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Abstract
Information transmission in cells occurs quite accurately even when concentration changes

are “read” by individual binding sites. In this paper we study ligand number and site occu-

pancy fluctuations when ligands diffuse and react going beyond the analyses that focus on

their asymptotic decay. In this way we show that, for immobile binding sites, fluctuations in

the number of bound molecules decay on a relatively fast scale before the asymptotic

behavior kicks in. This result can explain the observed co-existence of highly fluctuating

instantaneous transcriptional activities with accumulated mRNA concentrations that have

relatively small noise levels. We also show that the initial stages of the decay in the bound

molecule number fluctuations have one or two characteristic timescales depending on the

concentration of free molecules. This transition can explain the changes in enzyme activity

observed at the single molecule level.

Introduction
The transmission of information in cells usually involves changes in concentration that are
“read” by target molecules. This occurs in a fluctuating environment. Yet cells respond quite
reliably to various changes [1, 2]. The accuracy of the reading mechanism is key in the case of
morphogens, molecules whose non-uniform distribution results in cell differentiation [3].
Most often this patterning process involves the binding of transcription factors to sites on
DNA controlling the levels of protein production. The relationship between the concentration
of a protein and of the transcription factor that regulates its production depends on various
binding processes. How faithful the spatial distribution of protein concentration reflects that of
the transcription factor depends on how the concentration of the latter is read by the binding
sites. This relationship has been studied during the early stages of development of Drosophila
melanogaster embryos. The analysis of the variability of the concentrations of the protein
Hunchback (Hb) and of the transcription factor Bicoid (Bcd) involved in its production shows
that the resulting pattern is compatible with detecting [Bcd] with a 10% error [3]. Considering
the random arrivals of individual Bcd molecules to a small neighborhood around a putative
DNA binding site the calculations of [3] concluded that only after a long time (*2h) compared
to the embryo developmental time [Bcd] could be inferred with this precision. In [3] a spatial
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averaging between neighboring nuclei was invoked to reconcile this computation with the
observations. Some sort of spatial averaging was also invoked to explain recent observations of
transcriptional regulation in Drosophila melanogaster embryos [4, 5] where the instantaneous
production of mRNA varied by up to 50% between loci of transcription but the cytoplasmic
mRNA accumulated around a locus fluctuated by less than 8%. This level of noise reduction
could not be accounted for solely by time averaging. The existence of some type of spatial aver-
aging is possible during the early stages of Drosophila development because several nuclei
share a common cytoplasm. Thus, it is relevant to understand how fluctuations in the accumu-
lated number of product molecules relate to those of the molecules that regulate their produc-
tion when there are several production sites. In other words, how faithfully ligand
concentration can be inferred by binding sites when there are several of them competing for
the same ligands. In this paper we address this point.

The seminal work of Berg and Purcell [6] showed that the time it takes for a ligand concen-
tration to be estimated by binding sites with a certain accuracy depends on the diffusion coeffi-
cient of the ligand. The subsequent studies of [1, 7] extended this work finding that ligand
diffusion imposed a fundamental limit on accuracy. The estimate of*2hs for the concentra-
tion of Bcd to be read with a 10% accuracy in Drosophila melanogaster embryos (with no spa-
tial averaging) [3] was derived using the Bcd diffusion coefficient determined in Fluorescence
Recovery After Photobleaching (FRAP) experiments [8]. This diffusion coefficient was esti-
mated to be an order of magnitude larger using Fluorescence Correlation Spectroscopy [9].
These two apparently disparate estimates have recently been shown to be compatible [10] if
they are assumed to correspond to the two effective diffusion coefficients that describe the
transport of molecules that diffuse and react [11]. In fact, Bcd, being a transcription factor, dif-
fuses and reacts at least with putative binding sites on DNA. If, as in the case of Bcd inDrosoph-
ila embryos, several binding sites compete for the same pool of Bcd molecules, what is the
diffusion coefficient that sets the limit for the precision with which [Bcd] can be read by those
binding sites? This is one motivating question of our paper.

The problem of how accurately a ligand concentration can be inferred [12] was recently re-
analyzed for the case of a single binding site [7]. Building upon previous studies on diffusion-
limited reactions [13, 14] the work of [7] derives an expression for the mean (asymptotic) cor-
relation time that characterizes fluctuations in the probability that the site be bound to a ligand.
The authors validate their expression, which differs slightly from the one obtained in [1], via
numerical simulations. As we discuss later, the main difference between the results of [7] and
[1] may be attributed to different linearizations of the non-linear problem that rules the
dynamics. The quantity of interest in these works is the fraction of time, fb(Tobs), that the bind-
ing site spends bound during an “interaction” interval, [0, Tobs], and how it differs from the
equilibrium probability, pb, that it be bound given the actual concentration of ligand. Thus,
introducing the stochastic variable, N(b)(t), such that N(b) = 1, if the site is bound and 0, other-
wise, fb(Tobs) is equal to the average:

N ðbÞðTobsÞ �
1

Tobs

Z Tobs

0

dtN ðbÞðtÞ; ð1Þ

and pb is equal to the mean, hN ðbÞi ¼ hN ðbÞi. In the case of more than one binding site, fb(Tobs)
and pb are defined similarly but divided by the total number of sites, NST. The squared differ-
ence between them is estimated as

var N ðbÞðTobsÞ
� � � h N ðbÞðTobsÞ � hN ðbÞi� �2i; ð2Þ
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and the relative error as:

DrðN ðbÞÞ � var N ðbÞðTobsÞ
� �� �1=2

=hNðbÞi: ð3Þ

The variance in Eq (2) is related [12] to the autocorrelation function (ACF),

GðbÞðtÞ ¼ hðN ðbÞðtÞ � hN ðbÞiÞðN ðbÞðt þ tÞ � hN ðbÞiÞi; ð4Þ

by:

var N ðbÞðTobsÞ
� � ¼ 1

T2
obs

Z Tobs

0

dt0
Z Tobs

0

dtGðbÞðt0 � tÞ: ð5Þ

Thus, the correlation times, τi, of the ACF, G
(b), rule the decay of the relative error with time.

The studies of [1, 7, 12] focus on the asymptotic decay of this error. Introducing the mean
(asymptotic) correlation time [12]:

tðbÞ � 1

var ðN ðbÞÞ
Z 1

0

dtGðbÞðtÞ; ð6Þ

it can be shown that, if Tobs �maxi τi, it is [12]:

DrðN ðbÞÞ� �2 � 2tðbÞ

Tobs

var ðN ðbÞÞ
hN ðbÞi2 : ð7Þ

In the present paper, we do not limit the analyses to this asymptotic behavior, but rather look
at how this behavior is achieved. It is clear from Eq (7) that the error depends on var(N(b)). In
the case at hand var(N(b)) depends on the mean number of free ligand molecules that are within
an interaction distance of the binding site. The number of free ligands in this interaction vol-
ume is a (highly fluctuating) random variable. The problem is nonlinear and complicated and
the derivation of Eq (7) assumes that the system is close to equilibrium. In the present paper
we derive an approximated expression for the relative error, Eq (3), that considers the time it
takes for the number of free ligands in the interaction volume to approach its mean value. This
correction can explain the observed co-existence of highly fluctuating instantaneous transcrip-
tional activities and of accumulated mRNA concentrations with relatively low noise [4, 5]. Our
studies show that it is possible to interpret the “high” noise reduction observed in Drosophila
melanogaster embryos with some type of spatial averaging: not that of the “product” (the
mRNA), as suggested in [4], but that of the “substrate” or ligand (the transcription factor).
Another difference of our work with respect to previous ones is that we not only look at fluctu-
ations in the occupation state of single binding sites but of groups of them. In this way we can
analyze some results that come from experiments of very good resolution but not high enough
to allow the direct observation of individual sites at work [4].

