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Aim. The incidence of Alzheimer’s disease (AD) has been increasing in recent years, but there exists no cure and the pathological
mechanisms are not fully understood. This study aimed to find out the pathogenesis of learning and memory impairment, new
biomarkers, potential therapeutic targets, and drugs for AD. Methods. We downloaded the microarray data of entorhinal cortex
(EC) and hippocampus (HIP) of AD and controls from Gene Expression Omnibus (GEO) database, and then the differentially
expressed genes (DEGs) in EC andHIP regions were analyzed for functional and pathway enrichment. Furthermore, we utilized the
DEGs to construct coexpression networks to identify hub genes and discover the small molecules which were capable of reversing
the gene expression profile of AD. Finally, we also analyzedmicroarray andRNA-seq dataset of blood samples to find the biomarkers
related to gene expression in brain. Results. We found some functional hub genes, such as ErbB2, ErbB4, OCT3,MIF, CDK13, and
GPI. According to GO and KEGG pathway enrichment, several pathways were significantly dysregulated in EC and HIP. CTSD
and VCAM1 were dysregulated significantly in blood, EC, and HIP, which were potential biomarkers for AD. Target genes of four
microRNAs had similar GO terms distribution with DEGs in EC and HIP. In addtion, small molecules were screened out for AD
treatment. Conclusion. These biological pathways and DEGs or hub genes will be useful to elucidate AD pathogenesis and identify
novel biomarkers or drug targets for developing improved diagnostics and therapeutics against AD.

1. Introduction

Alzheimer’s disease (AD) is the most common form of
dementia related to age, accounting for 50%–60% of all cases
and is characterized by a progressive decline in memory
associated with other cognitive deficits: judgement, abstrac-
tion, language, attention, and visuoconstructive abilities [1].
Approximately 36 million people were affected by ADworld-
wide, and it is estimated that, by 2050, the number of cases
will rise to 110 million [2]. However, there is no cure for
AD and the pathological mechanisms of AD are not fully
understood now.

Genetic linkage analyses of familial cases have led to the
identification of causative mutations in three genes, APP,
PSEN1, and PSEN2, as well the identification of a high-risk

factor: the E4 allele of APOE [3]. More recently, several
independent genome-wide association studies (GWAS) iden-
tified 21 new genetic loci by CLU, PICALM, CR1, BIN1,
CD33, ABCA7, MS4A6A, MS4A4E, CD2AP, EPHA1, HLA-
DRB5/DRB1, SORL1, PTK2B, SLC24A4, ZCWPW1, CELF1,
FERMT2, CASS4, INPP5D,MEF2C, and NME8 [3]. But most
genes affect A𝛽 production and clearance. It remains to be
seen whether additional pathways are identified or whether
most genes will fall into the already identified pathways and
cellular mechanisms [4].

Brain regions show different susceptibilities to the patho-
logical and metabolic characteristics of AD [5]. Entorhinal
cortex (EC) and hippocampus (HIP) are thought to be
important regions in differentiating AD from normal aging,
and the earliest neuropathological changes in AD appear in
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Figure 1: The workflow for analysis of differentially expressed genes (DEGs) and finding out the pathogenesis of learning and memory
impairment, new biomarkers, potential therapeutic targets, and drugs for AD.

EC and then progress to HIP [6, 7]. Furthermore, memory
and learning formation depends on the presence of an intact
entorhinal–hippocampal circuit [8]; therefore analyzing gene
expression of EC and HIP is beneficial for identifying biolog-
ical pathways related to memory and learning perturbed in
AD.

In this study, our objective is to find out the pathogen-
esis of learning and memory impairment, new biomarkers,
potential therapeutic targets, and drugs for AD.Theworkflow
was summarized in Figure 1. The gene expression profiles
on AD and control (CT) samples from Gene Expression
Omnibus (GEO) database [9] were downloaded, and then the
DEGs in EC and HIP regions were analyzed for functional
and pathway enrichment analysis of Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
to elucidate the pathological mechanism of AD in EC and
HIP regions. We also utilized the DEGs in EC and HIP
to construct coexpression networks to identify hub genes,
and then these genes were uploaded to Connectivity Map
(CMAP) [10] to discover the small molecules which were
capable of reversing the gene expression profile of AD.
Blood has the property of easy accessibility, sufficiently high
specificity and sensitivity, and low costs [11]. Therefore, we
further analyzed the DEGs in the blood samples of microar-
ray and RNA-seq dataset to find the biomarkers in blood
and the relationship with gene expression in brain, which
could provide important information for AD diagnosis and
therapy.

