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Developing an ensemble machine
learning model for early prediction
of sepsis-associated acute kidney injury

Luming Zhang,1,2,6 Zichen Wang,2,3,6 Zhenyu Zhou,4 Shaojin Li,5 Tao Huang,2 Haiyan Yin,1,* and Jun Lyu2,7,*

SUMMARY

Sepsis-associated acute kidney injury (S-AKI) is very common and early prediction
is beneficial. This study aiming to develop an accurate ensemble model to predict
the risk of S-AKI based on easily available clinical information. Patientswith sepsis
from the United States (US) database Medical Information Mart for Intensive
Care-IV were used as a modeling cohort to predict the occurrence of AKI by
combining Support Vector Machine, Random Forest, Neural Network, and
Extreme Gradient Boost as four first-level learners via stacking algorithm. The
external validation databases were the eICU Collaborative Research Database
from US and Critical Care Database comprising infection patients at Zigong
Fourth People’s Hospital from China, whose AUROC values for the ensemble
model 48–12 h before the onset of AKI were 0.774–0.788 and 0.756–0.813,
respectively. In this study, an ensemble model for early prediction of S-AKI onset
was developed and it demonstrated good performance in multicenter external
datasets.

INTRODUCTION

Sepsis is a life-threatening state of organ dysfunction caused by a dysregulated host response to infection

(Singer et al., 2016) and represents the leading cause of death for patients in the intensive care unit (ICU)

(Hernández et al., 2019). Epidemiologically, sepsis of varying degrees is thought to affect more than 30

million patients worldwide each year, with more than 60% of them dying (Fleischmann et al., 2016). Organ

dysfunction, one of the most important features of sepsis, not only increases ICU stay length, hospitaliza-

tion time, and cost burden for patients but also leads to further deterioration of patient condition and is

closely related to poor prognosis (Anderko et al., 2022; Kakihana et al., 2016). A prospective multicenter

clinical study from Japan demonstrated that organ dysfunction due to sepsis produces higher mortality

and re-hospitalization rates (Fujishima et al., 2014). Acute kidney injury (AKI) is the most common compli-

cation in patients with sepsis when organ function is impaired, and the occurrence of more than 50% of AKI

cases in ICU units has been reported to be associated with sepsis (Alobaidi et al., 2015). In addition to the

adverse effects mentioned above, the appearance of sepsis-associated AKI (SAKI) is also strongly con-

nected with the development of chronic kidney disease (CKD) later in life, as well as an increased risk of

long-term mortality (Coca et al., 2009; Kim et al., 2018). A retrospective study including 1,636 patients

with sepsis found that approximately 61% of patients developed AKI during hospital admission, and nearly

one-fifth of SAKI survivors developed CKD within 1 year of discharge (Arshad et al., 2021). Although

scholars have conducted a large number of studies on SAKI so far, effective preventive and therapeutic

measures remain lacking. The kidney has a strong reserve function, meaning that by the time creatinine

is significantly elevated and urine output is drastically reduced, defined by KDIGO as the diagnostic criteria

of AKI (Ostermann et al., 2020), the kidneys have already been damaged to a very serious degree. There-

fore, early identification, diagnosis, and intervention of SAKI are of critical importance.

In recent years, machine learning algorithms have become widely used in the medical field. A work by Liu

et al. revealed that a machine learning model was better at predicting the risk of surgical site infection in

patients after lumbar spine surgery (Liu et al., 2022). Gray et al. have shown that machine learning models

outperform logistic regression models in predicting patient prognosis after surgery for colon cancer (Leo-

nard et al., 2022). Researchers have further proposed the concept of ensemble learning (Zhang et al., 2022),

which has better performance and generalization ability compared to single machine learning. Zhang
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developed an ensemble model for predicting agitation in patients with invasive mechanical ventilation un-

der mild sedation. Compared with logistic regression and single machine learning models, ensemble

learning models show good performance in independent datasets (Zhang et al., 2021).

