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Aim. The incidence of Alzheimer’s disease (AD) has been increasing in recent years, but there exists no cure and the pathological
mechanisms are not fully understood. This study aimed to find out the pathogenesis of learning and memory impairment, new
biomarkers, potential therapeutic targets, and drugs for AD. Methods. We downloaded the microarray data of entorhinal cortex
(EC) and hippocampus (HIP) of AD and controls from Gene Expression Omnibus (GEO) database, and then the differentially
expressed genes (DEGs) in EC and HIP regions were analyzed for functional and pathway enrichment. Furthermore, we utilized the
DEGs to construct coexpression networks to identify hub genes and discover the small molecules which were capable of reversing
the gene expression profile of AD. Finally, we also analyzed microarray and RNA-seq dataset of blood samples to find the biomarkers
related to gene expression in brain. Results. We found some functional hub genes, such as ErbB2, ErbB4, OCT3, MIF, CDKI3, and
GPI. According to GO and KEGG pathway enrichment, several pathways were significantly dysregulated in EC and HIP. CTSD
and VCAMI were dysregulated significantly in blood, EC, and HIP, which were potential biomarkers for AD. Target genes of four
microRNAs had similar GO_terms distribution with DEGs in EC and HIP. In addtion, small molecules were screened out for AD
treatment. Conclusion. These biological pathways and DEGs or hub genes will be useful to elucidate AD pathogenesis and identify

novel biomarkers or drug targets for developing improved diagnostics and therapeutics against AD.

1. Introduction

Alzheimer’s disease (AD) is the most common form of
dementia related to age, accounting for 50%-60% of all cases
and is characterized by a progressive decline in memory
associated with other cognitive deficits: judgement, abstrac-
tion, language, attention, and visuoconstructive abilities [1].
Approximately 36 million people were affected by AD world-
wide, and it is estimated that, by 2050, the number of cases
will rise to 110 million [2]. However, there is no cure for
AD and the pathological mechanisms of AD are not fully
understood now.

Genetic linkage analyses of familial cases have led to the

identification of causative mutations in three genes, APP,
PSENI, and PSEN2, as well the identification of a high-risk

factor: the E4 allele of APOE [3]. More recently, several
independent genome-wide association studies (GWAS) iden-
tified 21 new genetic loci by CLU, PICALM, CRI, BINI,
CD33, ABCA7, MS4A6A, MS4A4E, CD2AP, EPHAI, HLA-
DRB5/DRBI, SORLI, PTK2B, SLC24A4, ZCWPWI, CELFI,
FERMT?2, CASS4, INPP5D, MEF2C, and NMES [3]. But most
genes affect Af production and clearance. It remains to be
seen whether additional pathways are identified or whether
most genes will fall into the already identified pathways and
cellular mechanisms [4].

Brain regions show different susceptibilities to the patho-
logical and metabolic characteristics of AD [5]. Entorhinal
cortex (EC) and hippocampus (HIP) are thought to be
important regions in differentiating AD from normal aging,
and the earliest neuropathological changes in AD appear in
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FIGURE I: The workflow for analysis of differentially expressed genes (DEGs) and finding out the pathogenesis of learning and memory
impairment, new biomarkers, potential therapeutic targets, and drugs for AD.

EC and then progress to HIP [6, 7]. Furthermore, memory
and learning formation depends on the presence of an intact
entorhinal-hippocampal circuit [8]; therefore analyzing gene
expression of EC and HIP is beneficial for identifying biolog-
ical pathways related to memory and learning perturbed in
AD.