In order to study the decay of the error before the asymptotic behavior is reached, we build
upon our previous works on the analysis of optical experiments when molecules diffuse and
react [15–17]. We derive analytic expressions for the relevant ACFs in certain limits. In this way
we obtain the individual correlation times that eventually contribute to the mean (asymptotic)
time defined in Eq (6). Although some real situations may not fit within any of the two limits,
knowing the behavior for both of them gives an indication of what may happen in between. One
of the limits, on the other hand, always holds for sufficiently long lag times [17]. Having analytic
expressions for the ACF not only allows us to study the “early” decay of the relative error in the
estimated number of bound or free molecules in a volume. It also lets us look at other properties
of processes that involve binding when observed at the single molecule level. In particular, using
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our analytic ACFs we derive an approximated dwell-time distribution between individual bind-
ings whose time dependence may be studied as a function of parameters. This provides a tool to
interpret the changes in the dwell-time distribution between individual enzyme turnovers
observed in [18], where the catalytic actitivity of β-galactosidase was tested at the single-molecule
level. In [18] the transition of the distribution from a mono to a multi-exponential function with
increasing substrate concentration was attributed to fluctuations in the substrate-enzyme bind-
ing/unbinding rate constants. Our studies show that the observed changes can be due to a transi-
tion from a situation in which the correlation time is dominated by the reactions to another in
which it is dominated by diffusion. While in the former case the distribution is mono-exponen-
tial, in the latter it decays as a rational function of time that looks multi-exponential.

Materials and Methods

The model
We consider a system of particles (e.g., transcription factors or substrate molecules), P(f), that
diffuse with (free) coefficient, Df, and react with binding sites, S, according to [11, 16, 17]:

Pðf Þ þ S⇄
kon

koff
PðbÞ: ð8Þ

We assume that the binding sites diffuse with coefficient DS� Df (in all the examples we con-
siderDS = 0) and that S is so massive that the free coefficient of P(b) is DS too. We consider a
total volume, VT, over which the molecules diffuse and the concentrations, [P(f)], [P(b)], [S], are
approximately constant, uniform and in equilibrium among themselves ([P(f)][S] = KD[P

(b)]),
and an observation volume, Vobs, where the number of molecules,N(f), N(b) andN(S), are
counted. The means of these stochastic variables satisfy hN(f)i = [P(f)]Vobs, hN(b)i = [P(b)]Vobs

and hN(S)i = [S]Vobs if Ds 6¼ 0. If DS = 0 and Vobs� VT, there could be a local equilibrium in
Vobs slightly different from the one in VT that depends on the (fixed) total number of binding
sites in Vobs, NST� N(b)+N(S). The aim is to determine the difference between the mean and the

average, N ðsÞðTobsÞ ¼ 1
Tobs

R Tobs
0

dtNðsÞ of each stochastic variable (s = f, b, S) after an observation

time, Tobs. These differences reflect by howmuch the concentrations that can be estimated after
a time, Tobs, by counting howmany particles of each species are, on average, in the observation
volume, Vobs, differ from the bulk concentrations in the total volume, VT, which are propor-
tional to the mean of the number of particles of each species. We estimate these differences
using Eq (2) replacing N(b) by the correspondingN(s) in each case. Equivalently, we compute the
variances using Eqs (4) and (5), replacing, in both cases, b by the corresponding s. More details
about the model and the calculations that are described in what follows can be found in S1 Text.

ACF and mean correlation time
For the analytic calculations we compute the ACF as in the case of FCS experiments [16, 17,
19]. We briefly describe here the main steps. A more detailed description is provided in S1
Text. Instead of adding all the particles of species (s) in Vobs to compute N(s), we add all the par-
ticles of species (s) in VT but with a Gaussian weight: N ðsÞ ¼ R

VT
d3~rIð~rÞcðsÞ where

Ið~rÞ ¼ exp � r2

2a2

� �
, r ¼ j~rj, a is half the waist of the Gaussian and cðsÞ ¼Pis

dð~r �~risðtÞÞ with
the sum running over all the molecules of species (s) and~risðtÞ the location of each of them at

time t. In this way, it is Vobs ¼
R
d3~rIð~rÞ ¼ 8p3=2a3 and:

GðsÞðtÞ ¼
Z

d~r
Z

d~r 0 hdcðsÞð~r ; 0ÞdcðsÞð~r 0; tÞi; ð9Þ
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where dcðsÞ � cðsÞð~r; tÞ � hNðsÞi=Vobs. As done in [15, 19], for the analytic computation of G(s)(τ)
we calculate the differences, δc(s), for the 3 species of the system, as the solution of a linearized
version of the reaction-diffusion equations that describe the dynamics of the concentrations of
P(f), P(b) and S. As described in S1 Text, there are two possible linearizations that lead to two
different expressions of the asymptotic correlation time (the one obtained in [7] and the one
obtained in [1]). The steps that are followed to proceed with the computations are equivalent
in both cases, but the final results differ from one another. In order to obtain the correlation
times we express Eq (9) in terms of the (branches of) eigenvalues and eigenvectors of the linear-
ized reaction-diffusion equations in Fourier space:

GðsÞðtÞ ¼ 1

ð2pÞ3
Z

d~x Îð~xÞ
� �2X

m

XðmÞ
j exp ðlðmÞtÞðX�1s2ÞðmÞ

j ð10Þ

where the subscript, j, refers to the species (j = 1 for s = f, and j = 2 for s = b) and the index, (m),

labels the eigenvalues, Îð~xÞ is the Fourier transform of Ið~rÞ and~x is the conjugate variable of~r , X
is the matrix of eigenvectors, λ(m) is them-th eigenvalue and σ2 is the matrix of initial correlations

between the species, s2
ij ¼ hdN ðsÞð0ÞdN ðs0Þð0Þi with i, j the indices corresponding to species s and

s0, respectively. As in [15] we assume that hdcðsÞð~r ; tÞdcðs0Þð~r 0; tÞi ¼ var ðN ðsÞÞ=Vobsdijdð~r �~r 0Þ
with a Poisson statistics for s = f, var(N(f)) = hN(f)i, and binomial for s = b, var(N(b)) = (1 − pb)h
N(b)i. The mean correlation time, τ(b), can be computed exactly using Eq (6). It is:

tðbÞ ¼ pbNSTffiffiffiffiffiffiffi
2p3

p
a½Pðf Þ�Df

þ 1� pb
koff

; ð11Þ

or

tðbÞ ¼ pbð1� pbÞNSTffiffiffiffiffiffiffi
2p3

p
a½Pðf Þ�Df

þ 1� pb
koff

; ð12Þ

depending on the linearized version of the reaction-diffusion equations that is used to start the
computations.