2. Methods

2.1. Gene Expression Profiles of AD. Gene microarray tech-
nology allows massively parallel analysis of most genes

expressed in a tissue. The microarray data used in the study
were obtained from GEO database [12]. The primary dataset,
containing expression data of EC and HIP, was downloaded
fromGEO database (GEOAccession Number: GSE5281) [13]
including 10 AD and 13 CT samples. GSE5281 was selected
based on rational experiment design with a very good
quality and reliability and provided plenty of information for
data mining [14, 15]. The platform was GPL570 (Affymetrix
HumanGenomeU133 Plus 2.0 Array). To validate of findings
from GSE5281, we used another gene expression data of EC
and HIP from GSE48350, which is including 39 CT and 15
AD samples in HIP and 42 CT and 19 AD samples in EC,
respectively [16].

Gene expression profiles of peripheral blood mononu-
clear cells were obtained from GSE4226 [17], which included
14 normal elderly controls (NEC) and 14 AD subjects to
find the potential biomarker in blood sample. MicroRNAs
(miRNAs) have also demonstrated their potential as nonin-
vasive biomarkers from blood for a wide variety of human
pathologies. Therefore, noncoding RNA profiling by high
throughput sequencing from GSE46579 [18] and expression
profiling by RT-PCR from GSE90828 [19] were analyzed
for plasma microRNA biomarker. The blood samples of
GSE90828 were collected from 30 age-matched controls
(normal, 12 males and 18 females, mean age of 70.4) and 23
MCI (whole name) patients (11 males and 12 females, mean
age of 72.8), and blood samples of GSE46579 included 48 AD
patients and 22 unaffected controls.

2.2. Data Preprocessing and Differential Gene Analysis. The
original expression profiles in CEL (whole name) format of
GSE5281, GSE48350, GSE4226, and GSE90828 were trans-
formed into a matrix using affy package in R language. The
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median method was used for normalizing the expression
matrix. Subsequently, the Limma package was utilized to
identify the differential genes between the AD and CTs. The
threshold for the 𝑃 value was set to 0.05 and |log

2
FC| was

set to 1. Differential expression analysis of GSE46579 was
conducted using edgeR with a threshold of the 𝑃 value ≤ 0.05
and an absolute value of log

2
FC ≥ 1 being used to judge the

significance of the gene expression differences.

2.3.WeightedGeneCoexpressionNetworkAnalysis (WGCNA).
WGCNA was performed in R using the WGCNA package
[20]. The EC and HIP regions microarray data of GSE5281
was considered as a primary source for the analysis. The net-
work construction started by calculating robust correlations
between all genes across all relevant samples. The correlation
adjacency matrix was increased to the power 𝛽 = 16 based
on scale-free topology criterion. The power parameter was
selected to amplify the strong connections between genes and
penalize the weaker connections.

The first principle component was considered as the
module eigen gene (ME), which was representing the highest
percent of variance for all the genes in a module. Module
membership (kME) measured the correlations between each
gene and eachME.The within-module connectivity (kin) for
each gene was determined by summing the connectivity of
that gene with each other gene set in that module [21, 22].
Genes, which have significant correlations with MEs and
high within-module connectivity, were considered as hub
genes of the modules. The hub genes were confirmed using
Cytoscape’s cytoHubba plugin [23].

2.4. GO Biological Pathway and KEGG Pathway Enrichment
Analysis. We extracted the DEGs of EC and HIP for GO
biological pathway and KEGG pathway enrichment. GO
provides a useful tool to look for the common traits that are
shared within a list of genes, which are represented by the
GO terms associated with a large portion of the genes in the
gene list [24]. KEGG is a useful online pathway archive that
allows experimental data detailing the molecular functions
of proteins to be organized in a useful, consistent format
that supports computational mining and querying [25].
The Database for Annotation, Visualization and Integrated
Discovery (DAVID) consists of an integrated biological
knowledgebase and analytic tools aimed at systematically
extracting biological meaning from large gene lists to assist
investigators to annotate remarkable genes of specific func-
tion [26]. In this study, DEGs were subjected to GO and
KEGG analysis with DAVID Bioinformatics Resources 6.7.
EASE score (or called 𝑃 value) of 0.05 was used as cutoff
criteria.

