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Up to 20% of pediatric patients with primary generalized epilepsy (PGE) will not respond

effectively to medication for seizure control. Responsive neurostimulation (RNS) is a

promising therapy for pediatric patients with drug-resistant epilepsy and has been

shown to be an effective therapy for reducing seizure frequency and severity in adult

patients. RNS of the centromedian nucleus of the thalamus may help to prevent loss of

awareness during seizure activity in PGE patients with absence seizures. Here we present

a 16-year-old male, with drug-resistant PGE with absence seizures, characterized by

3Hz spike-and-slow-wave discharges on EEG, who achieved a 75% reduction in seizure

frequency following bilateral RNS of the centromedian nuclei. At 6-months post-implant,

this patient reported complete resolution of the baseline daily absence seizure activity,

and decrease from 3–4 generalized convulsive seizures per month to 1 per month. RNS

recordings showedwell-formed 3Hz spike-wave discharges in bilateral CM nuclei, further

supporting the notion that clinically relevant ictal discharges in PGE can be detected in

CM. This report demonstrates that CM RNS can detect PGE-related seizures in the CM

nucleus and deliver therapeutic stimulation.

Keywords: case report, responsive neurostimulation, drug-resistant epilepsy, centromedian nucleus, pediatric

generalized epilepsy, absence seizures

INTRODUCTION

Primary generalized epilepsy (PGE) accounts for ∼15–20% of all children diagnosed
with epilepsy (1, 2). Of patients with PGE, 10–20% will meet criteria for drug-resistant
epilepsy (3). Unfortunately, there are no FDA-approved neuromodulation treatment
options for PGE. Absence seizures are commonly seen in patients with PGE in the
form of behavioral arrest with impaired awareness, with concomitant variable motor or
behavioral manifestations. Uncontrolled seizures are a significant source of morbidity
in PGE, impacting development, academic performance, activities of daily living, and
quality of life measures (4–7). Investigation and validation of neuromodulation treatment
options for pediatric PGE are necessary to improve patient outcomes and quality of life.
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Stimulation of the thalamic centromedian nucleus (CM) is
associated with improved frequency and severity of generalized
seizures in adult patients, including both deep brain (DBS)
stimulation and responsive neurostimulation (RNS) system
approaches (8, 9). There is supportive evidence for the use of deep
brain stimulation (DBS) in pediatric epilepsy, although data is
limited (10, 11). A limitation of DBS devices is that while they are
able to deliver programmed stimulation in an open-loop system,
they lack the functionality to record or respond to changes in
brain activity and, therefore, cannot be programmed to deliver
personalized therapy in response to patient-specific seizure
patterns (12). The closed-loop RNS system has the functionality
of recording and storing patient-specific neuronal activity and
can be programmed to deliver stimulation in response to detected
changes during seizure activity. RNS has been shown to be safe
and effective in the treatment of drug-resistant epilepsy (13, 14).
Here, we report the diagnostic utility and outcome of bilateral
CMN thalamic RNS implantation in a single pediatric patient for
the treatment of PGE.

PATIENT INFORMATION

A 16-year-old male diagnosed with childhood absence epilepsy
(CAE) at 4 years of age presented for evaluation for uncontrolled
seizures. At the time of diagnosis, he was an otherwise healthy
and developmentally appropriate child with no family history
of significant neurological disease or parental consanguinity.
Genetic testing was not performed at our institution during
his evaluation. Initial seizure semiology consisted of behavioral
arrest, eye rolling, and variable impaired awareness, with rare
progression to bilateral tonic-clonic seizure. Initial EEG captured
typical absence seizures with correlating 3Hz spike-and-slow-
wave discharges, as well as interictal high-amplitude spike-
and polyspike-and-slow-wave discharges. Repeat EEG over
several years remained consistent with this diagnosis. Seizures
proved resistant to treatment with ethosuximide, lamotrigine,
topiramate, clobazam, valproate, and the modified Atkin’s diet.
At 12 years of age, repeat brain MRI detected a lesion in the
right amygdala suggestive of dysembryoplastic neuroepithelial
tumor (DNET). Repeat routine EEG while on medications
again demonstrated generalized spike- and polyspike-and-slow-
wave discharges and typical absence seizures, with new findings
of independent bilateral centroparietal and centrotemporal
epileptiform discharges. Additionally, a focal impaired awareness
seizure with temporal semiology was captured on prolonged
EEG which was electroclinically distinct from his typical absence
seizures, with onset characterized by rhythmic theta activity over
the left temporal head region and clinical accompaniment speech
difficulty, confusion, and oral automatisms lasting over 9 min.

