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Purpose: Although the knowledge-based dose-volume histogram (DVH)

prediction has been largely researched and applied in External Beam

Radiation Therapy, it is still less investigated in the domain of brachytherapy.

The purpose of this study is to develop a reliable DVH prediction method for

high-dose-rate brachytherapy plans.

Method: A DVH prediction workflow combining kernel density estimation

(KDE), k-nearest neighbor (kNN), and principal component analysis (PCA) was

proposed. PCA and kNN were first employed together to select similar patients

based on principal component directions. 79 cervical cancer patients with

different applicators inserted was included in this study. The KDE model was

built based on the relationship between distance-to-target (DTH) and the dose

in selected cases, which can be subsequently used to estimate the dose

probability distribution in the validation set. Model performance of bladder

and rectum was quantified by |DD2cc|, |DD1cc|, |DD0.1cc|, |DDmax|, and |DDmean| in

the form of mean and standard deviation. The model performance between

KDE only and the combination of kNN, PCA, and KDE was compared.

Result: 20, 30 patients were selected for rectum and bladder based on KNN and

PCA, respectively. The absolute residual between the actual plans and the

predicted plans were 0.38 ± 0.29, 0.4 ± 0.32, 0.43 ± 0.36, 0.97 ± 0.66, and

0.13 ± 0.99 for |DD2cc|, |DD1cc|, |DD0.1cc|, |DDmax|, and |DDmean| in the bladder,

respectively. For rectum, the corresponding results were 0.34 ± 0.27, 0.38 ± 0.33,

0.63 ± 0.57, 1.41 ± 0.99 and 0.23 ± 0.17, respectively. The combination of kNN,

PCA, and KDE showed a significantly better prediction performance than KDE

only, with an improvement of 30.3% for the bladder and 33.3% for the rectum.

Conclusion: In this study, a knowledge-based machine learning model was

proposed and verified to accurately predict the DVH for new patients. This

model is proved to be effective in our testing group in the workflow of HDR

brachytherapy.
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1 Introduction
Cervical cancer is the fourth most common cancer in women

globally (1). The treatment of cervical cancer relies on a

combination of external radiotherapy and HDR brachytherapy

to increase the dose being delivered to the primary tumor (2, 3).

Numerous studies have shown that high-dose-rate

brachytherapy (HDR-BT) is strongly correlated with patients’

survival rates and plays an essential curative role in cervical

cancer (4, 5). It allows delivery of highly localized doses to the

target and excellent sparing of surrounding organs at risk

(OARs). High-quality planning is a critical component in

gynecologic BT treatment. However, unlike in external-beam

radiation therapy (EBRT), the planning workflow in BT

necessitates the collaboration of multidisciplinary teamwork in

the shortest possible time to minimize the patient’s discomfort

and movement. The pressures of a fast-paced and accurate

planning will put the entire workflow under stress, raising the

risk of planning errors. Additionally, the experience and

preference of brachytherapy planners, as well as clinical

expertise and intuition would result in large inter- and intra-

plan quality variations, further introducing more uncertainties

to the BT treatment.

In the last decade, Knowledge-based planning (KBP), a new

set of data-driven methodologies has been developed to improve

the quality and efficiency of EBRT planning based on the

previous high-quality clinical plans (6–9). Many researchers

have demonstrated KBP’s strength and validity in guiding

planners to achieve optimal dose-volume histograms (DVHs)

for OARs in treatment planning (10–12). KBP methods in EBRT

are usually classified into two major categories: (a) case and

atlas-based methods; and (b) statistical modeling and machine

learning methods. In general, case and atlas-based methods

utilize geometric features to find the best-matched prior cases

from a database to improve the current planning. The statistical

modeling and machine learning approaches try to build dose

prediction models based on regression models such as stepwise

regression (13, 14), multivariate linear regression (15–17),

support vector regression (18, 19), and logistic regression (20,

21). After years of development, KBP methods have been widely

investigated and even clinically implemented in commercial

treatment planning systems. RapidPlan™, a commercial

software module integrated into Eclipse released by Varian

(Varian Medical Systems, Palo Alto, CA, USA), is one

such system that predicts the achievable doses and specifies

the optimization objectives needed to achieve them based on the

KBP method. The success of RapidPlan™ has demonstrated the

KBP’s practicability and effectiveness in EBRT (22, 23).