The focus of this study is to develop an ensemble model with accurate results, high generalization capa-

bility, and sufficient utility to predict the risk of AKI in patients with sepsis based on relatively common

and easily available clinical information. To achieve this purpose, this paper integrates models by stacking

algorithms in ensemble learning, combining four first-level machine learning algorithms (support vector

machine (SVM), random forest (RF), Neural Network (NNET), and Extreme Gradient Boosting (XGboost))

to build an ensemble model that can fully exploit clinical data from patients with sepsis to accurately pre-

dict the occurrence of AKI.

RESULTS

Baseline characteristics of cohorts

Ultimately, 21,038 patients from MIMIC-IV, 24,352 patients from eICU-CRD, and 505 patients from ZG re-

mained for further analysis (Figure 1). Demographic information for MIMIC-IV, eICU-CRD, and ZG patients

is shown in (Table 1). The AKI diagnosis rate was 75% in MIMIC-IV patients with sepsis, while the rates for

eICU-CRD and ZG were only 25.5% and 20.2%, respectively. Compared to MIMIC-IV and eICU-CRD (12.8%

and 10.1%, respectively), the ZG cohort had highest ICU mortality rate (25.0%). Kruskal-Wallis test and Chi-

square test demonstrated that the baseline characteristics were significantly different between patients

from three databases with high heterogeneity. Longitudinal changes in 17 features over the 48 h before

AKI onset are shown in (Figure 2). During this 48-h period, AKI and control groups exhibited good discrim-

ination for most features.

Model performance

The performance of models in predicting AKI on test cohorts is shown in (Figure 3). The AUROC values by

the ensemble model 48–12 h before the onset of AKI were between 0.774–0.788 and 0.756–0.813 in the

eICU-CRD and ZG databases, respectively, indicating good discriminatory capability. The ensemble

model’s AUROCs for the first-level learners (SVM, RF, NNET, and XGboost) were in the ranges of 0.683–

0.761, 0.765–0.780, 0.677–0.751, and 0.772–0.789, respectively, in the eICU-CRD database and 0.706–

0.756, 0.738–0.782, 0.689–0.793, and 0.752–0.800, respectively, in the ZG database. The ensemble model

showed the best performance and reached its highest discriminatory capability 12 h before AKI. The per-

formance of ensemble models and related first-level learners in the training cohorts is demonstrated by

(Figure S9).

Other performance metrics of the ensemble models for the two testing cohorts are quantified in (Table 2).

The sensitivity values of the ensemble model were 0.650–0.724 and 0.685–0.840 for the eICU-CRD and ZG

datasets, respectively, indicating that the ensemble model correctly predicted up to 72.4% and 84.0% of

AKI cases in testing cohorts. In addition, the balanced accuracy values of the ensemble model were

0.707–0.724 and 0.728–0.778 for the eICU-CRD and ZG datasets, respectively. The ensemble model also

reported evaluation metrics for the first-level learners (Tables S4–S7).

Model explanation

One S-AKI and one control patient from the ZG database were randomly selected as XAI examples. The

LIME, SHAP, Break Down, and iBreakDown algorithm presented consistent result with slight difference.

The LIMEmethod (Figure 4 a.1; b.1) demonstrated that heart rate, creatinine, and temperature made high-

est contribution for patients with S-AKI while lactate, potassium, and phosphate contributed most for the

control patient. The SHAP algorithms result (Figure 4 a.2; b2) showed that for patient with S-AKI, temper-

ature, PaO2, and hemoglobin had most contribution to AKI prediction and for control patient, SpO2,

lactate, and phosphate showed most contribution. The Break Down results (Figure 4 a.3; b.3) revealed

feature contributions to the 12-h ensemble model for one AKI and one control sepsis patient. For the pa-

tient with S-AKI, temperature, hemoglobin, and SpO2 were the most important features for positive pre-

dicting AKI onset. For the control patient, phosphate, lactate, and SpO2 were the most important features

for negative predicting AKI onset. The iBreakDown algorithms resulted (Figure 4 a.4; b.4) suggested that

temperature, SpO2, and age contributed most to the probability of positive prediction of S-AKI onset
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Figure 1. Flow chart for participant inclusion and model processing in the study
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patient and SpO2, potassium, and lactate contributed most to negative prediction of S-AKI onset for the

control patient.