Due to new neuroradiologic and EEG findings, phase 2 pre-
surgical evaluation was pursued. Fourteen sEEG electrodes were
implanted targeting the right temporal lobe (including the right
amygdala lesion) and cingulate, and left hippocampus. Prior
to and during weaning of anti-seizure medications, numerous
typical absence seizures were captured. Electrographic onset
was not localizable, with diffuse onset of 2.5–3.0Hz spike-wave

morphology throughout the intracranial array, including the
bilateral hippocampal electrodes. Interestingly, independent rare
bursts of 2.5–3.0Hz spike-wave discharges were detected in peri-
lesional contacts in the right amygdala, but never evolving to
electrographic seizures.

Robot-assisted stereotactic biopsy of the amygdala lesion was
performed at the time of sEEG electrode removal, which was
negative due to small sample size. However, given the progression
of the lesion and presence of peri-lesional epileptiform activity,
stereotactic laser ablation (SLA) of the lesion was performed
with simultaneous redo stereotactic biopsy. The redo biopsy was
consistent with a low grade glioneuronal neoplasm, however
given the small volume of the biopsy, a more specified diagnosis
(e.g., DNET was not achieved). A complete ablation of the lesion
was achieved. After surgical recovery, the patient continued to
have daily typical absence seizures, with occasional progression
to bilateral tonic-clonic seizure, despite continuation of prior
anti-seizure medications. Given continuance of seizures despite
best medical management, vagus nerve stimulation (VNS) was
discussed with the family, who were not interested in VNS.
CM RNS was thus offered to the family and after discussion of
the risks and potential benefits the patient and family elected
to proceed.

THERAPEUTIC INTERVENTION

The patient was taken to the operating room for implantation
of bilateral CM RNS electrodes. CM targeting was performed
using indirect and direct targeting as previously described
(10, 15–17). Briefly, MP2RAGE inversion images were merged
to a preoperative thin-cut (1mm) CT angiogram using the
ROSA platform. Standard entry points near the coronal suture
that would allow an avascular trajectory to the target were
selected. Four-contact depth electrodes, with 3.5-mm spacing,
were implanted with these trajectories using the ROSA robot
(registered via bone fiducials), following previously published
methods (18). Intraoperative O-Arm CT scan was used for both
registration to bone fiducials and confirmation of final electrode
lead position in the CM. RNS-electrodes were automatically pre-
localized in native & template space using Lead-DBS software
(19) (https://www.lead-dbs.org) and visualized in reference to
thalamic nuclei defined by The Thalamus Atlas (20), see Figure 1.
The patient recovered and was discharged home on postoperative
day 1.

After implantation, the device was programmed to record
scheduled electrocorticography (ECoG), and a broad detector
was programmed (75% power change). Multiple ECoG
recordings were saved for patient/caregiver event identification
(via magnet swipe) over a period of 4 weeks postop. Review
of saved ECoG in the Patient Data Management System
(PDMS) revealed well-formed 3Hz spike-wave discharges
in the bilateral thalamic contacts, with highest amplitudes
in the distal contacts bilaterally (Figure 2). Four weeks after
implantation, the detection pattern was adjusted to reliably detect
ictal discharges (channel 1: bandpass 2.0–41.7Hz, amplitude
threshold 4%, minimum duration 0.38 s; channel 3: bandpass
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FIGURE 1 | Bilateral RNS CMN implantation. (A) Direct targeting of the

bilateral CMN (crosses) in AC-PC orientation. (B) Post-implant x-ray of RNS

system. (C) Coronal 3D reconstruction of bilateral RNS implantation targeting

the CMN (blue), in relation to the posterior part of the ventral posterolateral

nucleus (VPLp; red) and posterior dorsal part of the ventral lateral nucleus

(VLpd; purple).