Gene Set Enrichment Analysis (GSEA) was also applied
to identify significant pathways in GSE5281 and GSE48350
based on GO Biological Process (GO BP) and KEGG path-
way. This method specified whether the pathways were
randomly distributed at the top or bottom of the detected
genes. The coefficients of Spearman correlation between
genes and sample label were defined as the weight of genes
[27]. Statistical significance was assessed by comparing the
enrichment score to enrichment results generated from 1000

random permutations of the gene sets to obtain 𝑃 values
(nominal 𝑃 value). The significant level of pathways was
considered with levels of FDR ≤ 0.1 and 𝑃 ≤ 0.05. FunRich
2.1.2 was used to compare the varied genes in blood and in
EC or HIP by GO terms.

2.5. Screening of Drug-Like Small Molecules. The hub genes
in the interaction network were divided into two groups
of upregulated and downregulated genes. By compar-
ing the expression pattern similarities of the differential
genes and genes perturbed by small molecules in the
CMAP (https://www.broadinstitute.org/cmap/#) [28], small
molecules involved in the disease were identified. Small
molecules with a score >0.7 were considered to be associated
with the disease.

3. Results

3.1. Screening of DEGs. To extract the gene expression data
(GSE5281) on patients with AD compared with CTs from
GEOdatabase, we utilized LimmaRpackage to analyzeDEGs
between 10 AD and 13 CT samples. According to the cutoff
criteria, 3008 DEGs including 1365 upregulated and 1643
downregulated DEGs were identified in EC, while 1232 DEGs
including 638 upregulated and 594 downregulated DEGs
were identified inHIP (Figure 2). In addition, 283 overlapping
DEGs were found in the two regions.

3.2. Dysfunctional Coexpression Network Construction.
WGCNA was used utilizing the coexpression of the
DEGs. The module preservation function evaluates the
module preservation by implementing various network
based statistics. 𝑍-summary is one such statistic measure
summarizing the composite preservation.The 𝑍-summary >
10 indicated evidence of strong preservation of the modules
across all the datasets. Based on WGCNA convection, the
top three enriched modules of EC were named as turquoise,
brown, and blue, and there was one enriched module of HIP,
named as turquoise (Figure 3). In the study, adjacency cutoff
value of WGCNA was set to 0.75 so that a relatively large
number of nodes could be retained in coexpression network
and the accuracy of prediction of relationship of DEGs
can be ensured at the same time. Degree, the topological
parameter which determines the connectedness between the
nodes, was chosen as the parameter for hub gene selection.
The top 10 genes with high degree identified by WGCNA in
all the modules were reported as hubs by cytoHubba. Finally,
two separate coexpression networks of EC and HIP were
built and visualized by Cytoscape 3.2.1 (Figure 4).

3.3. Gene Ontology and Pathway Enrichment Analysis. To
explore GO BP and KEGG pathways in EC and HIP, we
studied DEGs in these two regions using DAVID. A total
of 97 GO BP terms and 7 KEGG pathways dysregulated
and 110 GO BP terms and 7 KEGG pathways upregulated
with 𝑃 value < 0.05 were enriched in EC and HIP regions,
respectively. The KEGG pathways and GO BP terms were
shown in Figures 5 and 6, respectively.

https://www.broadinstitute.org/cmap/
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Figure 2: The volcano plots for EC (a) and HIP (b). The red and green spots represent upregulated and downregulated DEGs, respectively.
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Figure 3: Dendrograms produced by average linkage hierarchical clustering of genes based on topological overlaps in theGSE5281.The extent
of gene conservation in the datasets was represented by the same module colors.

DEGs in EC and HIP regions were also analyzed by the
GSEAmethodwhich uses a database of several thousand pre-
defined sets of genes. Genes in the same set share pathway or
localization. GSEA is also able to detect small, but significant
expression changes in these functionally connected genes that
cannot be revealed by gene-by-gene comparisons. For EC,
there were 10 gene sets with significant upregulation in AD
compared to normal elderly control (𝑃 < 0.01) and 102 gene
sets with significant downregulation (𝑃 < 0.01), respectively.
For HIP, 6 gene sets showed significant upregulation in
AD in comparison to normal elderly control (𝑃 < 0.01)

while 341 gene sets were significantly downregulated (𝑃 <
0.01), respectively. The top three GO BP terms of up- and
downregulated pathways for EC and HIP were listed in
Figure 7.

The microarray profiles of GSE48350 were also analyzed
by GSEA. 1211 gene sets shown to be upregulated in AD EC
region and 3 gene sets of them were significantly enriched at
𝑃 < 0.01; 2327 gene sets were shown to be downregulated
and 51 gene sets are significantly enriched at 𝑃 < 0.01. There
are 1494 gene sets upregulated in AD HIP region and 3 gene
sets of them were significantly enriched at 𝑃 < 0.01; 2044
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Figure 4: Continued.
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Figure 4: Network visualization of the top modules identifies AD hub genes. Based onWGCNA convection the top three enriched modules
of EC were named as turquoise (a), brown (b), and blue (c), and there was an enriched module of HIP, named as turquoise (d). The AD
specific hub genes in each module were ranked in larger circle.