Approximated ACF in two limits
Even if simple algebraic expressions (Eqs (11) or (12)) are always obtained for the mean
(asymptotic) correlation time, τ(b), we only have Eq (10) for the ACF which is a sum of as
many integrals over ξ as branches of eigenvalues and eigenvectors of the linearized reaction-
diffusion equations in Fourier space. If the eigenvalues are either independent of ξ (something
that corresponds to an exponential decay in time) or proportional to ξ2 (something that corre-
sponds to a diffusive decay) the integrals can be performed exactly. Thus there are simple alge-
braic expressions for the terms (or components) of the ACF that correspond to these types of
eigenvalues. As discussed in [16] (see also S1 Text) there are two limits for which all the eigen-
value branches can be expressed as λ(i) = −νi or as −Di ξ

2 with νi a function of the reaction rates
and concentrations and Di depending, in general, on these quantities and on Df. These are the
fast reaction (fr) and the fast diffusion limits (fd) defined by τr � τf and τf � τr, respectively
with τf the diffusion timescale and τr the reaction one:

tf � a2D�1
f ; tr � ðkoff þ kon~S þ kon½Pðf Þ�Þ�1

; ð13Þ

where ~S ¼ ½ST � in the case of the linearization that leads to Eq (11) and ~S ¼ ½S� in the case that
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leads to Eq (12). Given Eqs (11) and (12) we conclude that one of the two terms prevails in the
sum that defines τ(b) in each of these limits.

Approximating Eq (10) in both limits as done in [16] but considering the initial correlations
described before [15] (see S1 Text) we obtain simple analytic expressions for the ACF. In the fd
limit they read:

Gðf ÞðtÞ ¼ var ðN ðf ÞÞ 1þ jtj
tf

 !�3=2

; ð14Þ

GðbÞðtÞ ¼ var ðN ðbÞÞe�jtj=toff ; ð15Þ
with τf defined in Eq (13) and

t�1
off ¼

koff
1� pb

: ð16Þ

In the fr limit we obtain:

Gðf ÞðtÞ ¼ var ðN ðf ÞÞ
1þ jtj

tef

� ��3=2

1þ b
þ be�

jtj
~tr

1þ b

0
B@

1
CA ð17Þ

GðbÞðtÞ ¼ var ðN ðbÞÞ
b 1þ jtj

tef

� ��3=2

1þ b
þ e�

jtj
~tr

1þ b

0
B@

1
CA; ð18Þ

with

tef �
a2

Def

� a2ð1þ bÞ
Df

; ~tr ¼
toff

1þ b
ð19Þ

and β = pb NST/hN(f)i if we use the linearization that gives Eq (11) and β = pb(1 − pb)NST/hN(f)i
if we use the one that leads to Eq (12). The first term in Eqs (17) and (18) corresponds to a dif-
fusive correlation time while the second is reaction dominated.

Variance and relative errors
We extend Eqs (5) and (3) to any species, s, to compute the (square of the) relative error as:

DrðN ðsÞÞ2 ¼ var N ðsÞð Þ
T2
obshN ðsÞi

Z Tobs

0

dt0
Z Tobs

0

dtGðsÞðt0 � tÞ: ð20Þ

Inserting Eqs (14), (15), (17) and (18) into Eq (20) we derive analytic expressions for DrðN ðsÞÞ
in the fd and the fr limits. We obtain:

DrðN ðf ÞÞ� �2 ¼ var N ðf Þð Þ
hN ðf Þi2

4tf
Tobs

1þ 2tf
Tobs

1� 1þ Tobs

tf

 !1=2
0
@

1
A

0
@

1
A; ð21Þ

DrðN ðbÞÞ� �2 ¼ var NðbÞð Þ
hN ðbÞi2

2toff
Tobs

1þ toff
Tobs

e�Tobs=toff � 1
� �� �

; ð22Þ
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in the fd limit and, in the fr one,

DrðN ðf ÞÞ� �2 ¼ var N ðf Þð Þ
ð1þ bÞhN ðf Þi2 �

2~trb
Tobs

1þ ~tr
Tobs

e�Tobs=~tr � 1
� �� �

þ 4tef
Tobs

1þ 2
tef
Tobs

1� 1þ Tobs

tef

 !1=2
0
@

1
A

0
@

1
A

0
@

1
A; ð23Þ

DrðN ðbÞÞ� �2 ¼ var N ðbÞð Þ
ð1þ bÞhN ðbÞi2 �

2~tr
Tobs

1þ ~tr
Tobs

e�Tobs=~tr � 1
� �� �

þ 4tefb

Tobs

1þ 2
tef
Tobs

1� 1þ Tobs

tef

 !1=2
0
@

1
A

0
@

1
A

0
@

1
A; ð24Þ

For the latter we also work with a simpler expression where we approximate each component
of the ACF by a step-wise function (see S1 Text for more details) and obtain

ðDrðN ðbÞÞÞ2 ¼ varðNðbÞÞ
ð1þ bÞhNðbÞi2 �

1; if Tobs 	 ~tr;

2~tr
Tobs

1� ~tr
2Tobs

� �
þ b

� �
; if ~tr 	 Tobs 	 2tef ;

2~tr
Tobs

1� ~tr
2Tobs

� �
þ b

4tef
Tobs

1� 2tef
2Tobs

� �� �
; if Tobs 
 2tef :

ð25Þ

In some instances we also compute DrðN ðsÞÞ2 outside the fd or the fr limits by inserting Eqs (10)
into (20) and performing the integral in ξ numerically.

Numerical Computations
We compute the theoretical expressions of the relative errors that we obtain with our theory
and compare them with the asymptotic expressions presented in [1, 6, 7] using the parameters
listed in Table 1 and DS = 0.

We perform stochastic numerical simulations of the reaction-diffusion system considered
as in [16]. To compute N(s)(t) we count all the particles inside a cube of size 0.016μm3 located
at the center of the integration volume. We use DS = 0 and the parameters listed in Table 2.
The diffusion coefficients and the ratios between the dissociation constant and the various con-
centrations of the first column of the Table are the same as those derived from an analysis [10]
of FCS experiments performed in Drosophila melanogaster embryos. These parameters are

Table 1. Parameters used to make the curves of Fig 1. These parameters were chosen arbitrarily.

Fig 1(a) and 1(b) Fig 1(c) Fig 1(d)

Df 1μm2 s−1 10μm2 s−1 1μm2 s−1

koff 10s−1 0.1s−1 100s−1

KD 1.66μM 16.6nM 0.083μM

[P(f)] 0.33μM 83.1nM 16.6μM

[ST] 3.32μM 16.6nM 11.63μM

Vobs 0.125μm3 0.125μm3 1μm3

doi:10.1371/journal.pone.0151132.t001
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such that the fast reaction limit holds. The concentrations and the dissociation constant of the
second column were chosen so that the fast diffusion limit was satisfied. For the simulations

the corresponding ACFs are computed as GðsÞðt ¼ jdtÞ ¼Pn�1

‘¼0 ðN ðsÞð‘dtÞ � hN ðsÞiÞ�
ðN ðsÞðð‘þ jÞdtÞ � hN ðsÞiÞ=n with dt the time step. We generate the data points performing a
very long simulation and subsenquently dividing the data into records of length, Tobs = 100s.