2.0–25Hz, amplitude threshold 5%, minimum duration 0.38 s).
Bipolar stimulation of most distal contacts (contact 1 and 2
bilaterally) was enabled at 0.2 µC/Cm2 (0.2mA, 125Hz, 160
µS for 5,000ms), in response to detected 3Hz spike-wave
discharges in these channels. Low charge density was used
initially due to patient reporting non-painful left arm paresthesia
during stimulation. Additionally, ECOG recordings captured
prolonged absence seizure and generalized tonic-clonic seizure
activity, see Figure 3.

FOLLOW-UP AND OUTCOMES

One month after turning on stimulation, the patient reported

improved seizure frequency, although continued to experience

multiple weekly absence seizures. At that time, our patient elected
to increase stimulation and was willing to tolerate mild left

arm paresthesia along with this this increase to 0.4 µC/Cm2

(0.4mA, 125Hz, 160 µS for 5,000ms). These paresthesias

resolved within a few days of stimulation. Changes to other

stimulation parameters were not considered due to the fact that

this patient’s symptoms were mild and temporary, but may be
considered in other cases (21).

At most recent follow-up 6-months post-implant, the patient
and family reported no noticeable absence seizures and reported
1 generalized convulsive seizure per month, improved from
previous baseline of 3 to 4 per month. Our patient is tolerating
increased stimulation parameters with a charge density of
1.5 µC/Cm2 (1.5mA, 125Hz, 160 µS for 5,000ms) without
side effects, including resolution of left arm paresthesia. Long
Episodes were detected at a rate of 4.4/month, with an average
of 441 therapies delivered per day. Repeat scalp EEG has not yet
been performed.

DISCUSSION

Here we describe the first pediatric PGE patient with absence
seizures successfully recorded from bilateral CM RNS, and
report on successful RNS targeting absence seizures in drug-
resistant CAE. This patient experienced decreased seizure
frequency at 1-month follow-up, and patient and family
reports resolution of detectable absence seizures as well as
75% reduction in generalized convulsive seizures at 6-month
follow up. Our findings suggest that CM RNS can prevent
loss of consciousness through disruption of low-frequency
thalamocortical ictal recruitment.

RNS is a promising technology which offers personalized
therapy based on a patient’s own seizure electrophysiology
by recording and responding to neural activity through
delivery of programmable stimulation directly to seizure foci.
Several multi-center outcomes studies have demonstrated the
efficacy of the RNS system for the treatment of drug-resistant
mesial temporal or neocortical seizures, in which 70% of
patients saw a 78% reduction in seizure frequency at 6 years
(13, 22–24). While the data captured by the RNS system remains
computationally intensive to interpret, there are considerable,
promising advances being made in the field to improve RNS
as a patient-specific therapy (12, 25). In line with this, bilateral
centromedian/ventrolateral thalamic RNS in an adult patient
was successful in the treatment of generalized epilepsy (eyelid
myoclonia with absence) (26). We provide further evidence to
support RNS therapy as a safe and effective treatment option
for drug-resistant PGE for pediatric patients and the CM as a
targetable foci.

The CM receives converging input from the cortex,
basal ganglia, and brainstem and participates in cognition
(attention and arousal) and sensorimotor coordination (27).
Thalamocortical feedback loops regulate cortical input during
wakefulness to maintain attention and awareness and its
suppression is implicated in the pathogenesis of CAE (27–31).
The loss of awareness associated with absence seizures is
theorized to occur during electrical perturbations in this
feedback loop, such as seen in the aberrant low frequency
thalamocortical signaling that is characteristic of absence
seizures (29, 30, 32, 33). Neurostimulation of the CM disrupts
the low-frequency ictal thalamocortical recruitment and may
therefore help to prevent loss of awareness during seizure activity
(31, 34). Leveraging the diffuse connectivity profile of this region,
the CM has been successfully targeted by DBS for the treatment
of drug-resistant PGE (8, 9, 15, 35, 36). RNS stimulation of the
CM has been applied in adult patients for the treatment of drug-
resistant regional neocortical epilepsy (37), generalized epilepsy
(26), Lennox-Gastaut Syndrome (10, 38), and drug-resistant
focal onset-seizures (39). Seizure frequency of patients with
implanted RNS systems often continues to improve over months
to years, which implicates the role of neural plasticity induced by
programmable closed-loop stimulation (16, 23). Further research
is needed to better understand the mechanisms underlying the
clinical benefits of RNS CM stimulation for the treatment of
CAE. We show here that the RNS targeting of the CM in this
pediatric patient was able to reliably identify ictal discharges and
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FIGURE 2 | Electrophysiological seizure characteristics. (A) Example of an electroclinical seizure stored the NeuroPace Patient Data Management System, detected