BioMed Research International 7

GABRA4

GABRA3

GRIA4
GABRA1

GABRG2

GABRG1

GABRD

Nicotine addiction

UNC13A

Synaptic vesicle
cycle

SLC17A6

STXBP1

SLC32A1
GRIN1

ATP6V0D1
ATP6V1E1

ATP6V1H

SLC17A7ATP6V0B

ND6
Oxidative

phosphorylation

AP2M1
STX1B RIMS1

DNM1

NAPA CPLX1CPLX2

NTRK2

PLA2G4A

ATP6V1G2
COX15

ATP6V0CATP5C1

NDUFA7

NDUFB7

NDUFA3
NDUFV3

CDK5R1

NDUFS6

ITPR2

NDUFS7

Alzheimer’s disease

NDUFB5

UQCRC1COX6A1

CALM1

INPPL1

MAPK3

LPL

PSENEN

ADAM10
TNFRSF1A

HSPA2

TGFBR1

JUND

HSPA1L

PPP3R1

MKNK2

STK3

ACACB
SHC4

PYGM
IRS2

TRIP10
CBLC

SOCS4

ACACA

RHOQ

HK2
SORBS1

PPP1R3C

BAD

MAP2K2

ELK1

PPP1CA

KRAS

FGF2
FGF1

NFKB1

LPAR4

COL4A2

CDC37

PHLPP1 GNG13

COL24A1

CREB3L3

IL4R

ITGB8
ITGAV FLT1 MLST8

VWF

SGK1

CREB5LAMA5

SPP1
ITGB5FN1

G6PC3

G6PC2
ITGA4

GNB2

COL4A5

DDIT4

RPTOR

AKT1CHAD

IL7 TSC2 RPS6

PYGB Insulin signaling
pathway

EIF4EBP1

SIRT1

OSMR

IL2RG

IGF1R

EFNA1

MCL1

THBS3

GNG3

GNB5
PDGFRB

IL6
THBS2

LPAR6
IL6R

FGFR3

FGF9

FGF12

TNC

LAMB1

COL1A2

IFNA17
PI3K-Akt signaling

pathway

CHRM1

OSM

FGF8

HSPB1CACNG3 RPS6KA3
MAPK signaling

pathway

MAPKAPK2

MT1H

SLC40A1

MAP3K5
MT1F

SLC39A4 MT1E

MT2A

ATOX1

MT1M

Mineral absorption

ATP1A2
CYBRD1

MT1X

TF
MT1G

PTPRR
GNA12

DUSP10TGFB2
ECSIT TGFB3

DUSP2STMN1

CACNB3

MAP4K2

HSPA1B

CACNA2D2

CDK5

ATP5B

ATP5G1NDUFV1

UQCR11

GNB4

ANGPT1
MAP2K5

LPAR1

PIK3AP1

CACNG2

RASGRP4
MAP4K4

RPS6KA5CACNB1

COX6A2

UQCRB
CYC1

ATP5D

NDUFB4

GAPDH

(a)

CALM1

UCHL1

GPR37

Parkinson’s disease

CDK5R1

PFKM

ALDOC

TKT

Pentose phosphate
pathway

GPI
TALDO1

FBP2

ATP6AP1

ATP6V1H

ATP6V1E1

ATP6V1B2

Oxidative
phosphorylation

ATP6V0D1

PYCR1

Arginine and
proline metabolism 

LAP3

GLS2

CKMT1A

GOT1

PARK7

NDUFAB1

PYCRL

GLUD1

SMS

VDAC2

GRIN2B

SLC25A4

PPARG

PSENEN

SLC25A5

ITPR1
BACE2

NDUFA10

NDUFV2

UQCRC1

UQCR10

Huntington’s
disease

Alzheimer’s disease

APP

DCTN2
SOD1

CREBBP
CREB3L1

EP300

AP2M1

Proteasome

PSMD13

SHFM1

PSMD3

PSMB3

PSMB6

PSMC5

PSMD4

PSMD6

PSMC3

PSMB5

PSMA1

PSMB7

PSMD1

NDUFV1

SDHB

VDAC1

NDUFA1

ATP5B

ATP5C1

ATP5A1

NDUFS3

(b)

Figure 5: KEGG pathway enrichment of EC (a) and HIP (b) by DAVID. Red circle represents upregulated DEGs and blue circle represents
downregulated DEGs.
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Figure 6: GO BP enrichment of EC (a) and HIP (b) by DAVID. The 𝑥-axis represents the number of DEGs and the 𝑦-axis represents the
GO BP terms. The intensity of the color depends on the −log

10
(𝑃 value).

gene sets are downregulated and 29 gene sets are significantly
enriched at 𝑃 < 0.01. The heat maps of the top 50 features in
both AD and normal were shown in Figure 8.