In this study, our objective is to find out the pathogen-
esis of learning and memory impairment, new biomarkers,
potential therapeutic targets, and drugs for AD. The workflow
was summarized in Figure 1. The gene expression profiles
on AD and control (CT) samples from Gene Expression
Omnibus (GEQO) database [9] were downloaded, and then the
DEGs in EC and HIP regions were analyzed for functional
and pathway enrichment analysis of Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
to elucidate the pathological mechanism of AD in EC and
HIP regions. We also utilized the DEGs in EC and HIP
to construct coexpression networks to identify hub genes,
and then these genes were uploaded to Connectivity Map
(CMAP) [10] to discover the small molecules which were
capable of reversing the gene expression profile of AD.
Blood has the property of easy accessibility, sufficiently high
specificity and sensitivity, and low costs [11]. Therefore, we
further analyzed the DEGs in the blood samples of microar-
ray and RNA-seq dataset to find the biomarkers in blood
and the relationship with gene expression in brain, which
could provide important information for AD diagnosis and
therapy.

2. Methods

2.1. Gene Expression Profiles of AD. Gene microarray tech-
nology allows massively parallel analysis of most genes

expressed in a tissue. The microarray data used in the study
were obtained from GEO database [12]. The primary dataset,
containing expression data of EC and HIP, was downloaded
from GEO database (GEO Accession Number: GSE5281) [13]
including 10 AD and 13 CT samples. GSE5281 was selected
based on rational experiment design with a very good
quality and reliability and provided plenty of information for
data mining [14, 15]. The platform was GPL570 (Affymetrix
Human Genome U133 Plus 2.0 Array). To validate of findings
from GSE5281, we used another gene expression data of EC
and HIP from GSE48350, which is including 39 CT and 15
AD samples in HIP and 42 CT and 19 AD samples in EC,
respectively [16].

Gene expression profiles of peripheral blood mononu-
clear cells were obtained from GSE4226 [17], which included
14 normal elderly controls (NEC) and 14 AD subjects to
find the potential biomarker in blood sample. MicroRNAs
(miRNAs) have also demonstrated their potential as nonin-
vasive biomarkers from blood for a wide variety of human
pathologies. Therefore, noncoding RNA profiling by high
throughput sequencing from GSE46579 [18] and expression
profiling by RT-PCR from GSE90828 [19] were analyzed
for plasma microRNA biomarker. The blood samples of
GSE90828 were collected from 30 age-matched controls
(normal, 12 males and 18 females, mean age of 70.4) and 23
MCI (whole name) patients (11 males and 12 females, mean
age of 72.8), and blood samples of GSE46579 included 48 AD
patients and 22 unaffected controls.

2.2. Data Preprocessing and Differential Gene Analysis. The
original expression profiles in CEL (whole name) format of
GSE5281, GSE48350, GSE4226, and GSE90828 were trans-
formed into a matrix using affy package in R language. The
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median method was used for normalizing the expression
matrix. Subsequently, the Limma package was utilized to
identify the differential genes between the AD and CTs. The
threshold for the P value was set to 0.05 and [log,FC| was
set to 1. Differential expression analysis of GSE46579 was
conducted using edgeR with a threshold of the P value < 0.05
and an absolute value of log,FC > 1 being used to judge the
significance of the gene expression differences.

2.3. Weighted Gene Coexpression Network Analysis (WGCNA).
WGCNA was performed in R using the WGCNA package
[20]. The EC and HIP regions microarray data of GSE5281
was considered as a primary source for the analysis. The net-
work construction started by calculating robust correlations
between all genes across all relevant samples. The correlation
adjacency matrix was increased to the power 3 = 16 based
on scale-free topology criterion. The power parameter was
selected to amplify the strong connections between genes and
penalize the weaker connections.

The first principle component was considered as the
module eigen gene (ME), which was representing the highest
percent of variance for all the genes in a module. Module
membership (kME) measured the correlations between each
gene and each ME. The within-module connectivity (kin) for
each gene was determined by summing the connectivity of
that gene with each other gene set in that module [21, 22].
Genes, which have significant correlations with MEs and
high within-module connectivity, were considered as hub
genes of the modules. The hub genes were confirmed using
Cytoscape’s cytoHubba plugin [23].

