures, especially
at room temperature without any thermal annealing process can effectively solve the above
problems, it will greatly simplify the process flow and greatly reduce the process cost.
However, there are few studies on the preparation of flexible TFT at room temperature now.

In our previous work, we chose metal oxide materials that can be prepared at low tem-
peratures to prepare TFT. Furthermore, high-performance AZO (Al2O3:ZnO = 2:98 wt%)
electrode [13] and indium gallium zinc oxide (IGZO)/ultrathin Al2O3 channel layer [18]
were prepared at room temperature by using optimized Radio Frequency Magnetron Sput-
tering (RFMS) and Pulsed Laser Deposition (PLD) technologies that enable the deposited
atoms to acquire high kinetic energy, but the fully transparent flexible TFT has not been
prepared before. In this paper, on the basis of previous research, we have succeeded in
fabricating fully transparent, flexible TFTs at room temperature without any thermal an-
nealing process, and then the electrical performance and bending reliability of TFT were
characterized and analyzed, the TFT exhibited excellent electrical properties and trans-
parency, relatively good stability under NBS and bending stress, as well as advantages of
low cost, and avirulent environmental protection. It brings the industry one step closer to
smart, lightweight, cheap, green flexible displays and wearable applications.

2. Materials and Methods

Figure 1a,b show the schematic and picture of the transparent and flexible TFTs,
respectively. First of all, a 90-nm-thick AZO (Al2O3:ZnO = 2:98 wt%) gate electrode
is deposited on PEN by radio frequency (RF) magnetron sputtering with the optimum
condition (Power: 80 W, Pressure: 1 mTorr, Atmosphere: pure Ar). Then 320-nm-thick
Al2O3 is fabricated by RF magnetron sputtering, acting as a gate insulator layer. Next,
a bi-layer of 8-nm-thick IGZO and 3-nm-thick ultrathin Al2O3 serve as a channel layer.
Finally, a 70-nm-thick AZO (Al2O3:ZnO = 2:98 wt%) film as S/D electrode is prepared by
PLD at the optimized condition (O2 flow rate: 0 sccm, pulsing energy: 450 mJ, repeating
rate: 5 Hz). The films mentioned above are all patterned by shadow masks and deposited
at room temperature, the entire preparation process does not require annealing.
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The interface structure, cross-sectional morphology, and composition distribution of
TFTs were measured by transmission electron microscopy (TEM, JEOL JEM-2100F). The
surface band structure was measured by the X-ray photoelectron emission spectroscopy
using Thermo VG ESCALAB 250 photoelectron spectrometer. The electrical characteriza-
tions of TFTs were measured by the semiconductor parameter analyzer (Agilent, 4155C).
The optical properties of TFTs were measured by an ultraviolet-visible spectrophotometer
(shimazu uv-2600).

3. Results

Firstly, we characterize the electrical properties of TFT prepared on a glass substrate
and PEN substrate, as shown in Figure 2, there are only slight differences in performance
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between PEN-TFT and Glass-TFT, which indicates TFTs almost suffer no destruction during
transfer and the preparation process to flexible substrates, and the internal stress due to the
difference of elasticity between glass and PEN has little effect on TFTs. In addition, this
phenomenon indicates that the penetration rate of water/oxygen in the PEN layer is low,
which has little impact on the reliability of TFT, there is no need to deposit a buffer layer on
the PEN, which is conducive to reducing the technical difficulty and cost.
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Figure 2. Comparison of (a) output and (b) transfer characteristics between Glass-TFT and PEN-TFT.

The PEN-TFT exhibited excellent performance, including a µsat of 7.9 cm2/V·s, an
Ion/Ioff ratio of 4.58 × 106, a SS of 0.248 V/dec, and a Vth of 1.04 V. Figure 3 shows
the TEM images of PEN-TFT, which exhibit smooth interfaces between two adjacent
layers, the good contact between interfaces can reduce the interface defects and ensure the
excellent performance of TFT. Furthermore, the EDS mapping results indicate diffusionless
phenomenon and the homogeneous distribution of elemental Al, Zn, In, and Ga, these are
the basic conditions for the TFT device to achieve good performance.
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Figure 4a–d shows the transfer characteristic curves of Glass-TFT and PEN-TFT under
positive/negative gate bias stress (positive bias stress (PBS) and NBS) applying VG = +10 V
and VG = −10 V for one-hour, respectively. The Von shift under PBS and NBS are compared
in Figure 4e. The largest Von shift of the glass-TFT and PEN-TFT under NBS is about−0.9 V,
which indicates both Glass-TFT and PEN-TFT possess good NBS stability. However, all
TFTs exhibit poor PBS stability with a large positive shift of Von of approximately 5 V. To
investigate the reason for the poor PBS stability, the oxygen states of IGZO/Al2O3 film are
measured by X-ray photoelectron spectroscopy (XPS). M-O-M, oxygen vacancies (VO) and
M-OR peaks centered at ~530, ~531, and ~532 eV are attributed to O2− ions surrounded by
metal atoms, the oxide lattice with VO, and adsorbed oxygen, respectively [19,20]. As shown
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in Figure 4f, the high adsorbed oxygen content (31.91%) of IGZO/Al2O3 film demonstrates
channel layer exist numerous adsorbed oxygen, it is well known that adsorbed oxygen can
capture electron to form O− or O2−, the chemical reaction is shown in Equation (1), and the
accumulation of free electrons under PBS will exacerbate the phenomenon, greater positive
gate bias is required to enable the TFT to be on. Correspondingly, the chemical reaction of
adsorbed oxygen is not promoted under NBS, so the NBS stability is much better than PBS
stability [21].