3.4. Biomarkers in Blood. To find the potential biomarker
in blood sample, firstly, we analyzed the DEGs of GSE4226
by Limma with the threshold for the 𝑃 value < 0.05 and

|log
2
FC| > 1. Totally, 77 DEGs including 47 upregulated

and 30 downregulated DEGs were identified. Some of them
had the same variation trend as the DEGs in EC and HIP.
For example, CTSD (Cathepsin-D) was downregulated, and
VCAM1 was upregulated significantly in blood, EC, and
HIP. These DEGs in blood were enriched for GO biological
pathway and KEGG pathway enrichment by DAVID. The
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Figure 7: Continued.
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Figure 7:The top three representative enrichment plots of GO BP of up- and downregulated pathways for EC (a) and HIP (b) were analyzed
by GSEA.
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Figure 8: The heatmap of the top 50 features of EC (a) and HIP (b) for both AD and normal through analyzing the microarray profiles of
GSE48350.

dysregulated KEGG pathway included ribosome, cell adhe-
sion molecules (CAMs), and tuberculosis. The GO BP terms
referred to SRP-dependent cotranslational protein targeting
to membrane, rRNA processing, mitotic cell cycle check-
point, antigen processing and presentation of exogenous
peptide antigen via MHC class II, neural retina development,
and regulation of transforming growth factor beta receptor
signaling pathway.

The significantly different miRNAs were extracted by
Limma for GSE90828 microarray dataset and edgeR for
GSE46579 RNA-seq dataset. The overlapping DEGs between
these two datasets included has-let-7d, has-miR-144, has-
miR-374a, and has-miR-106b. The target genes of the four
miRNAs were predicted by targetScan and miRDB, and the
intersection of both datasets for each miRNA was used for
further study. KEGG pathway and GO terms enrichment
for the overlapping genes between target genes of the four
miRNAs (has-let-7d, has-miR-144, has-miR-374a, and has-
miR-106b) and DEGs in EC and HIP were shown in Table 1
and Figure 9.

3.5. Small Molecules Involved in AD. ByWGCNA algorithm,
we obtained the key nodes of coexpression network and the

hub genes were divided into two groups of upregulated and
downregulated genes. Using the two gene groups as input for
theCMAPdatabase, the six smallmolecules reversedwith the
dysregulation of AD in both EC and HIP were determined
with 𝑃 value < 0.05. Fisetin had a high score of −0.99, but the
𝑃 value was not calculated for lack of enough assays (Table 2).

4. Discussion

Gene microarray technology has been applied to a variety of
biological fields, such as molecular diagnosis, drug discovery,
and pathogenic mechanism research because it was able to
generate a lot of biological information. GEO database is an
open access database with a great deal of gene expression data
which is mainly derived from gene expression profiling stud-
ies [12]. Bioinformatics analytical software in combination
with microarray technology provides a powerful approach
for gaining insight into the hub genes, targets, and functional
pathways related to AD.

4.1. Identification of Hub Genes from Gene Coexpression
Network. Through coexpression network construction and
analysis of node degree, we found some functional and
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Table 1: KEGG pathway enrichment for the overlapping genes between target genes of the four microRNAs (has-let-7d, has-miR-144, has-
miR-374a, and has-miR-106b) and the DEGs in EC and HIP regions.

Term Count 𝑃 value Genes

MAPK signaling pathway 13 0.0062
RPS6KA5, AKT1, MAP4K4, MAP3K5,
PLA2G4A, DUSP2, FGF9, TGFBR1,
MAP2K4, MKNK2, PPP3R1, FGF12,

DUSP6

Endocytosis 10 0.010
IGF1R, ADRB3, FLT1, TGFBR1, PSD3,
VPS4B, DNAJC6, PSD2, ARAP2,

LDLRAP1

Axon guidance 7 0.042 EPHA5, SEMA6A, PLXNA1, PPP3R1,
SEMA4C, L1CAM, SRGAP1

Insulin signaling pathway 6 0.0076 AKT1, L1CAM, IGF1R, IRS2, SOCS7,
RHOQ

Focal adhesion 4 0.021 VCAM1, L1CAM, ITGA4, CERCAM

Table 2: Small molecules which might reverse the dysregulation of
AD in EC and HIP regions.