2.4. GO Biological Pathway and KEGG Pathway Enrichment
Analysis. We extracted the DEGs of EC and HIP for GO
biological pathway and KEGG pathway enrichment. GO
provides a useful tool to look for the common traits that are
shared within a list of genes, which are represented by the
GO terms associated with a large portion of the genes in the
gene list [24]. KEGG is a useful online pathway archive that
allows experimental data detailing the molecular functions
of proteins to be organized in a useful, consistent format
that supports computational mining and querying [25].
The Database for Annotation, Visualization and Integrated
Discovery (DAVID) consists of an integrated biological
knowledgebase and analytic tools aimed at systematically
extracting biological meaning from large gene lists to assist
investigators to annotate remarkable genes of specific func-
tion [26]. In this study, DEGs were subjected to GO and
KEGG analysis with DAVID Bioinformatics Resources 6.7.
EASE score (or called P value) of 0.05 was used as cutoff
criteria.

Gene Set Enrichment Analysis (GSEA) was also applied
to identify significant pathways in GSE5281 and GSE48350
based on GO Biological Process (GO_BP) and KEGG path-
way. This method specified whether the pathways were
randomly distributed at the top or bottom of the detected
genes. The coefficients of Spearman correlation between
genes and sample label were defined as the weight of genes
[27]. Statistical significance was assessed by comparing the
enrichment score to enrichment results generated from 1000

random permutations of the gene sets to obtain P values
(nominal P value). The significant level of pathways was
considered with levels of FDR < 0.1 and P < 0.05. FunRich
2.1.2 was used to compare the varied genes in blood and in
EC or HIP by GO_terms.

2.5. Screening of Drug-Like Small Molecules. The hub genes
in the interaction network were divided into two groups
of upregulated and downregulated genes. By compar-
ing the expression pattern similarities of the differential
genes and genes perturbed by small molecules in the
CMAP (https://www.broadinstitute.org/cmap/#) [28], small
molecules involved in the disease were identified. Small
molecules with a score >0.7 were considered to be associated
with the disease.

3. Results

3.1. Screening of DEGs. To extract the gene expression data
(GSE5281) on patients with AD compared with CTs from
GEO database, we utilized Limma R package to analyze DEGs
between 10 AD and 13 CT samples. According to the cutoff
criteria, 3008 DEGs including 1365 upregulated and 1643
downregulated DEGs were identified in EC, while 1232 DEGs
including 638 upregulated and 594 downregulated DEGs
were identified in HIP (Figure 2). In addition, 283 overlapping
DEGs were found in the two regions.

3.2. Dysfunctional Coexpression Network Construction.
WGCNA was used utilizing the coexpression of the
DEGs. The module preservation function evaluates the
module preservation by implementing various network
based statistics. Z-summary is one such statistic measure
summarizing the composite preservation. The Z-summary >
10 indicated evidence of strong preservation of the modules
across all the datasets. Based on WGCNA convection, the
top three enriched modules of EC were named as turquoise,
brown, and blue, and there was one enriched module of HIP,
named as turquoise (Figure 3). In the study, adjacency cutoft
value of WGCNA was set to 0.75 so that a relatively large
number of nodes could be retained in coexpression network
and the accuracy of prediction of relationship of DEGs
can be ensured at the same time. Degree, the topological
parameter which determines the connectedness between the
nodes, was chosen as the parameter for hub gene selection.
The top 10 genes with high degree identified by WGCNA in
all the modules were reported as hubs by cytoHubba. Finally,
two separate coexpression networks of EC and HIP were
built and visualized by Cytoscape 3.2.1 (Figure 4).

3.3. Gene Ontology and Pathway Enrichment Analysis. To
explore GO_BP and KEGG pathways in EC and HIP, we
studied DEGs in these two regions using DAVID. A total
of 97 GO_BP terms and 7 KEGG pathways dysregulated
and 110 GO_BP terms and 7 KEGG pathways upregulated
with P value < 0.05 were enriched in EC and HIP regions,
respectively. The KEGG pathways and GO_BP terms were
shown in Figures 5 and 6, respectively.
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FIGURE 2: The volcano plots for EC (a) and HIP (b). The red and green spots represent upregulated and downregulated DEGs, respectively.
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FIGURE 3: Dendrograms produced by average linkage hierarchical clustering of genes based on topological overlaps in the GSE5281. The extent
of gene conservation in the datasets was represented by the same module colors.