Model deployment

Among the four ensemble models trained on features 48, 36, 24, and 12 h before AKI onset, the XGboost

algorithm was themost highly weighted (Figure S8), followed by SVM, RF, and NNET. As mentioned above,

to improve running speed and clinical usability, we selected the first-level learner with the most substantial

relative influence on the ensemble model, XGboost, and used it to develop an online risk calculator

(https://wzcjerry.shinyapps.io/S-AKI/) capable of predicting AKI onset within 12 h for patients with sepsis.

In addition, we have attached our ensemble model in the supplementary materials to allow clinicians to

download and run the model on their local devices.

Table 1. Baseline characteristics of included sepsis patients from three databases

MIMIC-IV eICU-CRD ZG p-value

N 21,038 24,352 505

Age (year) 67 (56, 78) 67(55, 77) 72(62, 81) <0.001

Gender (%) <0.001

Male 12,111 (57.6) 12,871 (52.9) 324 (64.2)

Female 8,927 (42.4) 11,479 (47.1) 181 (35.8)

Weight (kg) 79.0 (66.4, 95.0) 80.6(65.8, 99.1) / /

Height (cm) 170.0 (163.0, 178.0) 168.0 (160.0, 177.8) / /

APS 57.0 (42.0, 76.0) 54.0 (40.0, 72.0) / /

Unit type (%) <0.001

MICU/SICU 12,342 (58.7) 19,405 (79.7) 110 (21.8)

Others 8,696 (41.3) 4,947 (20.3) 395 (78.2)

Ethnicity (%) /

White 14,057 (66.8) 18,747 (77.0) /

Others 6,981 (33.2) 5,605 (23.0) /

Vasopressor (%) <0.001

No 13,431 (63.8) 18,943 (77.8) 297 (58.8)

Yes 7,607 (36.2) 5,409 (22.2) 208 (41.2)

Ventilator (%) <0.001

No 5,826 (27.7) 7,533 (30.9) 114 (22.6)

Yes 15,212 (72.3) 16,819 (69.1) 391 (77.4)

RRT (%) <0.001

No 20,477 (97.3) 22,896 (94.0) 475 (94.1)

Yes 561 (2.7) 1456 (6.0) 30 (5.9)

AKI (%) <0.001

No 5,253 (25.0) 18,140(74.5) 403(79.8)

Yes 15,785 (75.0) 6,212(25.5) 102(20.2)

Length of ICU

stay (day)

4.5 (3.0, 8.3) 4.3 (2.9, 7.6) 7.7 (3.9, 16.5) <0.001

Length of hospital

stay (day)

11.0 (7.0, 20.0) 10.5 (6.5, 17.7) 15.8 (6.9, 28.5) <0.001

ICU mortality (%) <0.001

No 18,335 (87.2) 21,903 (89.9) 379 (75.0)

Yes 2,703 (12.8) 2,449 (10.1) 126 (25.0)

APS: Acute Physiology Score; MICU: Medical Intensive Care Unit; SICU: Surgical Intensive Care Unit; Some of clinical infor-

mation was not recorded in ZG database therefore replaced by ‘/’.

p-value for continuous variables were calculated by Kruskal-Wallis test and p-value for categorical variables were calculated

by Chi-square test.
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DISCUSSION

In this study, demographic information, laboratory results, and vital signs 48 to 12 h before the onset of

SAKI from patients in the MIMIC-IV were collected. To address common problems of medical data,

including high dimensionality of features, redundancy of features, and covariance among variables, this

study used a two-step feature screening scheme to select feature variables strongly correlated with the

occurrence of AKI in patients with sepsis, simplifying model complexity and reducing the negative impact

Figure 2. The value of features among datasets 48–12 h before AKI onset

For the three databases, the relationship between mean values of features and time before AKI onset was visualized as a line graph; The distance between

the error bars and the mean represents SE Although the age of individuals remained constant in the present study, since the composition of the training and

testing cohorts are not identical, the mean and SE for each feature’s summary points were different.
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of weakly correlated variables on the prediction model. And four machine learning algorithms subjected to

parameter tuning were integrated to maximize efficient disease risk prediction for SAKI. Furthermore, the

model was externally validated using EHR data from two other centers in different regions: eICU-CRD and

ZG. The results indicated that, in the validated population, the AUROC values predicted by the ensemble

model 48–12 h prior to AKI onset were between 0.774–0.788 and 0.756–0.813, respectively, with good

discriminatory ability. We also constructed a 12-h online risk calculator based on the XGboost algorithm,

which was the most highly weighted first-level learner in the ensemble model, allowing clinicians to calcu-

late the probability of AKI onset within 12 h for patients with sepsis, even without any coding background.