Cmap name Score 𝑃

Alsterpaullone −0.93 0.00052
Telenzepine −0.82 0.0030
Bezafibrate −0.81 0.0043
Scoulerine −0.78 0.0067
Melatonin −0.78 0.027
Fisetin −0.99 —

high connected hubs varied in EC and HIP region, such as
CHRM1, MAPK1, TGFBR1, LIFR, ERBB4, ERBIN, ATP5C1,
IGF1R, GJA1, TJP1, AP2M1, CDK5, FGF2, TUBB, SLC22A3,
DBT, CDK13, NLN, and MIF. Most of them have high
enrichment score in GSE48350 analyzed by GSEA.

ErbB2 (Erb-B2 receptor tyrosine kinase 2) and ErbB4
(Erb-B2 receptor tyrosine kinase 4) are the important tyro-
sine kinases of ErbB system [29]. We found ERBIN and
ERBB4, encoding ErbB2 and ErbB4, were significantly upreg-
ulated in EC region in GSE5281 and GSE48350 whereas the
expression of neuregulin-1 is downregulated. Neuregulin-
1 regulates developmental neuronal survival and synapto-
genesis, astrocytic differentiation, and microglial activation
[30]. Neuregulin-1 binds to ErbB4 and leads to a conforma-
tional change in ErbB4, which then dimerizes preferentially
with ErbB2 [29, 30]. The formation of dimers leads to
tyrosine phosphorylation and activates the corresponding
downstreamAkt andERK signaling pathways, which regulate
a variety of cell-specific functions, including neurogene-
sis, myelination, neuroinflammation, and neurotransmission
[31]. Considering the dysregulation of PI3K-Akt pathway
and MAPK pathway, ErbB2 and ErbB4 may be the potential
targets for AD.

MIF (macrophage migration inhibitory factor), a proin-
flammatory cytokine, was identified as a binding partner of
A𝛽 in vitro and observed in association with A𝛽 plaques
within the human brain [32]. The expression of GPI (glyco-
sylphosphatidylinositol) was significantly downregulated in
both EC and HIP of AD. Previous studies have shown that

GPI knockdown or mutation resulted in 𝛼-syn accumula-
tion, neurotoxicity, neuroinflammatory signal, and induced
neurodegeneration in Parkinson’s models [33]. In addition,
GPI-anchored proteins play important roles in protection
against A𝛽. Considering the significant change of GPI
expression and the roles of GPI-anchored protein, GPI may
be considered as therapeutic target in Alzheimer’s disease
[33].

In this study, we found CDK13 (cyclin-dependent kinase
13) dysregulated remarkably in HIP region. CDK13 plays an
important role in axonal elongation and regulation of CDK5
(cyclin-dependent kinase 5) expression [34]. Downregulated
expression of CDK13 shortens the averaged axonal length
and lower CDK5 expression. SLC22A3 (organic cation trans-
porter 3, OCT3) is a low-affinity, high-capacity transporter
widely expressed in the central nervous system (CNS) and
other major organs in both humans and rodents. It is
postulated that OCT3 has a role in the overall regulation of
neurotransmission and maintenance of homeostasis within
the CNS [35].

4.2. Dysregulated DEGs and Biological Pathway in EC and
HIP. Some well-known AD-related DEGs were dysregulated
in our study, such as APP, CDK5R1, BACE2, PSENEN,
GRIN2B, ADAM10, and TNFRSF1A. According to GO BP
and KEGG pathway enrichment by DAVID, we also found
DEGs referring to several pathways significantly dysregulated
in EC and HIP, such as PI3K-Akt signaling pathway, MAPK
signaling pathway, oxidative phosphorylation, synaptic vesi-
cle cycle, cell-cell adhesion, cytokine-mediated signaling
pathway, proteasome, arginine, and proline metabolism, and
pentose phosphate pathway. The GSEA results were similar,
including calcium ion regulated exocytosis, hippo signaling,
BMP signaling, and glutamate receptor signaling pathway, in
addition to the above-mentioned pathways.