DEGs in EC and HIP regions were also analyzed by the
GSEA method which uses a database of several thousand pre-
defined sets of genes. Genes in the same set share pathway or
localization. GSEA is also able to detect small, but significant
expression changes in these functionally connected genes that
cannot be revealed by gene-by-gene comparisons. For EC,
there were 10 gene sets with significant upregulation in AD
compared to normal elderly control (P < 0.01) and 102 gene
sets with significant downregulation (P < 0.01), respectively.
For HIP, 6 gene sets showed significant upregulation in
AD in comparison to normal elderly control (P < 0.01)

while 341 gene sets were significantly downregulated (P <
0.01), respectively. The top three GO_BP terms of up- and
downregulated pathways for EC and HIP were listed in
Figure 7.

The microarray profiles of GSE48350 were also analyzed
by GSEA. 1211 gene sets shown to be upregulated in AD EC
region and 3 gene sets of them were significantly enriched at
P < 0.01; 2327 gene sets were shown to be downregulated
and 51 gene sets are significantly enriched at P < 0.01. There
are 1494 gene sets upregulated in AD HIP region and 3 gene
sets of them were significantly enriched at P < 0.01; 2044
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(d)

FIGURE 4: Network visualization of the top modules identifies AD hub genes. Based on WGCNA convection the top three enriched modules
of EC were named as turquoise (a), brown (b), and blue (c), and there was an enriched module of HIP, named as turquoise (d). The AD
specific hub genes in each module were ranked in larger circle.
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FIGURE 5: KEGG pathway enrichment of EC (a) and HIP (b) by DAVID. Red circle represents upregulated DEGs and blue circle represents
downregulated DEGs.
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FIGURE 6: GO_BP enrichment of EC (a) and HIP (b) by DAVID. The x-axis represents the number of DEGs and the y-axis represents the
GO_BP terms. The intensity of the color depends on the —log, (P value).

gene sets are downregulated and 29 gene sets are significantly
enriched at P < 0.01. The heat maps of the top 50 features in
both AD and normal were shown in Figure 8.

3.4. Biomarkers in Blood. To find the potential biomarker
in blood sample, firstly, we analyzed the DEGs of GSE4226
by Limma with the threshold for the P value < 0.05 and

[log,FC| > 1. Totally, 77 DEGs including 47 upregulated
and 30 downregulated DEGs were identified. Some of them
had the same variation trend as the DEGs in EC and HIP.
For example, CTSD (Cathepsin-D) was downregulated, and
VCAMI was upregulated significantly in blood, EC, and
HIP. These DEGs in blood were enriched for GO biological
pathway and KEGG pathway enrichment by DAVID. The
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FIGURE 8: The heatmap of the top 50 features of EC (a) and HIP (b) for both AD and normal through analyzing the microarray profiles of

GSE48350.

dysregulated KEGG pathway included ribosome, cell adhe-
sion molecules (CAMs), and tuberculosis. The GO_BP terms
referred to SRP-dependent cotranslational protein targeting
to membrane, rRNA processing, mitotic cell cycle check-
point, antigen processing and presentation of exogenous
peptide antigen via MHC class II, neural retina development,
and regulation of transforming growth factor beta receptor
signaling pathway.

The significantly different miRNAs were extracted by
Limma for GSE90828 microarray dataset and edgeR for
GSE46579 RNA-seq dataset. The overlapping DEGs between
these two datasets included has-let-7d, has-miR-144, has-
miR-374a, and has-miR-106b. The target genes of the four
miRNAs were predicted by targetScan and miRDB, and the
intersection of both datasets for each miRNA was used for
further study. KEGG pathway and GO_terms enrichment
for the overlapping genes between target genes of the four
miRNAs (has-let-7d, has-miR-144, has-miR-374a, and has-
miR-106b) and DEGs in EC and HIP were shown in Table 1
and Figure 9.