Results
In this paper we consider a system of free particles, P(f), that diffuse and react with (immobile)
binding sites, S, giving rise to bound particles, P(b) (see Eq 8), as an idealization of several situa-
tions that are encountered in biological systems. In one of the two examples that are described
later in more detail P(f) represents transcription factors and S regulatory sites for the expression
of different genes. In the other example, P(f) is a substrate and S the enzyme that transforms it
into a product. Given that the processes of interest involve the interaction of individual molecules
to individual binding sites that occurs when the two “actors” are sufficiently close together the
problem that we are dealing with is to what extent the rate at which these individual reactions
occur is a good indicator of the particles concentration in the bulk, i.e. beyond the rather limited
interaction (or “observation”) volume, Vo. Even if the binding sites are immobile (as in the exam-
ples considered in the present paper), free particles keep on arriving in their vicinity and the reac-
tions keep on occurring along time. Thus, there is an averaging process by which the rate
eventually becomes a good indicator of the bulk concentration. The question then reduces to the
time it takes for this to happen. For the problem at hand we idealize the problem by considering

the time it takes for the averages,N ðf Þ andN ðbÞ, of the number of free,N(f), and bound,N(b), parti-
cles in Vo, respectively, to be within a certain percent of the corresponding means, hN(f)i and
hN(b)i, which are functions of the bulk concentration, [P(f)]. In S1 Text we describe the way by
which we compute the relative errors, DrðN ðf ÞÞ and DrðN ðbÞÞ of N ðf Þ and N ðbÞ and in Materials
and Methods we present the main formulas that we obtain. In particular, building upon our pre-
vious work on the analysis of FCS experiments [10, 15–17] we derive analytic expressions for
these errors that are valid for all times under different assumptions. In this Section we present a
series of results that validate these analytic expressions and study the differences between our
expressions and those previously published in the literature [1, 7] that only hold for long enough
times. The calculations of S1 Text involve the linearization of a nonlinear problem. In this Sec-
tion we also present an extension of our formulas that goes a step further into the nonlinear
regime which is relevant for the early decay of the errors. We also derive an approximation of the
dwell time distribution between individual bindings that we can obtain because we have expres-
sions that are valid for early times. The applications of the following Section highlight the rele-
vance of having analytic expressions that are valid beyond the asymptotic (long time) regime.

Table 2. Parameters used in the stochastic simulations. The parameters of the first column were derived
in [10] from an analysis of FCS experiments performed in Drosophila embryos. Those of the second column
were chosen arbitrarily.

Fig 2(a) Fig 2(b)

Df 19μm2 s−1 19μm2 s−1

koff 400s−1 0.5s−1

KD 0.25μM 1.92nM

[S] 2.87μM 22.1nM

[P(f)] 7.68μM 59.1nM

[P(b)] 88.31μM 679.3nM

doi:10.1371/journal.pone.0151132.t002
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Relative errors: early and asymptotic decay
We here compare the time dependence of the relative errors that we derive with our theory

with the asymptotic expressions presented in [1, 6, 7]. We show in Fig 1 the error, DrðN ðbÞÞ, as
a function of the observation time, Tobs, given by Eq (22) (c) or Eq (24) (a,b,d) (black solid
curves) and the one given by Eq (7) with τ(b) given by Eq (12) (dashed-dotted curves). We use
DS = 0 and the parameters listed in Table 1. These parametes were chosen arbitrarily to high-
light the main aspects that we want to stress about the difference between our formulas and the
asymptotic ones. The fd limit holds in Fig 1(c) and the fr limit in Fig 1(a), 1(b) and 1(d) for
which we used β = pb(1 − pb)/hN(f)i. We observe that the analytic approximations and the
asymptotic expressions eventually predict the same decay. This is clearest in Fig 1(b). To illus-
trate the role of the two times, ~tr and τef, that characterize the decay in the fr limit we also plot
in Fig 1(a), (b) and (d) the approximation given by Eq (25) (dashed curves). If ~tr⪡tef, as in
these examples, the term proportional to ~tr=Tobs in Eq (25) can be negligible already for times,
Tobs � τef. Furthermore, depending on the weights with which τr and τef enter the expression
of the error (1/(1 + β) and β/(1 + β), respectively), Δr(N

(b)) may drop to a very small value, α,
for Tobs� τef. In such a case, the asymptotic expression overestimates the time that is necessary
for the error to drop below α. An extreme example of this situation (with β = 0.0034, τr = 50μs

Fig 1. Relative error of the average number of bound particles as a function of time. Eq (7) with τ(b) given by Eq (12) (dashed-dotted curve) is plotted in
all subfigures. (a) The fr limit holds. Eq (24) (black solid curve) and Eq (25) (dashed-dotted curve) are also plotted. (b) Same as (a) but with the vertical axis on
a logarithmic scale. (c) The fd limit holds. Eq (22) (black solid curve) and the combination of Eq (3) and Eq (27) (gray solid curve) are also plotted. (d) Similar
to (a) but for parameters such that DrðNðbÞÞ goes below 10% for Tobs much smaller than the longest correlation time which is*1s.

doi:10.1371/journal.pone.0151132.g001
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and τef � 1s) is shown in Fig 1(d). In this case Δr(N
(b))*0.1 for Tobs � 1ms� τef while the

asymptotic expression predicts that this error is reached at Tobs � 100ms.

Relative errors: comparison with stochastic simulations
We now compare the predictions of the analytic expressions with stochastic simulations in
which there are several binding sites inside the observation volume. The simulations are per-
formed using the parameters of Table 2. We show in Fig 2 the (normalized) average number of
bound particles in Vobs obtained from the simulations (symbols) as a function of Tobs. We also
plot the curves 1±2Δr(N

(b)) and shade the region between them for different expressions of
Δr(N

(b)): Eq (7) (dashed-dotted curve), Eq (24) (shaded region in (a)) and Eq (24) (shaded
region in (b)). In Fig 2(a) the fr limit holds so that Δr(N

(b)) (see e.g. Eq (24) depends on β, i.e.,
on the linearization that is used. We have used the linearization that leads to Eq (12) [1] and
obtained β = pb(1 − pb)hNSTi/hN(f)i = 0.36 for the parameters of the simulation. We observe
that the theoretical expression describes correctly the decay of the relative errors obtained with
the simulations. In Fig 2(b) the fd limit holds. In this limit, both linearizations lead to the same
ACFs (Eqs (14) and (15)). We observe that Eq (22) (the one that defines the shaded region)
underestimates the size of the fluctuations at early times. We discuss in what follows a possible
reason for this to happen and introduce the correction that is illustrated with the dashed curve.