There were some common DEGs varied in EC and HIP
among AD, Huntington’s disease, Parkinson’s disease, and
diabetes. An important property of the neurodegenerative
diseases is the downregulated oxidative phosphorylation
because of the dysfunctional brain mitochondria and the
varied genes including UQCRC1, UQCR10, SDHB, ATP5B,
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Figure 9: The predicted target genes of differently expressed microRNAs in blood compared with DEGs in EC or HIP by GO terms using
FunRich 2.1.2. (a) The Venn chart for overlapping DEGs of EC, HIP, and blood. (b) Comparison of cellular components. (c) Comparison of
molecular functions. (d) Comparison of biological processes.

ATP5C1, NFUFA1, and VDAC1. AD is a multifactor disease
that has been reported to have a close association with type
2 diabetes (T2D) [36]. AKT1, significantly downregulated in
EC, plays an important role in the relationship of AD and
diabetes. Inflammation is a key pathological component in
AD that has been proposed as a major mechanism in both
the initiation and progression of the disease [37]. Plenty of
inflammatory DEGs in EC were upregulated, such asNFKB1,
IL2RG, IL6, IL6R, IL4R, IL7, JUND, TGFBR1, TGFB2, and
TGFB3.

Neurotransmitter release is mediated by exocytosis of
synaptic vesicles (SV) which undergoes a trafficking cycle
[38]. In our study, the results showed that a series of genes
associated with SV were downregulated, which would affect
the amount of neurotransmitter available for release and
contribute to synaptic degeneration. These genes included
STXBP1, NAPA, AP2M1, CPLX2, CPLX1, and STX1B, which
participate in exocytosis of vesicles loaded with a neurotrans-
mitter, coordinated recovery of SVs by endocytosis, refilling
of vesicles, and subsequent release of the refilled vesicles from
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the presynaptic bouton. These findings indicated potential
roles of these key genes in synaptic communication in AD.

4.3. Biomarkers in Blood. Research has focused on identi-
fying biomarkers for AD so that treatment can be carried
out as soon as possible in order to restrict or prevent
intellectual impairments, memory loss, and other cognitive
abnormalities that are associated with the disease. Blood and
blood components are primary sources for biomarkers, and
miRNAs are known to be stable in the blood and blood
components, serum and plasma [10]. Cathepsin-D (CTSD)
and vascular cell adhesion molecule-1 (VCAM-1) were sig-
nificantly dysregulated in blood, EC, and HIP. The miRNAs
(has-let-7d, has-miR-144, has-miR-374a, and has-miR-106b)
were significantly dysregulated in blood. Mutations in the
CTSD are classically associated with severe congenital disease
with microcephaly, cerebral and cerebellar atrophy, seizures,
spasticity, central apnea, and death occurring in the first
days of life [39, 40]. It was recently reported that CTSD is
an excellent functional candidate AD gene that encodes a
lysosomal aspartyl protease which degrades both amyloid ß
and tau in vitro and aCTSDpolymorphismmay be associated
with A𝛽 deposition in AD brain and to an increased risk of
AD [41]. Here, we firstly found the expression of CTSD was
downregulated in the blood of AD patients and CTSD was
a potential blood biomarker for AD. VCAM-1 is a member
of the immunoglobulin superfamily and is expressed by
endothelial cells and elevated VCAM-1 levels might reflect
defects of the vascular system [42]. However, a significant
association between age and VCAM-1 independent of the
cardiovascular riskwas shown, and others also foundVCAM-
1 elevated in plasma of AD cases [43], which is consistent with
our findings.

4.4. Crosstalk between Blood and Brain. To seek for the
mechanism behind a crosstalk between peripheral blood and
central nervous system, we compared the target genes of the
four miRNAs (has-let-7d, has-miR-144, has-miR-374a, and
has-miR-106b) with DEGs in EC and HIP regions. There
were 28 genes in the intersection part of blood, EC, and HIP
(Figure 9(a)). These genes includes AKAP13, AMER2, BBX,
CEP97, CYP46A1, DPP3, DUSP2, GLIS3, GNB2, KLHL31,
KMT2E, L1CAM, MINK1, NLN, PCSK5, PFKFB3, PHF6,
PRPF38B, RB1, RGS7BP, RSF1, SEMA4C, SLC35F3, SLITRK2,
SNX17, TNKS1BP1, TNPO1, and ZBTB41. Most of these genes
had a potential relationship with central nervous system. For
example, NLN (Neprilysin) is a high connected hub gene
varied in EC and HIP region, which has a close relationship
with the clearance of A𝛽 [44]. Like VCAM-1 mentioned
above, L1CAM (L1 cell adhesion molecule) is another cell
adhesionmoleculewith an important role in the development
of the nervous system [45]. Through analyzing the target
genes and DEGs in the union set of EC and HIP, we found
that these target genes had a similar GO terms distribution
to EC and HIP (Figures 9(b), 9(c), and 9(d)). Cellular com-
ponent described that these geneswere prevailingly located in
nucleus, cytoplasma, exosome, and lysosome. Several studies
have suggested the multifaceted roles of exosomes in AD
[46]. Exosomes derived from the central nervous system can