3.5. Small Molecules Involved in AD. By WGCNA algorithm,
we obtained the key nodes of coexpression network and the

hub genes were divided into two groups of upregulated and
downregulated genes. Using the two gene groups as input for
the CMAP database, the six small molecules reversed with the
dysregulation of AD in both EC and HIP were determined
with P value < 0.05. Fisetin had a high score of —0.99, but the
P value was not calculated for lack of enough assays (Table 2).

4. Discussion

Gene microarray technology has been applied to a variety of
biological fields, such as molecular diagnosis, drug discovery,
and pathogenic mechanism research because it was able to
generate a lot of biological information. GEO database is an
open access database with a great deal of gene expression data
which is mainly derived from gene expression profiling stud-
ies [12]. Bioinformatics analytical software in combination
with microarray technology provides a powerful approach
for gaining insight into the hub genes, targets, and functional
pathways related to AD.

4.1. Identification of Hub Genes from Gene Coexpression
Network. Through coexpression network construction and
analysis of node degree, we found some functional and
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TaBLE 1: KEGG pathway enrichment for the overlapping genes between target genes of the four microRNAs (has-let-7d, has-miR-144, has-

miR-374a, and has-miR-106b) and the DEGs in EC and HIP regions.

Term Count P value Genes
RPS6KA5, AKTI1, MAP4K4, MAP3K5,
. . PLA2G4A, DUSP2, FGF9, TGFBR1
MAPK 1 h 1 . 2 > ’ ? >
signaling pathway 3 0.006 MAP2K4, MKNK2, PPP3R1, FGF12,
DUSP6
IGFIR, ADRB3, FLT1, TGFBR1, PSD3,
Endocytosis 10 0.010 VPS4B, DNAJC6, PSD2, ARAP2,
LDLRAP1
. EPHA5, SEMAG6A, PLXNAIL, PPP3R1,
Axon guidance 7 0.042 SEMAA4C, LICAM, SRGAPI
L . AKTI, LICAM, IGFIR, IRS2, SOCS?7,
Insul 1 th 6 0.0076 > > > > >
nsulin signaling pathway RHOQ
Focal adhesion 4 0.021 VCAM]I, L1ICAM, ITGA4, CERCAM

TABLE 2: Small molecules which might reverse the dysregulation of
AD in EC and HIP regions.

Cmap name Score p
Alsterpaullone -0.93 0.00052
Telenzepine -0.82 0.0030
Bezafibrate -0.81 0.0043
Scoulerine -0.78 0.0067
Melatonin -0.78 0.027
Fisetin -0.99 —

high connected hubs varied in EC and HIP region, such as
CHRM]I1, MAPKI, TGFBRI, LIFR, ERBB4, ERBIN, ATP5CI,
IGFIR, GJAI TJPI1, AP2M1, CDK5, FGF2, TUBB, SLC22A3,
DBT, CDKI13, NLN, and MIF. Most of them have high
enrichment score in GSE48350 analyzed by GSEA.

ErbB2 (Erb-B2 receptor tyrosine kinase 2) and ErbB4
(Erb-B2 receptor tyrosine kinase 4) are the important tyro-
sine kinases of ErbB system [29]. We found ERBIN and
ERBB4, encoding ErbB2 and ErbB4, were significantly upreg-
ulated in EC region in GSE5281 and GSE48350 whereas the
expression of neuregulin-1 is downregulated. Neuregulin-
1 regulates developmental neuronal survival and synapto-
genesis, astrocytic differentiation, and microglial activation
[30]. Neuregulin-1 binds to ErbB4 and leads to a conforma-
tional change in ErbB4, which then dimerizes preferentially
with ErbB2 [29, 30]. The formation of dimers leads to
tyrosine phosphorylation and activates the corresponding
downstream Akt and ERK signaling pathways, which regulate
a variety of cell-specific functions, including neurogene-
sis, myelination, neuroinflammation, and neurotransmission
[31]. Considering the dysregulation of PI3K-Akt pathway
and MAPK pathway, ErbB2 and ErbB4 may be the potential
targets for AD.