All these achievements verified the success KBP achieved in

model accuracy, stability, and feasibility in clinical application in

the area of EBRT. As mentioned above, the unique clinical

workflow in BT makes it vulnerable to suboptimal plans. Quality
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control tools such as KBP are especially important, and

promising in detecting suboptimal plans in BT. Moreover,

current recommendations and guidelines have provided

various dose constraints for BT planning. These population-

based guides mainly concentrate on ensuring normal tissues do

not exceed the dose limits, rather than guaranteeing individual

patient receive the optimal dose distribution for their anatomy

(24). Therefore, patient anatomy-based KBP, which could be

used as patient-specific dose predictions to quantify currently

unknown quality variations, would be particularly useful

for brachytherapy.

However, despite great success achieved in EBRT, KBP is

still far relatively unexplored in HDR brachytherapy due to some

exceptional challenges in brachytherapy. The main reason is that

the dose distribution in BT plans is highly constrained around

the inserted applicator, resulting in insufficient freedom of dose

modulation in planning. To the best of our knowledge, only two

studies have investigated the possible application of KBP in

brachytherapy, and both focused on tandem and ovoid

applicator in an intracavitary setting. In Yusufaly et al.’s study

(25), the authors used an established external-beam knowledge-

based DVH estimation method to predict D2cc in OARs. Zhou

et al. (26) proposed a support vector machine model for dose

prediction and effectively predicted D2cc. Both studies

demonstrated good results in predicting critical brachytherapy

dose metrics using intracavitary brachytherapy applicators.

Currently, only Tandem and Ovoid applicators were

investigated in the knowledge-based planning strategies.

However, various applicators with different geometry and

source position would increase the dose distribution’s

versatility and complexity.

In this study, we proposed a KBP method to estimate the

OAR dose distribution in HDR-BT treatment. To our

knowledge, this work is the first application of knowledge-

based dose estimation in HDR-BT with both intracavitary and

interstitial cases included.
2 Method

2.1 Prediction pipeline

The study consists of two main tasks: (a) training dataset

selection and (b) model training and validation. Figure 1 shows

an overview of the entire workflow. Briefly, we first performed

the principal component analysis (PCA) for all the training

cases. Then, we retrieved the top k (bladder: k=30, rectum: k=20)

plans from the training database based on PCA results using the

k-nearest neighbor (kNN) algorithm. Cases in the new dataset

have the most similar features to the cases in the validation

dataset. These selected cases are then used to create a new

training dataset to build training models. Subsequently, we

used kernel density estimation (KDE) to develop a robust
frontiersin.org
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prediction model based on the selected k plans. After training, a

series of validation tests were conducted.
2.2 Patient database

79 HDR cervical patients previously treated in our center

from 2019 to 2021 were included in this retrospective study.

Each patient consists 2-4 fraction, with a total of 216 cases/

fractions were involved. In this study, a ‘case’ indicates one single

fraction containing a unique simulation CT and a treatment

plan. All the cases were randomly divided into two datasets, with

170 cases in the training dataset and 46 cases in the

validation dataset.

OARs and HRCTV were contoured based on CT images

acquired at a GE 128 slice CT (Discovery, GE Healthcare, Inc.)

using a tube setting of 120kV and 60mAs. All of the scans used

identical parameters for image acquisition and reconstruction.

The slice thickness and slice increment were 2.5*2.5mm. Each

patient was treated with an applicator set among Tandem and

Ovoid applicator (T+O), Ovoid applicator alone, Vaginal Multi-

Channel applicator, 3D printed applicators, free needles, and a

tandem applicator with up to 10 interstitial needles (T+N). The

overview of the treatment characteristics is shown in Table 1.