Initial error: including the effect of nonlinearities
For immobile binding sites N(b) is binomial and var(N(b)) = (1 − pb)hN(b)i depends on hN(f)i
because pb = hN(f)i/(hN(f)i+KD Vobs). All the error estimates that we have used so far were
derived assuming that the system was close to equilibrium and the dynamics could be modeled
by a set of linear equations. The dependence of var(N(b)) on hN(f)i is a consequence of the non-
linearity of the problem. The number of free particles in Vobs, N

(f), is a stochastic variable and it

is subject to the same type of uncertainties as N(b). Namely, it takes some time for N ðf Þ to differ
from hN(f)i within a small percent. We may then consider that, after a time, Tobs, there is only

Fig 2. Comparing the predictions of the analytic expresions with stochastic simulations.We show the time-dependence of the normalized average
numbers of bound particles,N(b), obtained from stochastic simulations (symbols) and of the region defined by 1� 2DrðNðbÞÞ with DrðNðbÞÞ computed in various
ways. The dashed-dotted curves correspond to Eq (7) with τ(b) given by Eq (12). (a) The fr limit holds. The shaded area is computed using Eq (24). (b) The fd
limit holds. Eq (22) is used to compute the shaded area. The error derived from Eq (27) is also shown (dashed curve).

doi:10.1371/journal.pone.0151132.g002
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an approximation to pb given by ~pb ¼ N ðf ÞðTobsÞ=ðN ðf ÞðTobsÞ þ KDVobsÞÞhN ðbÞi and that fluctua-
tions in N(f), which decay with their own correlation times, impact directly on var(N(b)) (and

on var ðN ðbÞÞ). In order to take this effect into account we estimate j~pb � pbj as:

Dpb ¼
@~pb

@N ðf Þ

				
				
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðN ðf ÞÞ

q
¼ pbð1� pbÞDrðNf Þ; ð26Þ

then approximate:

var ðN ðbÞÞ � ð1� pbÞhNðbÞi þ @ var ðN ðbÞÞ
@pb

				
				Dpb ¼ ð1� pbÞhN ðbÞi 1þ pbDrðN ðf ÞÞ� �

; ð27Þ

and use it to compute DrðN ðbÞÞ as before. The “nonlinear” correction of Eq (27) should be
noticeable if hN(f)i is small enough, a situation that is encountered when the fd limit holds. We

show with dashed lines in Fig 1(c) the curve DrðN ðbÞÞ vs Tobs obtained as just described using

Eq (21) to compute DrðN ðf ÞÞ. We show in Fig 2(b) with dashed-dotted lines the curves,

1� 2DrðN ðbÞÞ, obtained in a similar way. These curves decay with the additional correlation
time, τf = a2/Df = 7ms, with respect to those depicted with solid lines.

Dwell-time distributions
Using the analytic expressions of the ACF we can derive an approximation of the distribution
of times between successive bindings where there is a single binding site. To this end we recall
that, if NST = 1, the ACF Eq (9) for s = S or s = b (the unbound and the bound binding site,
respectively) can be interpreted as:

GðsÞ ðtÞ ¼ GðbÞðtÞ
¼ ð1� pbÞ Pð�S; t þ tj�S; tÞ � ð1� pbÞð Þ
¼ ð1� pbÞ 1� Pð�b; t þ tj�S; tÞ � ð1� pbÞð Þ

ð28Þ

with pb, as before, the equilibrium probability that the site be bound and Pð�s; t þ tj�0
s; tÞ the

probability that the site be in state s at time t+τ given that it was in state s0 (s, s0 = S, b) at time, t.
We must note that the site may switch state (S, b) several times between t and t+τ. However, if
τ is not too large (it is of the order of or smaller than the reaction time, τr), we may assume that
at most one switching occurs. Let us assume that at time, t, a transition from bound (b) to free
(S) occurs. So, at time, t, the site is free. Then, if τ is not too large,

f ðtÞ � z
@

@t
Pð�b; t þ tj�S; tÞ ¼ �z

dGðbÞ

dt
=ð1� pbÞ; ð29Þ

with z a normalization factor, gives an estimate of the transition probability per unit time for
the site to become bound, i.e. of the distribution of waiting times between bindings. The nor-
malization factor z is chosen so that

R1
0
dtf ðtÞ ¼ 1. Using the analytic expressions of the ACF

and Eq (29) we derive the following approximations of the dwell-time distribution in the fd
and the fr limits:

ffdðtÞ ¼
1

toff
e�t=toff ; ð30Þ

ffrðtÞ ¼ z
3

2tef

b

1þ t
tef

� �5=2
þ 1

tr
e�t=tr

0
B@

1
CA: ð31Þ
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The distribution is exponential in the former and has a long tail in the latter. As we discuss
later this different behavior can explain the transition in the dwell-time distribution observed
[18] in assays of enzyme activity at the single molecule level.

Discussion
Information transmission in cells occurs quite accurately even when concentration changes
are “read” by individual target molecules. In this paper we have studied molecule number fluc-
tuations as a way to answer the question of how long it takes for a concentration to be “read”
by binding sites with a certain accuracy. As done in [1, 6, 7], we have approximated the error
of the concentration estimate in a region in terms of the variance of the average number of
molecules in that region after an observation time, Tobs. Following [6] we have used the ACF
of the molecule number fluctuations, G(s)(τ), to compute this variance. Thus, it is the charac-
teristic (correlation) times of the ACF, τi, the ones that determine how fast the concentration
can be estimated. There are two main differences of our approach with respect to previous
works [1, 6, 7]. One one hand, we have analyzed the case in which the molecules whose con-
centration is to be read do not interact with a single binding site. On the other hand, we have
obtained expressions for the variance and, thus, for the relative error, Eq (3), that hold for all
times, not only for Tobs �maxi τi. Our expressions described very well the decay of the fluctu-
ations obtained in particle simulations as illustrated in Fig 2. The limitation of our expressions
is that they are approximations that hold in two opposite limits, the fast diffusion and the fast
reaction one. The former limit holds when the characteristic diffusion and reaction times
defined in Eq (13) satisfy τf � τr. The latter holds when τr � τf. The fd limit becomes valid, in
general, as the observation volume is reduced [16]. The fr approximation of the auto-correla-
tion functions, G(s)(τ), is always valid if the lag time, τ, is sufficiently large [17]. The transition
between both limits was studied in [16]. There it was observed that even for τr * τf the fr
approximation provided a good description of the ACFs. Even though there are real situations
that do not fit within any of the two limits, knowing the behavior of the ACFs for both of
them gives an indication of what may happen in between [16]. In these limits the ACFs are
approximately of the form:

GðsÞ ¼ var ðN ðsÞÞ
X

i

WðsÞ
i FðsÞ

i ðtÞ ð32Þ

with FðsÞ
i ð0Þ ¼ 1,

P
iW

ðsÞ
i ¼ 1 and FðsÞ

i ðtÞ characterized by a single correlation time, τi. Thus,
the asymptotic correlation time, Eq (6), studied in [1, 6, 7], is a weighted average of the indi-
vidual correlation times, τi. The relative errors, Eqs (21)–(25), on the other hand, satisfy:

DrðN ðsÞÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var ðN ðsÞÞ

p
=hN ðsÞi if Tobs � min

i
ti; ð33Þ

while they approach the asymptotic expression (the equivalent of Eq (7) for each species, s)
for Tobs �maxi τi. We have shown in Fig 1 how, depending on the weights, using the asymp-

totic expression (7) can lead to an overestimation of the time it takes for DrðN ðbÞÞ to go below
a certain value. This highlights the relevance of having a formula that describes the fluctua-
tions decay before the asymptotic behavior is valid. Eq (33) implies that, at early times,

DrðN ðbÞÞ � ð1� pbÞhN ðbÞi, which depends on hN(f)i through pb. N
(f) is a stochastic variable on

equal grounds as N(b) and it takes a while for its average, N ðf Þ, to reach its expected value,

hN(f)i. In this paper we have extended the expression for DrðN ðbÞÞ to take this nonlinear effect
into account. This extended expression improved the description of the early decay of the
error in the fd limit, as illustrated in Fig 2(b). As discussed later, this extended expression
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allows to explain the co-existence observed in Drosophila embryos [4] of highly fluctuating
instantaneous transcriptional activities and of accumulated mRNA concentrations with noise
levels that are reduced beyond what time-averaging predicts. Having an analytic expression of
the ACF for all times also allowed us to derive approximations for the distribution of waiting
times between successive bindings. They are given by Eqs (30) and (31) in the fd and the fr
limits, respectively. The different time-dependence of both expressions, which is a conse-
quence of whether diffusion or reactions are the time-limiting steps, is lost when one looks at
the asymptotic correlation time Eq (6). As discussed later, it can be used to explain the
changes in enzyme activity observed as the substrate concentration is increased [18] in a way
that does not rely on the existence of innumerous enzyme conformers.

The collective diffusion coefficient determines the correlation time of
bound binding site number fluctuations when there are several binding
sites in the observation volume
The problem of how long it takes for a single binding site to “read” the concentration of its
ligand has recently been revisited in [7]. In particular the authors analyzed the different depen-
dence of the asymptotic time, τ(b), obtained in [6] and in [1]. This difference is apparent in the
first term of Eqs (11) and (12) which differ in the factor (1 − pb) that is present in the latter.
This first term dominates τ(b) in the fr limit. Thus, it is in this limit that the different predictions
could be distinguished provided that (1 − pb) is sufficiently different from 1. The example
probed in Fig 2(a) satisfies this condition (1 − pb = 0.03). The theoretical expressions that were
used in Fig 2(a) correspond to the linearization that leads to the asymptotic time, Eq (12),
derived in [1]. In particular, we used Eq (24) with β = pb(1 − pb)NST/hN(f)i = 0.36 to determine
the shaded area of Fig 2(a). We observe that these theoretical expressions describe correctly the
size of the early fluctuations and the way they decay asymptotically in time. Had we used the
other linearization (the one that leads to Eq (11) [7]) the value β = pb NST/hN(f)i = 11.5 would
have been used in Eq (24) instead. In such a case, the theoretical expressions of the relative
error would have been*32 times larger than those depicted in Fig 2(a) and would not describe
the observed fluctuations so well. In this example the volume that is probed contains many
(*20,000) binding sites. When there are several (independent) binding sites on a surface the
calculation of [14] shows that the asymptotic time approaches the one given by Eq (12). Our
simulation supports this result. It is interesting to note that one of the differences between the
results that are obtained using the one or the other linearizations described in S1 Text is the dif-
ferent correlation time that dominates the asymptotic decay of the fluctuations in the fr limit.
In both cases it is a diffusive time but with the two different effective diffusion coefficients
introduced in [11]: the collective one in the case that the asymptotic time is given by Eq (12)
and the single molecule one that of Eq (11). The former describes the time it takes for a pertur-
bation in the concentration of particles to spread out while the latter prescribes how the mean
square displacement of a single particle scales with time [11]. The result about the correlations
in the occupancy state of a single binding site (the case probed in [7]) as compared to a collec-
tion of them (the case probed here) indicates that a similar difference between “single” and
“collective” behavior also occurs for the binding sites. The transition between both situations
will be studied in the future.

The free diffusion coefficient of Bicoid sets the limit with which its
concentration can be read
In [3] the time, Tobs, it takes for the concentration of the transcription factor, Bcd, to be known
with a 10% precision in the region of the embryo that shows an abrupt change in the
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concentration of the protein whose production it regulates, Hb, was estimated using Δr[Bcd]*
(aD[Bcd]Tobs)

−1/2 with D* 1μm2/s, the Bcd diffusion coefficient obtained with FRAP [8], a�
3nm, the typical size of a DNA binding site and [Bcd]*5/μm3. The authors argued that this
expression gave a lower bound of Tobs (the term inversely proportional to koff in Eq (12) was
not considered). However, the value obtained, Tobs * 7000s� 2h, was too long. Identifying
Bcd with the species, P(f), of our model we can estimate Tobs in two ways. One, by considering

the time it takes for DrðN ðf ÞÞ � 0:1 in the volume, Vobs * a3, probed by a binding site. Vobs is

very small. Thus, we may use Eq (21) with var(N(f)) = hN(f)i to compute DrðN ðf ÞÞ which corre-
sponds to the “perfect measuring” device of [6]. For Tobs � τf this leads to:

DrðN ðf ÞÞ ¼ 4a2

hNðf ÞiDfTobs

 !1=2

; ð34Þ

which coincides with the expression used in [3] if we set Vobs = 4a3 and D = Df, the free diffu-
sion coefficient of Bcd. According to the analysis of [10], the latter is*20 times larger than the
effective coefficient that can be estimated with FRAP which was used in [3]. Thus, using the
free diffusion coefficient, Df, the resulting Tobs * 350s* 6min is 20 times smaller than the one
derived in [3]. It is worth noticing that Eq (34) is also obtained if we use the fr limit expression,

Eq (23), to compute DrðN ðf ÞÞ. The second way of computing Tobs is by considering the time it

takes for DrðN ðbÞÞ to be such that

DrðN ðf ÞÞ � DrðN ðbÞÞ hN
ðbÞi

hNðf Þi =
dðhN ðbÞiÞ
dðhN ðf ÞiÞ
				

				 � 0:1; ð35Þ

with hN(b)i = pb = hN(f)i/(hN(f)i+KD Vobs). This is the approach followed in [1, 6, 7]. Although
Vobs is very small, we may argue that, since there is one fixed binding site in it, the correspond-
ing concentration, [ST] = 1/Vobs so that Eq (24) with var(N(b)) = (1 − pb)hN(b)i should be used.
In the limit of large enough Tobs, this leads to:

DrðN ðbÞÞ� �2 ¼ 1� pb
hN ðbÞi

4a2b
DfTobs

: ð36Þ

Combining Eqs (36) and (35) we obtain

DrðN ðf ÞÞ � 4a2b
pbð1� pbÞDfTobs

 !1=2

ð37Þ

which, for β = pb/hN(f)i, is similar to the formula used in [6, 7] and, for β = pb(1 − pb)/hN(f)i, to
the one used in [1] if we again identify D = Df and Vobs = 4a3. In particular, the latter leads to
Eq (34), thus, to the same estimate for Tobs as before. The former leads to a similar expression

for DrðN ðf ÞÞ but where the right hand side is additionally divided by 1 − pb. Assuming for sim-
plicity that [Hb]/pb = hN(f)i/(hN(f)i + KD Vobs) we estimate that the sharp transition in [Hb]
occurs where hN(f)i�KD Vobs, i.e., where pb � 1/2. Using a = 3nm, [P(f)]*5/μm3 and Df =

20μm2/s we obtain Tobs * 700s* 12min for DrðN ðf ÞÞ � 0:1. The use of the free diffusion coef-
ficient estimate of [10] is fundamental to having derived these estimates of Tobs that are smaller
than the time it takes for the gradient of Bcd to get established. It is important to note, however,
that all these conclusions hold provided that the regulatory sites on the DNA are the only ones
to/from which Bcd binds/unbinds. If Bcd also interacts with other sites (e.g., mRNA) and it is
these other interactions that introduce the main limitations to the transport of Bcd, we expect
the resulting collective diffusion coefficient to be the one that determines the arrival times of
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free molecules and the precision with which their concentration can be “read” by the regulatory
sites. This needs, however, a separate study that will be done in the future.

The “early” spatial averaging of transcription factor concentrations can
explain the large noise reduction observed in Drosophila in the resulting
accumulated mRNA
The work of [4] addressed the problem of how the accuracy of the reading of Bcd is achieved
by a direct observation of the dynamics of transcription. To this end they used a construction
which fluorescence reports the nascent mRNA content inside a 4.5μm3 volume. The experi-
ments showed a*45% fluctuation level at each transcription locus which was compared with
that of the accumulated mRNA. The experiments were done for Hb and for the gene, Krüppel
(kr), because the accumulated mRNA of the latter is proportional to the elapsed time. To ana-
lyze the observations the authors argued that if transcription has standard deviation, σnuc, per
N0 mRNA molecules produced, the maximum noise reduction in the accumulated mRNA is
achieved by independently running the processm times. Taking into account the measurement
noise, η, the fractional noise, ŝcyto (what we call the relative error), of the total (accumulated)

mRNA produced up to a certain time and that of the instantaneous transcription,
ŝnuc ¼ snuc=N0, are related by:

ŝcyto;L ¼ ŝ2
nucN0=mþ Z2

� �1=2
; ð38Þ

where μ is the mean of the accumulated mRNA and where the subscript L is used to distinguish
this expression from the one we derive later that takes into account a “nonlinear” correction to
estimate the error. From the observations the authors obtain N0 = 100±20 and ŝnuc ¼
0:22� 0:03 and estimate η� 0.03. According to this theory, by the time the mean expression
level reaches 800 molecules per nucleus, ŝcyto 
 0:08. The observations of the accumulated

mRNA, however, showed lower noise levels of 6%±2%. Thus, the authors concluded that time
averaging could not account by itself for the reduction in fluctuations observed when going
from instantaneous transcription to accumulated mRNA.

Although our model is simple it gives some insight into the processes that might be respon-
sible for the observed noise reduction. To this end we assume that fluctuations in the instanta-
neous nascent mRNA content are proportional to fluctuations in N(b) and that those in the

mRNA accumulated up to T are proportional to fluctuations in
R T

0
dtN ðbÞ ¼ TN ðbÞ. Thus, the

fractional noises, ŝnuc and ŝcyto (after a time, Tobs) are given, respectively, by DrðN ðbÞÞðT ¼ 0Þ
and DrðN ðbÞÞðT ¼ TobsÞ. The expressions of DrðN ðbÞÞðTobsÞ given by Eqs (20), (22) or (24) decay
as 1/Tobs for long enough time, which is the type of reduction produced by time averaging. The
early decay of Eqs (22) and (24) is slower than 1/Tobs (see Fig 1). The extended expression that
takes into account the time it takes for the value, pb, that is “sensed” by the binding site to con-
verge to its expected value (Eq (26)) decays faster for short times (see Fig 1(c)). This allows us
to explain the observed reduction in the size of the fluctuations as we discuss now. Eqs (27) and
(33) imply that, for T� 0, it is

ŝ2
nuc ¼

var ðN ðbÞÞ
hNðbÞi2 � ŝ2

nuc;L 1þ pb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var ðN ðf ÞÞp
hNðf Þi

 !
; ð39Þ

where ŝnuc;L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� pbÞhN ðbÞip

=hN ðbÞi would have been the fractional noise of the instanta-

neous transcription had we not taken into account the “error” of pb. The general expression of
the fractional noise, ŝcyto, as a function of Tobs is a little lengthy. However, to make our point it
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suffices to show how it reads for Tobs large enough. To this end we replace DrðN ðf ÞÞ in Eq (27)
by its asymptotic value, Eq (34), and insert the result into Eq (7). We obtain:

ŝ2
cyto;NL ¼ DrðN ðbÞÞ� �2 � 2tðbÞ

Tobs

ŝ2
nuc;L 1þ pb

4a2

hN ðf ÞiDfTobs

 !1=2
0
@

1
A; ð40Þ

where we have used the subscript NL to denote that we are using the extended (nonlinear)

expression for DrðN ðbÞÞ. Eq (40) implies that DrðN ðbÞÞ is eventually given by Eq (7) with var
(N(b)) = (1 − pb)hN(b)i regardless of whether we use Eq (27) or var(N(b)) = (1 − pb)hN(b)i for the
(initial) variance of N(b). The time, τf * a2/Df, that characterizes the decay of the last term in
the r.h.s of Eq (40) is the shortest correlation time of the problem for small enough a. Thus,

although DrðN ðbÞÞ ¼ ŝcyto is initially very large (DrðN ðbÞÞðT ¼ 0Þ ¼ ŝnuc), part of it decays rap-

idly (with timescale, τf). After this initial reduction the fractional noise is correctly described by
Eq (22) in the fd or Eq (24) in the fr limits, i.e., it decays as prescribed by time-averaging only,

but with var ðN ðbÞÞ=hN ðbÞi2 ¼ ŝ2
nuc;L < ŝ2

nuc. Including measurement errors as in [4] it can be

expressed as:

ŝcyto;NL �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2

nuc;L

m
þ Z2

r
; forTobs � tf ; ð41Þ

where we have identified the number of times that the (binding) process is repeated,m, with
Tobs/(2τ