MIF (macrophage migration inhibitory factor), a proin-
flammatory cytokine, was identified as a binding partner of
Ap in vitro and observed in association with A plaques
within the human brain [32]. The expression of GPI (glyco-
sylphosphatidylinositol) was significantly downregulated in
both EC and HIP of AD. Previous studies have shown that

GPI knockdown or mutation resulted in a-syn accumula-
tion, neurotoxicity, neuroinflammatory signal, and induced
neurodegeneration in Parkinson’s models [33]. In addition,
GPI-anchored proteins play important roles in protection
against Af. Considering the significant change of GPI
expression and the roles of GPI-anchored protein, GPI may
be considered as therapeutic target in Alzheimer’s disease
[33].

In this study, we found CDKI3 (cyclin-dependent kinase
13) dysregulated remarkably in HIP region. CDK13 plays an
important role in axonal elongation and regulation of CDK5
(cyclin-dependent kinase 5) expression [34]. Downregulated
expression of CDKI13 shortens the averaged axonal length
and lower CDKS5 expression. SLC22A3 (organic cation trans-
porter 3, OCT3) is a low-aflinity, high-capacity transporter
widely expressed in the central nervous system (CNS) and
other major organs in both humans and rodents. It is
postulated that OCT?3 has a role in the overall regulation of
neurotransmission and maintenance of homeostasis within
the CNS [35].

4.2. Dysregulated DEGs and Biological Pathway in EC and
HIP. Some well-known AD-related DEGs were dysregulated
in our study, such as APP, CDK5RI, BACE2, PSENEN,
GRIN2B, ADAMI0, and TNFRSFIA. According to GO_BP
and KEGG pathway enrichment by DAVID, we also found
DEGs referring to several pathways significantly dysregulated
in EC and HIP, such as PI3K-Akt signaling pathway, MAPK
signaling pathway, oxidative phosphorylation, synaptic vesi-
cle cycle, cell-cell adhesion, cytokine-mediated signaling
pathway, proteasome, arginine, and proline metabolism, and
pentose phosphate pathway. The GSEA results were similar,
including calcium ion regulated exocytosis, hippo signaling,
BMP signaling, and glutamate receptor signaling pathway, in
addition to the above-mentioned pathways.

There were some common DEGs varied in EC and HIP
among AD, Huntington’s disease, Parkinsons disease, and
diabetes. An important property of the neurodegenerative
diseases is the downregulated oxidative phosphorylation
because of the dysfunctional brain mitochondria and the
varied genes including UQCRCI, UQCRIO, SDHB, ATP5B,
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FIGURE 9: The predicted target genes of differently expressed microRNAs in blood compared with DEGs in EC or HIP by GO_terms using
FunRich 2.1.2. (a) The Venn chart for overlapping DEGs of EC, HIP, and blood. (b) Comparison of cellular components. (c) Comparison of

molecular functions. (d) Comparison of biological processes.

ATP5CI, NFUFAI and VDACI. AD is a multifactor disease
that has been reported to have a close association with type
2 diabetes (T2D) [36]. AKTI, significantly downregulated in
EC, plays an important role in the relationship of AD and
diabetes. Inflammation is a key pathological component in
AD that has been proposed as a major mechanism in both
the initiation and progression of the disease [37]. Plenty of
inflammatory DEGs in EC were upregulated, such as NFKBI,
IL2RG, IL6, IL6R, IL4R, IL7, JUND, TGFBRI, TGFB2, and
TGFB3.