According to the OARs dose constraint and the prescribed

dose for the target (HR-CTV) recommended by the GEC-

ESTRO, and the American Brachytherapy Society (ABS), all

the treatment plans were created using the Oncentra treatment

planning (Elekta, Stockholm, Sweden) system and based on TG

43 algorithm. The HRCTV was given an 80–90Gy EQD2

(biologically equivalent dose in 2-Gy fractions) prescription

dose, assuming a/b = 10. The bladder was given a maximum

D2cc of 90Gy EQD2, and the rectum was given a maximum D2cc

of 75 Gy EQD2, assuming a/b = 3. The prescription dose in

HDR brachytherapy ranges from 4-6 Gy/fraction (Table 1). In

the treatment planning, we use a graphical optimization

approach to repeatedly optimize the plan until the dose

administered to 90% of the HRCTV reached the prescription

dose. The dose distribution in each plan was scrutinized by

physicians and physicists to ensure the dose distribution was

clinically acceptable before treatment.
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2.3 DVH prediction modeling

2.3.1 Feature reduction
Principal component analysis (PCA) has been applied to the

brachytherapy plans to reduce the data dimensions and the

model complexity (18, 27). PCA enables the transformation of a

large set of variables into a smaller one containing most of the

information. In this study, four features closely related to the

dose distribution were processed using PCA to further reduce

their dimensions: HRCTV volume, the distance between the

centroids of the D2cc and the HRCTV, prescription dose, and the

average distance from D2cc to the margin of the HRCTV. PCA

simplifies the diversity of the dose distribution into a few

principal component directions, and the individual variations

can be represented by a small number of principal components.

In our study, the first three principal components account for

more than 90% of the variance (Figure 2) in both bladder and

rectum, and thus were employed in the subsequent kNN

similarity matching process for case selection.
TABLE 1 Treatment characteristics of included patients.

Training Dataset Test Dataset

Applicator Type

Tandem + Needles 26 8

Vaginal 34 8

Tandem + Ovoid 45 15

Ovoid 28 5

Free Needles 26 6

3D_Printed 11 4

Total 170 46

Prescription Dose

4 10 5

4.5 5 2

5 40 12

5.5 15 3

6 100 24

Total 170 46
Prescription dose and applicator types are grouped based on data from all included
fractions(cases) per patient.
FIGURE 1

Pipeline of the DVH prediction.
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2.3.2 k-Nearest similarity matching
To take full advantage of the proposed feature, we

incorporated k-Nearest Neighbors (kNN) similarity matching

(28), a known robust non-parametric regression method to

reduce model complexity. The purpose of kNN is to select a

subset of training cases that matches closest to the validation

case to create a new training dataset for subsequent model

training. After recasting the training dataset along the

principal component axes, the Euclidean distance between the

single case in the validation set and each case in the training

dataset was calculated separately in three principal component

dimensions. kNN was thus used to retrieve k cases having the

smallest Euclidean distance (bladder: k=30, rectum: k=20) in the

training dataset.

2.3.3 Kernel density estimation
Considering that the determinant factor for dose levels near

the HRCTV is the distance to the HRCTV, the histogram of

distances from voxels in OARs to the HRCTV surface, which is

the distance-to-target histogram (DTH), is a natural choice for

predictive features. Thus, we implemented kernel density

estimation (29, 30) for model training in this study. In KDE,

for each voxel inside the OAR, we measure the closest distance

from the voxel to the HRCTV boundary, and the distance was

denoted by xi = x1, x2,… xi (Figure 3). The second step was to

estimate the joint probability PD, xi (d, xi) of the dose d and the

distance x, in which d was the corresponding dose in each voxel

inside the OAR. Thirdly, we estimated the distance probability

distribution PXi (xi), and calculated the conditional probability

through: PD|xi (d|xi) = PD, Xi (d, xi)/PXi(xi)