be found in peripheral fluids, which suggested the existence
of a crosstalk between blood and brain. The enrichment
of molecular function was consistent with that of cellular
component, mainly referring to transcript factor activity,
ubiquitin-specific protease activity, and transport activities.
Based on GO BP and KEGG pathway enrichment analysis
(Table 2), we found genes related toMAPK signaling pathway,
insulin signaling pathway, axon guidance, focal adhesion,
and energy pathways dysregulated in blood and brain, such
as AKT1, TGFBR1, IGF1R, EPHA5, VCAM1, and L1CAM.
Therefore, we speculated that the four miRNAs might build a
bridge between peripheral blood and central nervous system
and were the potential biomarker for AD diagnosis.

4.5. Predicted Small Molecules for AD Treatment. Six small
molecules, which were most relevant to the degenerative AD,
were screened out based on the downregulated and upreg-
ulated genes. Fisetin (3,3,4,7-tetrahydroxyflavone) had the
highest enrichment score, but the 𝑃 value could not be
calculated without enough samples. Fisetin has a strong
anti-inflammatory activity in brain microglia and has been
found to be neuroprotective, induce neuronal differentiation,
enhance memory, and inhibit the aggregation of A𝛽 that may
cause the progressive neuronal loss in AD [47]. The GSK3𝛽
(glycogen synthase kinase 3 beta) inhibitor, alsterpaullone,
was found to suppress toxicity of tau in a concentration-
dependent manner [48]. Telenzepine, an M1-selective mus-
carinic receptor antagonist, can prevent the induction of a
long-lasting excitatory postsynaptic potential in autonomic
ganglia [49]. Bezafibrate (BEZ), the pan-PPAR (peroxisome
proliferator-activated receptor) activator, is commonly used
to treat dyslipidemia [50]. Recent research finds that PPARs
can significantly reduce tau protein level and microglia
activation, promote mitochondrial biogenesis, and improve
behavioral activities in P301S mice [51]. In COX10 knockout
mice, bezafibrate increases mitochondrial ATP synthesis
and decreases astrocyte proliferation and inflammatory fac-
tors,suggesting that bezafibrate has a potential significance in
the treatment of neurodegenerative diseases [52]. Scoulerine
which is isolated from Corydalis cava (Fumariaceae), used in
folk medicine in the treatment of memory dysfunctions, was
found to be active as BACE1 (beta-secretase 1) inhibitor [53].
Melatonin (N-acetyl-5-methoxytryptamine) is an endoge-
nous neurohormone whose level decreases during aging,
especially in AD patients. It had been reported to possess
strong antioxidant property and is able to directly scavenge a
variety of reactive oxygen species [54]. Moreover, it has been
demonstrated to be a moderate inhibitor of A𝛽 aggregation.

In conclusion, we found some functional hub genes,
whose encoding protein has a close relationship to AD
treatment, such as ErbB2, ErbB4, OCT3, MIF, CDK13, and
GPI. Several pathways were significantly dysregulated in
EC and HIP, such as PI3K-Akt signaling pathway, MAPK
signaling pathway, insulin signaling pathway, oxidative phos-
phorylation, synaptic vesicle cycle, cell-cell adhesion, protea-
some, arginine, and proline metabolism, pentose phosphate
pathway, calcium ion regulated exocytosis, and glutamate
receptor signaling pathway. CTSD and VCAM1 were dys-
regulated significantly in blood, EC, and HIP, which were
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potential biomarkers forAD. From the target genes of the four
miRNAs and DEGs in AD brain, we found inflammation,
defective insulin signaling, and energymetabolism linked the
pathogenesis of peripheral and central nervous system. Last,
based on the hub genes in EC and HIP, six small molecules
were screened out and they were fisetin, alsterpaullone,
telenzepine, bezafibrate, scoulerine, and melatonin, which
had direct or indirect relationships with the treatment of
memory dysfunction. These biological pathways and DEGs
or hub genes will help to elucidate AD pathogenesis and
identify novel biomarkers or drug targets for developing
improved diagnostics and therapeutics against AD.
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