Neurotransmitter release is mediated by exocytosis of
synaptic vesicles (SV) which undergoes a trafficking cycle
[38]. In our study, the results showed that a series of genes
associated with SV were downregulated, which would affect
the amount of neurotransmitter available for release and
contribute to synaptic degeneration. These genes included
STXBPI1, NAPA, AP2M1, CPLX2, CPLX1, and STXIB, which
participate in exocytosis of vesicles loaded with a neurotrans-
mitter, coordinated recovery of SVs by endocytosis, refilling
of vesicles, and subsequent release of the refilled vesicles from



14

the presynaptic bouton. These findings indicated potential
roles of these key genes in synaptic communication in AD.

4.3. Biomarkers in Blood. Research has focused on identi-
tying biomarkers for AD so that treatment can be carried
out as soon as possible in order to restrict or prevent
intellectual impairments, memory loss, and other cognitive
abnormalities that are associated with the disease. Blood and
blood components are primary sources for biomarkers, and
miRNAs are known to be stable in the blood and blood
components, serum and plasma [10]. Cathepsin-D (CTSD)
and vascular cell adhesion molecule-1 (VCAM-1) were sig-
nificantly dysregulated in blood, EC, and HIP. The miRNAs
(has-let-7d, has-miR-144, has-miR-374a, and has-miR-106b)
were significantly dysregulated in blood. Mutations in the
CTSD are classically associated with severe congenital disease
with microcephaly, cerebral and cerebellar atrophy, seizures,
spasticity, central apnea, and death occurring in the first
days of life [39, 40]. It was recently reported that CTSD is
an excellent functional candidate AD gene that encodes a
lysosomal aspartyl protease which degrades both amyloid {3
and tau in vitro and a CTSD polymorphism may be associated
with Af deposition in AD brain and to an increased risk of
AD [41]. Here, we firstly found the expression of CTSD was
downregulated in the blood of AD patients and CTSD was
a potential blood biomarker for AD. VCAM-1 is a member
of the immunoglobulin superfamily and is expressed by
endothelial cells and elevated VCAM-1 levels might reflect
defects of the vascular system [42]. However, a significant
association between age and VCAM-1 independent of the
cardiovascular risk was shown, and others also found VCAM-
1 elevated in plasma of AD cases [43], which is consistent with
our findings.

4.4. Crosstalk between Blood and Brain. To seek for the
mechanism behind a crosstalk between peripheral blood and
central nervous system, we compared the target genes of the
four miRNAs (has-let-7d, has-miR-144, has-miR-374a, and
has-miR-106b) with DEGs in EC and HIP regions. There
were 28 genes in the intersection part of blood, EC, and HIP
(Figure 9(a)). These genes includes AKAPI3, AMER?2, BBX,
CEP97, CYP46A1, DPP3, DUSP2, GLIS3, GNB2, KLHL3],
KMT2E, LICAM, MINKI, NLN, PCSK5, PFKFB3, PHF6,
PRPF38B, RBI, RGS7BP, RSF1, SEMA4C, SLC35F3, SLITRK2,
SNX17, TNKSIBPI, TNPOI, and ZBTB41. Most of these genes
had a potential relationship with central nervous system. For
example, NLN (Neprilysin) is a high connected hub gene
varied in EC and HIP region, which has a close relationship
with the clearance of Af [44]. Like VCAM-1 mentioned
above, LICAM (L1 cell adhesion molecule) is another cell
adhesion molecule with an important role in the development
of the nervous system [45]. Through analyzing the target
genes and DEGs in the union set of EC and HIP, we found
that these target genes had a similar GO_terms distribution
to EC and HIP (Figures 9(b), 9(c), and 9(d)). Cellular com-
ponent described that these genes were prevailingly located in
nucleus, cytoplasma, exosome, and lysosome. Several studies
have suggested the multifaceted roles of exosomes in AD
[46]. Exosomes derived from the central nervous system can
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be found in peripheral fluids, which suggested the existence
of a crosstalk between blood and brain. The enrichment
of molecular function was consistent with that of cellular
component, mainly referring to transcript factor activity,
ubiquitin-specific protease activity, and transport activities.
Based on GO_BP and KEGG pathway enrichment analysis
(Table 2), we found genes related to MAPK signaling pathway,
insulin signaling pathway, axon guidance, focal adhesion,
and energy pathways dysregulated in blood and brain, such
as AKTI, TGFBRI, IGFIR, EPHA5, VCAMI, and LICAM.
Therefore, we speculated that the four miRNAs might build a
bridge between peripheral blood and central nervous system
and were the potential biomarker for AD diagnosis.