In the prediction part, we estimated the new distance

distribution probability P#
xi(xiÞ for each case from the
Frontiers in Oncology 04
validation set. Based on the calculated conditional probability

in the training process, the prediction of the dose distribution

for a new patient in the validation set can be calculated as: P#
D

(d) =o
i
PDjXi(djxi)  ·  P#

xi(xi). In the final step, DVH was

defined as a function of the dose d and the probability that

a random variable D was larger than or equal to d:

DVHðd)  =  1 − PðD ≤ d)  =  1 −  
Z d

0
P#
Dðs)ds.
2.4 Model validation

To quantitatively measure the prediction accuracy of the

proposed model, we set the actual clinical plan DVHs as a

baseline for comparison. Specific dose-volume indices including

D2cc, D1cc, D0.1cc, Dmax, and Dmean, were extracted and analyzed,

where Dxcc represented the minimum dose received by x cm3 of

an OAR. Absolute residuals of predicted value and the actual

value (|DD2cc|, |DD1cc|, |DD0.1cc|, |DDmax|, and |DDmean|) were

calculated to assess the level of agreement between the predicted

DVHs and the actual plan DVHs. Standard deviation (s) over
the residuals was considered a measure of model error. The

mean squared error (MSE) was calculated for all planned and

predicted D2cc values.
2.5 Statistical analysis

Significant differences were determined using a two-sided

paired t-test. Correlations between predicted parameters and

actual parameters were tes ted by performing the

Pearson correlation test. Kruskal-Wallis ANOVA was
FIGURE 2

Scree plots of the bladder (left) and rectum (right) after PCA was applied to the training database. The percentage of variance represented by
individual PC is plotted in descending order as blue bars, and the cumulative total is represented by red lines.
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employed to identify differences among various applicators. All

statistical data analyses were performed using Python.
3 Results

For each test case, we built a model trained with the selected k

cases (bladder: k=30, rectum: k=20) from a total of 170 training

cases. The model accuracy was evaluated using a separate

validation dataset consisting of 46 cases. The kernel density

model based on 170 cases is shown in Figure 4. There was no

statistically significant difference between the predicted and actual

D2cc values for the bladder (p = 0.74), rectum (p = 0.57) in the

validation group. As shown in Table 2, the MSE value of D2cc for

the bladder was 0.23, and for rectum was 0.18. In bladder, the

absolute difference between predicted plans and actual plans in

D2cc, D1cc, D0.1cc, Dmax and Dmean, were 0.38 ± 0.29, 0.4 ± 0.32,

0.43 ± 0.36, 0.97 ± 0.66 and 0.13 ± 0.09, respectively. For the

corresponding rectum, the absolute difference values were 0.34 ±

0.27, 0.38 ± 0.33, 0.63 ± 0.57, 1.41 ± 0.99 and 0.23 ± 0.17,

respectively. The model prediction error in D2cc to the bladder,

and rectum was within 0.3 Gy, as quantified by the standard

deviation (Figure 5).
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The model-predicted DVHs were compared to their

corresponding DVHs in the actual plans to assess the model’s

prediction accuracy. The DVHs of one example in the validation

set were plotted and compared, as shown in Figure 6.
4 Discussion

Knowledge-based planning in EBRT has demonstrated its

effectiveness across multiple disease sites. However, it is still less

investigated in high-dose-rate brachytherapy. This study

developed a KBP method for DVH prediction in HDR-BT.

Theoretically, such a KBP model can be trained using gold-

standard datasets and serve as quality assurance tools in the

clinic to identify suboptimal plans in treatment planning

prospectively. Therefore, this KBP method has a great

potential to assess the treatment plan quality and offer

guidance for following plan optimization.

Different from previous studies, in which only T+O applicator

was investigated (25, 26, 31), we involved different applicator sets

including T+O, Vaginal Multi-Channel applicator, Ovoid

applicator, free needles, 3D printed applicators, and T+N

applicators. Overall, our results show slightly better accuracy in

D2cc than Yusufaly et al. (25): bladder s was 0.36 Gy vs. 0.46 Gy,
FIGURE 3

Illustration of the KDE method in the brachytherapy treatment planning. For each voxel in the OAR, xi is the distance between this voxel and its
closest voxel on the HRCTV surface and di is the dose received in each voxel inside the OAR.
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rectum s was 0.42 Gy vs. 0.47 Gy. (Since Yusufaly used relative

error, here we also used the results of relative error for comparison.)