The pathogenesis, clinical manifestations, treatment, and prognosis of AKI are complex and variable. SAKI

is further influenced by a variety of factors, including renal blood flow, microcirculation, cortical and med-

ullary perfusion and oxygenation, and renal tubular function (Bellomo et al., 2017). As creatinine and urine

Figure 3. The predictive performance of first-level leaners and the ensemble model

AUROC values of four first-level leaners and the ensemble model predicting AKI 12, 24, 36, and 48 h before onset as tested by eICU-CRD datasets (a) and ZG

datasets (b).

Table 2. Evaluation metrics of the ensemble model in testing cohorts

Hours to

AKI Sensitivity Specificity PPV NPV F1 Accuracy

Balanced

Accuracy

eicu-CRD Database

48 0.650 0.764 0.412 0.896 0.505 0.741 0.707

36 0.690 0.737 0.400 0.903 0.506 0.727 0.713

24 0.724 0.723 0.400 0.912 0.516 0.724 0.724

12 0.695 0.738 0.404 0.905 0.511 0.729 0.717

ZG Database

48 0.700 0.757 0.398 0.917 0.507 0.746 0.728

36 0.685 0.771 0.411 0.913 0.514 0.754 0.728

24 0.840 0.716 0.408 0.951 0.549 0.740 0.778

12 0.780 0.743 0.415 0.935 0.542 0.750 0.762

PPV: Positive Predictive Values; NPV: Negative Predictive Values; Balanced Accuracy: (Sensitivity + Sensitivity)/2.

ll
OPEN ACCESS

6 iScience 25, 104932, September 16, 2022

iScience
Article



volume are not sensitive enough in the early stages of AKI, there have been many published papers

exploring how to predict the risk of SAKI more quickly and more accurately. For example, a machine

learning model built by Dong et al. can accurately predict the onset of moderate to severe AKI in pediatric

wards 48 h before AKI occurrence (Dong et al., 2021). In the last few years, several novel biomarkers have

been identified to detect kidney injury and predict the development of AKI. A Chinese emergency cohort

study showed that serum cystatin C, kidney injury molecule-1, neutrophil gelatinase-associated lipocalin,

klotho, and fibroblast growth factor 23 are valuable in the early prediction of sepsis-related acute kidney

injury (Pei et al., 2022).

We conducted four XAI methods for the 12-h ensemble model on two randomly selected patients in an

externally validated database, and although there was slight difference in the feature orders, several indi-

cators always ranked high for predicting patients with S-AKI. Temperature, heart rate, hemoglobin, and

SpO2 always ranked in the top three contribution in predicting the occurrence of AKI in patients within

12 h, while creatinine, which is associated with AKI diagnostic criteria, interestingly, appeared only once

in the LIME algorithm. One potential explanation is that though individuals may appear unregular feature

values, the effect on final prediction of the ensemble model is limited since it contained multiple features

with complex algorithms. In addition, the XAI result also demonstrated that, for individualized prediction,

diagnostic criteria indicator may not always make most important contribution on prediction since in real-

world clinics, patients are facing complexing situations which cannot be represented by a single indicator.

In patients with sepsis, dysregulation of the infection can lead to an increase in body temperature. Patho-

genic microorganisms in the foci of infection, as well as the various toxins released by them, stimulate the

release of a large number of inflammatory mediators from monocytes, macrophages, neutrophils, and

endothelial cells, which has a direct toxic effect on the renal tubules, leading to renal dysfunction (Schrier

and Wang, 2004). While there is evidence to support the idea that early administration of appropriate anti-

biotic therapy and control of the source of sepsis infection reduces AKI risk, each 1-h delay in antibiotic

therapy increases the patient’s risk of AKI by approximately 40% (Bagshaw et al., 2009). Heart rate can

be influenced by inflammation, volume status, medications, and interventions, among other factors