4.5. Predicted Small Molecules for AD Treatment. Six small
molecules, which were most relevant to the degenerative AD,
were screened out based on the downregulated and upreg-
ulated genes. Fisetin (3,3',4’,7-tetrahydroxyflavone) had the
highest enrichment score, but the P value could not be
calculated without enough samples. Fisetin has a strong
anti-inflammatory activity in brain microglia and has been
found to be neuroprotective, induce neuronal differentiation,
enhance memory, and inhibit the aggregation of Af that may
cause the progressive neuronal loss in AD [47]. The GSK3p3
(glycogen synthase kinase 3 beta) inhibitor, alsterpaullone,
was found to suppress toxicity of tau in a concentration-
dependent manner [48]. Telenzepine, an Ml-selective mus-
carinic receptor antagonist, can prevent the induction of a
long-lasting excitatory postsynaptic potential in autonomic
ganglia [49]. Bezafibrate (BEZ), the pan-PPAR (peroxisome
proliferator-activated receptor) activator, is commonly used
to treat dyslipidemia [50]. Recent research finds that PPARs
can significantly reduce tau protein level and microglia
activation, promote mitochondrial biogenesis, and improve
behavioral activities in P301S mice [51]. In COX10 knockout
mice, bezafibrate increases mitochondrial ATP synthesis
and decreases astrocyte proliferation and inflammatory fac-
tors,suggesting that bezafibrate has a potential significance in
the treatment of neurodegenerative diseases [52]. Scoulerine
which is isolated from Corydalis cava (Fumariaceae), used in
folk medicine in the treatment of memory dysfunctions, was
found to be active as BACEI1 (beta-secretase 1) inhibitor [53].
Melatonin (N-acetyl-5-methoxytryptamine) is an endoge-
nous neurohormone whose level decreases during aging,
especially in AD patients. It had been reported to possess
strong antioxidant property and is able to directly scavenge a
variety of reactive oxygen species [54]. Moreover, it has been
demonstrated to be a moderate inhibitor of A aggregation.

In conclusion, we found some functional hub genes,
whose encoding protein has a close relationship to AD
treatment, such as ErbB2, ErbB4, OCT3, MIF, CDKI3, and
GPI. Several pathways were significantly dysregulated in
EC and HIP, such as PI3K-Akt signaling pathway, MAPK
signaling pathway, insulin signaling pathway, oxidative phos-
phorylation, synaptic vesicle cycle, cell-cell adhesion, protea-
some, arginine, and proline metabolism, pentose phosphate
pathway, calcium ion regulated exocytosis, and glutamate
receptor signaling pathway. CTSD and VCAMI were dys-
regulated significantly in blood, EC, and HIP, which were



BioMed Research International

potential biomarkers for AD. From the target genes of the four
miRNAs and DEGs in AD brain, we found inflammation,
defective insulin signaling, and energy metabolism linked the
pathogenesis of peripheral and central nervous system. Last,
based on the hub genes in EC and HIP, six small molecules
were screened out and they were fisetin, alsterpaullone,
telenzepine, bezafibrate, scoulerine, and melatonin, which
had direct or indirect relationships with the treatment of
memory dysfunction. These biological pathways and DEGs
or hub genes will help to elucidate AD pathogenesis and
identify novel biomarkers or drug targets for developing
improved diagnostics and therapeutics against AD.
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