To evaluate whether the applicator types would affect the predictive

accuracy, we applied the Kruskal-Wallis analysis of variance

(ANOVA) test in the validation dataset. The ANOVA revealed
Frontiers in Oncology 06
that D2cc has no significant statistical difference among different

applicators (p=0.109). A possible explanation for this might be that

the combination of kNN and PCA selected similar training cases for

each validation case, reducing the variation in dose distribution

caused by different applicators.
TABLE 2 Model performances for bladder and rectum.

MSE (D2cc) |DD2cc| |DD1cc| |DD0.1cc| |DDmax| |DDmean|

Bladder 0.23 0.38 ± 0.29 0.4 ± 0.32 0.43 ± 0.36 0.97 ± 0.66 0.13 ± 0.09

Rectum 0.18 0.34 ± 0.27 0.38 ± 0.33 0.63 ± 0.57 1.41 ± 0.99 0.23 ± 0.17
fro
The mean squared error and the absolute difference between predicted values and actual values were calculated.
FIGURE 5

Actual vs. predicted D2cc for the bladder(left) and rectum(right), as well as the Pearson correlation coefficients (r), standard deviation (indicated
by s as well as light pink shaded area). Blue lines indicate the theoretically ideal predictions.
BA

FIGURE 4

(A, B) depict the KDE model for bladder(left) and rectum(right) of 170 training cases.
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kNN was used to select k plans in the training dataset

that mostly resemble the case in the validation dataset for

model training. Once we determined the k value, we would

neglect or hardly consider the information of other nearest

neighbors. Thus, reducing the number of cases for training

naturally comes at the expense of accuracy. The benefit of the

case reduction is that smaller data set is easier to explore and

analyze. It eliminates redundant and irrelevant variables and gives

rise to an easier and faster training process in machine learning. A

proper k value is crucial for model training and an inappropriate k

value may yield unstable performance. To select the most

appropriate k value, we run the kNN algorithm on 20 test cases

with k values ranging from 10-40. The k value achieved the best

model performance in D2cc was used in model training (Table 3).

Thus, we select k=30 for bladder and 20 for the rectum.

PCA was combined with kNN for better similarity matching

in case selection. The main function of PCA was to reduce

feature dimensionality in an interpretable way, while preserving
Frontiers in Oncology 07
as much information as possible at the same time. In our study,

the first three principal components were used for kNN

similarity matching. To verify the effectiveness of the PCA and

kNN in model performance, we tested two different methods,

KDE only, and KDE combined with kNN and PCA, separately.

As shown in Table 4, results showed that the all-inclusive

approach which combined KDE, kNN and PCA achieved the

best D2cc performance for both bladder and rectum. The all-

inclusive method showed a significantly better prediction

performance than KDE only, with an improvement of 30.3%

for bladder and 33.3% for rectum. Figure 7 depicts one example

predicted DVHs and actual DVHs (ground truth) for bladder

and rectum. The DVHs predicted using all-inclusive method had

the lowest difference from the actual DVHs.

DVH prediction modeling is often a complex, not a simple

problem. There are still several sources of error limiting the model"s

ability to predict a satisfactory DVH. In this investigation, the main

error came from the nonconformity of the HRCTV dose

distribution, and 100% prescription dose line (contour of V100%).