(b)). Inserting Eqs (39) into (41) we obtain

ŝcyto;NL �
ŝ2

nucN0

mð1þ pb=hNðf Þi1=2Þ þ Z2

 !1=2

; ð42Þ

where we have replacedm = μ/N0 as in [4] and var(N(f)) = hN(f)i since N(f) is Poisson distrib-
uted. Comparing Eqs (42) and (38) we see that the nonlinear correction explains a larger noise
reduction than the one predicted by time-averaging. This additional reduction in the fractional
noise can be associated to the spatial averaging of the transcription factor, P(f), not of the prod-
uct, as considered in [4]. We check now whether this reduction can be quantitatively similar to
the one observed experimentally. In [4]ŝnuc � 0:22 was estimated observing the instantaneous
transcription occurring in a few (at most four in the case of Bcd) active genomic loci in each
nucleus that were indistinguishable due to experimental limitations. Given that Bcd binds
cooperatively to modulate the production of Hb, it is likely that there could be more binding
sites in the observation volume. Furthermore, all these details are unknown in the case of Kr.
Thus, we use NST = 6 to quantify the reduction. The rest of the parameters correspond to the
estimates obtained for Bcd in [10] (Df = 19μm2/s, [P(f)] = 7nM, Kd = 0.192nM), to the ones
derived in [4] (N0 = 100, η = 0.03, ŝnuc;NL ¼ 0:22), were chosen so as to reproduce the observa-

tions (Vobs = 0.125μm3) or arbitrarily within reasonable values (koff = 1/s). We show in Fig 3

plots of ŝcyto ¼ DrðN ðbÞÞ computed using the fd limit, Eq (22), with different expressions for var

(N(b))/hN(b)i2. The dashed and the dashed-dotted curves correspond to considering a fixed
value, var(N(b))/hN(b)i2 = (1 − pb)/hN(b)i, so that the reduction is limited by time averaging over
the timescale, τ(b). The solid curve corresponds to considering it is given by the time-dependent
expression (27) with Δr(N

(f)) given by Eq (21), so that there is the additional initial reduction
over the timescale, τf. The dashed and solid curves start from the same initial value,
ŝcytoðT ¼ 0Þ ¼ ŝnuc ¼ 0:22[4]. The dashed-dotted curve starts from a similar value to the one

that DrðN ðbÞÞ reaches once “fluctuations in pb” have become negligible,
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ŝcytoðTobs ¼ 0Þ � ŝnuc;L ¼ ŝnuc;NL=ð1þ pb=
ffiffiffiffiffiffiffiffiffiffiffiffihN ðf Þip Þ. We observe in Fig 3(a) that the initial

reduction of the fractional noise level over the timescale, τf, gives similar results to having
started with a smaller value of ŝcyto. In other words, the fractional noise level of instantaneous

transcription includes fluctuations in N(f) that lead to an overestimation of (1 − pb)hN(b)i if we
assume that this expression represents the variance of the observed variable at these initial
stages. We show in Fig 3(b) two of the curves displayed in Fig 3(a) (using the same symbols as
in (a)) but as functions of the accumulated mRNA, μ. It is apparent in this figure that including
the additional reduction of the initial fluctuations the experimental observations depicted in
Fig S6 of [4] can be reproduced very well. Besides the quantitative agreement between our for-
mulas computed using realistic parameter values and the observations of [4] which Fig 3 illus-
trates it is important to stress the different mechanism that is invoked to explain the
observations in [4] and in the present paper. Given that the smoothing produced by time aver-
aging is not enough, both mechanisms rely on some sort of spatial averaging. The authors of
[4] suggest that the spatial mixing of the mRNA synthesized in different transcription sites can
provide this spatial averaging. Our explanation argues that it is the variability in the number of
transcription factors at the different sites that increase the fluctuations of the instantaneous
transcription. As time goes by this variability decreases. Thus, in our explanation it is the spa-
tial averaging of the transcription factors which is responsible for the early decay of the instan-
taneous transcription fluctuations that are subsequently smoothed out further by time
averaging. The time-scales of both spatial averaging processes (the homogenization of the tran-
scription factor or of the mRNA distributions) is different, so that these two explanations could
be tested in experiments.

Fig 3. Comparison of different theoretical prescriptions of the fractional noise, σ̂ cyt , as time increases. (a) ŝcyt vs Tobs computed using Eq (22) with

ŝcytðTobs ¼ 0Þ ¼ 0:22 (dashed line) and with ŝcytðTobs ¼ 0Þ ¼ 0:22=ð1þ pb=
ffiffiffiffiffiffiffiffiffiffiffihNðfÞip Þ (dashed-dotted lines) and using the combination of Eqs (3) and (27) with

ŝcytðTobs ¼ 0Þ ¼ 0:22 (solid line). (b) Two of the curves displayed in (a) using the same symbols as in (a) but as functions of the mean of the accumulated
mRNA produced. The curves correspond to Eq (38) (dashed) and Eq (42) (solid) with ŝnuc ¼ 0:22 in both cases.

doi:10.1371/journal.pone.0151132.g003
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The transition of the waiting time distribution observed in single-enzyme
assays may be due to a change in the nature of the correlation times
The scheme Eq (8) also corresponds to the first step of a Michaelis-Menten-like process in
which a substrate, P(f), binds to an enzyme, S, and is then transformed into a product at a rate
proportional to [P(b)]. The dynamics of this type of process was observed at the single molecule
level in [18]. The observations showed that the distribution of waiting times between individual
turnovers was monoexponential at low [P(f)] and was characterized by several timescales at high
[P(f)]. Although the experimental observations correspond to the generation of the product
which involves (at least) an additional step with respect to Eq (8) (the one that goes from P(b) to
the product) increasing [P(f)] induces a similar change in the dwell-time distribution between
successive bindings that we obtained in the Results Section. We show in Fig 4 with symbols a
plot of the dwell-time distribution, f, obtained combining Eqs (29) and (10) and performing the
integral numerically [16]. All parameters are fixed with the exception of [P(f)] that varies between
curves. For comparison, we also show for certain cases the approximate expressions, Eqs (30)
and (31), that hold, respectively, in the fd and fr limits. We observe that, in this example, one or
the other approximation gives a good description of the distribution computed numerically. We
also observe how f goes from being monoexponential to having a long tail with increasing [P(f)]
as observed experimentally in [18]. Although a more accurate description would require the
inclusion of the additional production step, we can describe this change as a transition from f
being correctly described by the fd approximation to being described better by the fr one. While
the first one is characterized by a single (reaction) time, the latter is characterized by a diffusive

Fig 4. Normalized waiting time distribution between bindings of a single enzyme.We show with squares the dwell time distribution estimated
differentiating Eq (10) as prescribed in Eq (29) and computing the integral numerically using Df = 5μm2 s−1, Vobs = 5.6 × 10−3 μm3, [ST] = 1/Vobs, kon = 2μM−1

s−1, k
−1 = 0.5s−1 and, from top to bottom, the enzyme concentrations [P(f)] = 10, 20, 50, 100 and 200μM. All the distributions are normalized with respect to

their value at τ = 0. We also show the analytic expression (30) (solid curves) for all cases and Eq (31) (dashed curves) for the three cases with the largest
values of [P(f)].

doi:10.1371/journal.pone.0151132.g004
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correlation time that is responsible for the long tail of the dwell-time distribution. Therefore, the
transition can be associated to whether the reaction or the diffusive steps determine the dwell-
time distribution without the need of having many different enzyme conformers.

Supporting Information
S1 Text. Model and calculations. In this text we give a more detailed description of the model
and of the calculations that lead to the various formulas presented in the paper.
(PDF)
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