O2 + e− → O− + O2− (1)
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The PEN-TFT is measured under various bending radius, and the respective parame-
ters are summarized in Table 1. As shown in Figure 5a, the transfer characteristics show
a sharp rise in Ioff as the radius decrease and the mobility of TFT decreases, but the SS
increases with the increasing bending radius, Wang et al. reported a similar phenomenon
in their research [22]. The degradation of TFT is related to the appearance of interfacial
cracks and defects under bending stress. With the increase of bending strain, defects and
cracks are likely to occur in stress concentration areas in TFT, such as the interface between
dielectric layer (GI) and channel, or the interface between gate electrode and dielectric
layer, the mechanism that may cause the degradation of TFT is shown in Figure 5b, the
pinhole between gate electrode and dielectric layer generated by bending stress could be a
charge transport channel, which will increase the IG and lead the Ioff to increase. Moreover,
the defects introduced by bending stress between channel and dielectric layer not only
degrade Ion, but also increase Ioff, and it will increase the scattering of carriers, resulting
in decreased mobility, as shown in Table 1, the density of interface defects (Nt) increases



Membranes 2022, 12, 29 5 of 7

with the increasing bending stress. In addition, cracks will be generated at the interface
between the channel and the dielectric layer under large bending stress, which will weaken
the control ability of the gate bias on the conductive channel, resulting in a decrease of Ion.

Table 1. Summary of the performance of the flexible TFT after bending.

Radius Plane R = 30 mm R = 20 mm R = 10 mm

µsat (cm2/V·s) 6 5.6 5.61 4.73
Ion/Ioff 1.3 × 107 2.63 × 106 3.05 × 105 6.82 × 104

SS (V/dec) 0.237 0.397 0.594 0.723
Von (V) 0.17 −0.88 −0.07 −0.45
Ion (A) 5.36 × 10−5 4.05 × 10−5 4.00 × 10−5 1.58 × 10−5

Ioff (A) 4.12 × 10−12 1.54 × 10−11 1.31 × 10−10 2.32 × 10−10

Nt (cm−2 eV−1) 5.01 × 1011 9.53 × 1011 1.51 × 1012 1.87 × 1012
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Figure 5. (a) Bending test of the flexible VL-TFT, (b) schematic diagram of TFT performance degrada-
tion under bending, (c) transmittance spectra in the wavelength range of 300~800 nm for the flexible
TFT on PEN and unpatterned TFT.

Figure 5c shows the average transmittance of the PEN-TFT in the visible range can
reach 87.8% at 550 nm. The unpatterned TFT (without any mask process) has all the same
layers as PEN-TFT and exhibits a transparency of 58.1% at 550 nm. The improvement of
transparency may be due to the decreased coverage of the device on the PEN substrate.
Transparent PEN-TFT brings the industry closer to transparent, flexible, and green displays.

4. Discussion

A comparison of the device in our work with other reported flexible transparent oxide
TFTs is summarized in Table 2. According to Table 2, significant advantages of our device
can be seen: (i) The fabrication of TFT does not require annealing, which has great advan-
tages in manufacture of flexible circuit, (ii) the TFT has excellent transparency and good
electrical properties, which has potential in flexible display and stealth device applications.
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Table 2. Summary of transparent oxide TFTs prepared on flexible substrates from the literature,
including the device presented in this work.

Ref. This Work [12] [23] [24] [25]

Substrate PEN PEN PES PI PI/SiO2

Gate electrodes AZO
(RFMS)

ZnO/AZO
(ALD) ITO Al

(DCMS)
Ti

(DCMS)

S/D electrodes AZO
(PLD)

ZnO/AZO
(ALD)

IZO
(RFMS) Mo (DCMS) ITO

(RFMS)

Dielectric Al2O3
(RFMS)

Al2O3
(ALD)

Al2O3
(ALD) Al2O3

Al2O3
(ALD)

Channel layers IGZO/Al2O3
(DC/RFMS)

ZnO
(ALD)

ZTO
(RFMS)

IZO
(RFMS)

IWO
(RFMS)

Maximum temperature RT 150 ◦C 150 ◦C 300 ◦C 270 ◦C
Transmittance of TFT 87.8% 80% ~68% - -

µsat (cm2/V·s) 5.61 2 - 6.32 24.86
Ion/Ioff 3.05 × 105 ~107 3.05 × 106 9.7 × 107 ~105

SS(V/dec) 0.594 1.4 - 0.39 0.28
Bending radius (mm) 20 Unbending unbending 20 20

Year 2020 2017 2018 2016 2018

5. Conclusions

In summary, the flexible transparent TFTs are successfully prepared without any
thermal annealing process, the optimized flexible device demonstrates excellent electrical
characteristics with a µsat of 7.9 cm2/V·s, an Ion/Ioff ratio of 4.58 × 106, a SS of 0.248 V/dec,
good stability under NBS, as well as good flexibility. More significantly, the as-prepared
flexible device shows excellent transparency (87.8%). This kind of TFT could bring the
industry one step closer to smart, lightweight, cheap, green flexible displays and wear-
able applications.
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