In KDE, since we do not have the contour of 100% prescription

dose line for validation cases, we use HRCTV instead. We

calculated the probability distribution based on the assumption

that HRCTV achieved exactly 100% prescription dose. However,

the dose distribution inside the HRCTV was determined by the

source dwell position and dwell time, and the dose distribution in

brachytherapy are highly constrained around applicators. The

HRCTV and 100% prescription dose line can be slightly
FIGURE 6

One example in the validation set demonstrating actual (solid line) and predicted (dotted line) DVHs. Orange lines represent the bladder, and
green lines represent the rectum.
TABLE 3 Mean square error of predicted D2cc using different k
values.

k Bladder Rectum

10 0.283 0.094

20 0.215 0.091

30 0.210 0.106

40 0.215 0.110
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inconsistent if the case has inadequate or inappropriate applicator

positions in some slices, especially in the slices at the beginning or

the end of HRCTV. That is to say, the bias between the HRCTV

contour and the 100% prescription dose line would cause error in

the subsequent dose probability estimation. Thus, we applied a

contour correction method to adjust the HRCTV contour.

Mean  =  
1
no

 1
r2i,j

where i = 1, 2, 3…n, n is the number of points in the HRCTV

boundary, j = 1, 2, 3… m, m is the number of applicators, ri,j
represents the distance between the point in the HRCTV

boundary to the applicator.

Figure 8 shows the optimized HRCTV contour based on the

correction method. The Dice Similarity Coefficient (DSC) value

was used to evaluate the matching degree after correction. The

DSC values between the optimized contour and 100% prescription

dose line indicate a slightly better match degree than the original

HRCTV contour, but ultimately these corrections made unstable

and modest improvements ranging from -0.023-0.057 in D2cc

prediction accuracy. Thus, we did not integrate this correction

into our machine learning algorithm. This limitation will become

the direction of our future research.

To sum up, this work presents a KBP method to predict

DVH for OARs in brachytherapy treatment. Patient anatomical

features in previously treated cases were learned to predict
Frontiers in Oncology 08
DVHs for new patients. The predictions based on the

individual patient geometry could motivate planners to go

beyond the dosimetric constraints imposed by protocols to

improve planning and provide better dose sparing for OARs.

In our study, the entire process, including case selection, model

construction, and DVH prediction, can be completed within one

minute, which is acceptable in clinical application. Initial results

have shown great potential in making this KBP model a quality

control tool in treatment planning. Future studies will focus on

the feasibility verification of using this model as a quality control

tool in clinical practice. Another research direction is to re-plan

those plans with D2cc exceeding the prediction interval to

improve plan quality and facilitate customized treatment

planning for each patient.
5 Conclusion

In this paper, we proposed a machine learning method

based on KDE, kNN, and PCA to predict the DVH in HDR-

BT. The DVH for a new treatment plan was estimated using

patient-specific anatomical information and an estimation

model trained from prior plans. To our knowledge, this is

the first KBP method that can predict the DVHs in patient

who was treated with interstitial applicators, intracavitary

applicators or both. The preliminary results have verified the
TABLE 4 Comparison of model performances using different methods.

MSE (D2cc) |DD2cc| |DD1cc| |DD0.1cc| |DDmax| |DDmean|

Bladder KDE 0.27 0.44 ± 0.28 0.47 ± 0.29 0.5 ± 0.42 2.1 ± 1.9 0.32 ± 0.2

KDE+kNN+PCA 0.23 0.38 ± 0.29 0.4 ± 0.32 0.43 ± 0.36 0.97 ± 0.66 0.13 ± 0.09

Rectum KDE 0.27 0.43 ± 0.31 0.45 ± 0.34 0.54 ± 0.49 0.93 ± 0.72 0.31 ± 0.23

KDE+kNN+PCA 0.18 0.34 ± 0.27 0.38 ± 0.33 0.63 ± 0.57 1.41 ± 0.99 0.23 ± 0.17
fro
The mean squared error and the absolute residual between predicted values and ground truth were calculated.
BA

FIGURE 7

Comparison of DVHs in actual plan and the predicted DVHs using different methods: (A) bladder, (B) rectum. The method using KDE, kNN, and
PCA produced the most accurate results when compared to actual DVHs.
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model’s effectiveness in OAR dose estimation and its potential

in providing guidance for brachytherapy planning in

the future.
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