(Lemm and Buerke, 2022). Hemoglobin and SpO2 can reflect the body’s blood supply and oxygen supply

Figure 4. Model explanations for the ensemble model

XAI methods for one S-AKI onset and one control patient are exhibited in (a) and (b); (a.1; b.1) represented LIME method; (a.2; b2) represented SHAP

method, (a.3; b.3) represented Break Downmethod; (a.4; b.4) represented iBreakDown method. Bar plots to right direction represented positive prediction

and bar plots to left direction represented negative prediction. Boxplots for iBreakDown represented the uncertainty of features contributions.
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status. Whether this is due to respiratory failure causing hypoxia leading to renal damage or to the hypo-

perfusion state of the kidney due to insufficient circulating blood volume and the redistribution of renal

blood flow, these factors are important in the occurrence and development of SAKI (Ricksten et al.,

2021). In non-AKI patient, we can also observe that lactate, which reflects the oxygenmetabolism and tissue

perfusion status of the body, and SpO2 are always in the forefront as well. Patients with low lactate and well

SpO2 are less likely to develop AKI. In the SHAP and Break down results, SpO2 = 100 was a positive pre-

dictor of AKI occurrence in patients with AKI, while in non-AKI patients, SpO2 = 92 was a predictor of nega-

tive prediction. It should be aware that the XAI result does not mean higher SpO2 is terrible for patients. We

can see that the PaO2 of the patient with AKI is 291 mmHg, which is an indication that the patient is being

treated with an external supply of oxygen, whether through a nasal cannula or mechanical ventilation. So

compared to our randomly selected non-AKI patient, the patient may have a high SpO2, but actually be in a

worse respiratory function state. When predicting the probability of AKI in patients with sepsis, the indica-

tors selected by themodel need to be analyzed together, rather than focusing on a single one, to arrive at a

more accurate probability. As such, in clinical practice, in addition to monitoring creatinine and urine

output as noted in diagnostic guidelines, clinicians should also pay comprehensive attention to changes

in the above indicators to ensure that appropriate, proactive treatment measures can be initiated,

improving the ability to predict and prevent the occurrence of SAKI.

Limitation of the study

It goes without saying that this paper also has some limitations. Firstly, this paper is a retrospective study,

and future prospective experiments are needed to verify the validity of the reported results. Secondly, only

four types of machine learning algorithms were used to build the ensemble model, leaving room for further

optimization in subsequent research. The principles underlying the stacking algorithm can be analyzed in

depth to identify valuable improvements and improve the prediction performance of this model. Finally,

the datasets for training and testing were integrated at each timepoint which may lose the richness of

the information and may also increase the impact of outliers on prediction to a certain extent therefore

further researches based on summarizing data in a period of time or longitudinal modeling are necessary.

Conclusions

This study developed an ensemble model for predicting the onset of AKI in patients with sepsis. The model

exhibited good performance in a multicenter, externally validated dataset.
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packages/caretEnsemble/index.html

ranger R package (v3.6.3) (Random
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Vector Machine construction)

R CRAN https://cran.r-project.org/web/
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Network construction)

R CRAN https://cran.r-project.org/web/
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xgboost R package (v3.6.3) (eXtreme

Gradient Boosting construction)

R CRAN https://cran.r-project.org/web/

packages/xgboost/index.html

DALEX R package (v3.6.3) R CRAN https://cran.r-project.org/web/

packages/DALEX/index.html
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Data and code availability

All data supporting the findings of this study can be downloaded from Physionet after completing the data

permission application and signing the relevant agreement, detailed in the key resources table.

The code to extract data using Structured Query Language can be seen in detail in the official website,

detailed in the key resources table. And some examples can be found in the supplementary material

(Figure S1).

Any additional information required to reanalyze the data reported in this paper is available from the lead

contact upon request.

METHOD DETAILS

Study design and setting

We retrospectively analyzed electronic health records (EHRs) data sourced from the Medical Information

Mart for Intensive Care-IV (MIMIC)-IV database (version 1.0): https://doi.org/10.13026/s6n6-xd98 (Johnson

et al., 2021), eICU Collaborative Research Database [eICU-CRD (version 2.0)]: https://doi.org/10.13026/

C2WM1R (Pollard et al., 2019) and Critical Care Database comprising patients with infection at Zigong

Fourth People’s Hospital [ZG (version 1.0)]: https://doi.org/10.13026/gz5h-e561 (Xu et al., 2021).The

MIMIC-IV contained over 40,000 ICU admissions from Beth Israel Deaconess Medical Center between

2008 and 2019, and eICU-CRD recorded over 200,000 admissions across 208 United States hospitals be-

tween 2014 and 2015(Wu et al., 2021; Yang et al., 2020). The ZG database contained 2,790 infection patients

seen between January 2019 and December 2020 at Zigong Fourth People’s Hospital in Zigong, China.

EHRs from the three databases were deidentified according to the Health Insurance Portability and

Accountability Act (HIPAA) Safe Harbor provision, removing patient name, phone numbers, address,

and other potentially identifiable variables from structured data sources. All data were downloaded

from Physionet (https://physionet.org/) after data permission applications were completed and relevant

agreements were signed.

Participants and outcome

All patients (in MIMIC-IV, eICU-CRD and ZG) diagnosed with sepsis according to The Third International

Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) were included (Singer et al., 2016). Excluded

patients diagnosed with AKI before sepsis onset and patients who stayed in the ICU for less than 48 hours.

In this study, EHRs data fromMIMIC-IV were selected as the training cohort to construct prediction models

which were then externally tested by the eICU-CRD and ZG databases. There was no data overlap between

the training and testing cohorts (Figure 1). The outcome of the present study is the onset of AKI (any stage)

in sepsis patients according to the definition of the Kidney Disease Improving Global Outcomes (KDIGO)

[Increase in serum creatinine byR 0.3 mg/dL (R26.5 mmol/L) within 48 h; an increase in serum creatinine to

R1.5 times baseline within the previous 7 days; urine volume%0.5 mL/kg/h for 6h](Ostermann et al., 2020).

Patients without AKI diagnoses were employed as control groups.

Feature selection

We endeavored to build a prediction tool that accurately predicts S-AKI using only data typically generated

in the ICU, allowing our model to be more easily implemented in clinics. Therefore, we only included de-

mographic data, laboratory test results and vital signs as potential model features. According to the

consensus of three clinical experts, 38 candidate features were extracted from the dataset that 48 hours

before AKI onset from MIMIC-IV database of demographic information, laboratory tests, and vital signs,

including gender, white blood cells (WBC), red blood cell (RBC), hemoglobin, hematocrit, mean corpus-

cular hemoglobin (MCH), mean cell hemoglobin concentration (MCHC), mean corpuscular volume

(MCV), red cell distribution width (RDW), platelet, anion gap, magnesium, bicarbonate, chloride, sodium,

potassium, phosphate, calcium, creatinine, glucose, international normalized ratio (INR), prothrombin time

(PT), partial thromboplastin time (PTT), lactate, PaCO2, PaO2, aspartate aminotransferase (AST), total bili-

rubin, alkaline phosphatase, alanine aminotransferase, pH, albumin, systolic blood pressure (SBP), diastolic

blood pressure (DBP), heart rate, respiratory rate, temperature, SpO2 were selected as candidate features.

We processed two-step method for feature selection. In the first step, the Pearson correlation coefficients

between candidate features were calculated and where correlation >0.7 was considered as collinearity in

present study (Figure S2). Based on the suggestion of clinicians, we removed RBC, Hematocrit, MCV,
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Chloride, PT and AST before step two of feature selection. After removing collinearity, we performed the

second step for feature selection by 5-fold cross-validation-based recursive feature elimination (RFE) (Fig-

ure S3). According to the RFE result, the model’s accuracy increased from 0.732–0.733 and fell to 0.718

when the number of features (N) was raised to 4. After that, the accuracy of the model gradually increased,

reaching its highest point at 0.748 (N = 17). When N exceeded 17, the accuracy of the model fluctuates

continuously. Eventually, 17 features [age, anion gap, creatinine, hemoglobin, mean cell hemoglobin con-

centration (MCHC), phosphate, international normalized ratio (INR), platelet, total bilirubin, potassium, pH,

lactate, PaO2, PaCO2, heart rate, temperature and SpO2] were ultimately included.

For AKI onset patients, the event time was AKI diagnosed time and for control group the event time was the

ICU discharge time (Cheng et al., 2017). Therefore, Observational windows were spanning 60-12 hours

before the event times and features were summarized every 12 hours at the end of each observation win-

dows (Table S1). If there were multiple measurements within 12 hours, the record nearest to the summary

time point was selected. Missing values for either training or testing cohorts were removed, leading to non-

identical sizes of original dataset, as well as of training and testing data sets for different time points

(Table S2).

Model construction and evaluation

We constructed an ensemble supervised machine learning model based on the ‘stacking’ method, which

refers to fitting multiple machine learning models on the same dataset and using secondary modeling to

learn how to best combine their predictions (Shtar et al., 2021). A single sub-model is called a first-level

learner, while the combined model is called a second-level learner. In the present study, we combined

SVM, RF, NNET and XGboost as first-level learners into our ensemble model. Grid searches were conduct-

ed for parameter tunning of all models based on 5-fold cross-validation (Figures S4–S7). Models with high-

est area under the receiver operating curve (AUROC) in cross-validation were selected as the optimal

model and the hyperparameters setting was showed in (Table S3).

Evaluation metrics related to the first- and second-level learners were generated using the external testing

cohorts extracted from the eICU-CRD and ZG databases. The optimal threshold of AKI probabilities was

used to output a confusion matrix and calculate the AUROC, as well as assess sensitivity, specificity, pos-

itive predictive value (PPV), negative predictive value (NPV), F1 score, accuracy and balanced accuracy.

Model explanation

For the ensemble model, due to the existence of a ‘‘black box,’’ it is necessary to introduce explanations of

the machine learning model (XAI) method. The most common methods in the XAI field that illustrated

model behavior on the level of a single prediction are (Local Interpretable Model-Agnostic Explanations)

LIME and (SHapley Additive exPlanations) SHAP, and Break Down which allow better interpretation of un-

structured data but have defects when interpreting tabular data. The idea of the Break Down method is to

capture the contribution of a single variable (Y) to the prediction by computing the shift for the expected

value of Y while fixing other variable values. If interactions are present, the computed value of the attribu-

tion of the Break Down method depends on the order of explanatory covariates that are used in calcula-

tions (Staniak and Biecek, 2018). SHAP algorithms based on the idea of averaging variables attribution

several numbers of possible orderings, which can be considered as a unification of a collection of different

commonly used techniques for model explanations. Compared to SHAP and Break Down, which determine

non-zero attributions for all variables, LIME locally approximates a black-box model with simpler sparse

explainers, which suits high-dimensional models. The main concept of local explanations, such as SHAP

and LIME is showing additive local representations, while complex models are usually non-additive and

had inconsistency XAI result (Adak et al., 2022). As a recently developed method, iBreakDown algorithm

which had similar spirits of SHAP and Break Down while not restricted to additive effects, therefore inter-

prets structured data more accurately (Zhang et al., 2022). Furthermore, as a non-additive method, iBreak-

Down can identify and display feature interactions while showing the uncertainty of the interpretation level.

We employed LIME, SHAP Break Down, and iBreakDown to explain the ensemble model in present study.

Model deployment

We observed that the ensemble model had the highest S-AKI predictive capacity. However, due to its high

complexity, the prediction speed of the ensemble model is highly dependent on the hardware used, mak-

ing it challenging to deploy in a real-world ICU setting. The XGboost algorithm was the most highly
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weighted first-level learner in the ensemble model and exhibited higher predictive performance than the

ensemble model 48-12 hours before AKI onset in the two-testing cohort (Figure S8). Therefore, we built an

online risk calculator based on the XGboost algorithm trained on 12 hours of data. Any user can access our

online calculator through the website.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed using R software (The R Project for Statistical Computing), version

3.6.3. Ensemblemodels were implemented via ‘caret’ and ‘caretEnsemble’ packages. Online risk calculator

was developed by ‘Shiny’ package. Descriptive statistics for patients included median (IQR) and counts

(percentages) for continuous and categorical variables, respectively. Continuous variables across data-

bases were compared by the Kruskal-Wallis test, and the Chi-square test compared categorical variables.

A two-sided p value of <0.05 was considered statistically significant.
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