by device (A1) and noted by patient’s family with magnet swipe (M). Well-formed 3Hz spike-and-wave discharges are detected maximally in channels 1 (LCM1–LCM2;

top row) and 3 (RCM1–RCM2; third row). (B) Spectrogram of identical epoch. (C) Pre-implantation scalp EEG, capturing electroclinical typical absence seizure (TAS)

with behavioral arrest. EEG demonstrates generalized 3Hz spike- and polyspike-and-wave discharges (longitudinal bipolar montage; sensitivity: 30 µV/mm; timebase

30 mm/s). (D) Example of an electroclinical seizure stored the NeuroPace Patient Data Management System, detected by device (A1, A2) again detected maximally in

channels 1 and 3, with responsive therapy delivered (Tx), subsequent amplifier artifact lasting 5 s, and return to electrographic baseline. Therapy delivered to channels

1 and 3: bipolar, current 0.4mA, frequency 125Hz, pulse width 160 µs, burst duration 5,000ms, charge density 0.4 µC/cm2. (E) Spectrogram of identical epoch.

improve seizure frequency through neurostimulation. Other
groups have performed RNS of other targets (i.e., anterior
thalamic nucleus) for the treatment of generalized epilepsy and
the relative efficacy of subcortical RNS targets remains a topic for
further investigation (40).

Electrophysiologic studies reveal that clinically relevant ictal
discharges can be detected in the CM nucleus (16, 26). Kokkinos
et al. (26), performed direct recording of the CM nucleus via
RNS showing 3–5Hz spike and wave activity consistent with
their patient’s preoperative EEG pattern. Warren et al. (16),
performed simultaneous EEG and CM recordings during DBS
implantation to examine the relationship between generalized

paroxysmal fast activity (GPFA) and slow spike wave (SSW) on
EEG and from direct CM recordings. In this study, 86% of GPFA
events were seen in both on both scalp EEG and CM, whereas
25% of SSW was observed from both recordings. Interestingly,
these recordings suggested that epileptiform activity occurred in
cortex prior to CM. Further work will elucidate the interactions
of cortex and CM in generalized epilepsy, but these findings
suggest that clinically relevant ictal discharges are present in the
CM nucleus.

The CM was targeted in this report using indirect and direct
technique as previously described (10, 15–17). The CM remains
difficult to demarcate on standard neuroimaging (36), however
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FIGURE 3 | Electrophysiological characteristics of prolonged absence and GTC seizures. (A) Example of an electroclinical generalized tonic clonic (GTC) seizure

stored the NeuroPace Patient Data Management System, detected by device (A1, A2) and noted by patient’s family with magnet swipe (M), with responsive therapy

delivered (Tx). (B) Example of a prolonged electroclinical absence seizure stored the NeuroPace Patient Data Management System, detected by device (A1, A2) and

noted by patient’s family with magnet swipe (M), with responsive therapy delivered (Tx).

studies have shown that inverse MP2RAGE and quantitative
susceptibility mapping (QSM) can be used to identify the
nucleus with good reliability (16, 41). Confirmation of electrode
placement using intraoperative microelectrode recording (MER)
evaluation of the CMN neurophysiological signature has shown
mixed results, given the presence of low frequency firing rate
while sedated, considerable interpatient variability, and subtle
differences in neural signatures between adjacent thalamic nuclei
(16). Further research is needed to improve techniques for
identifying thalamic subnuclei.

While this case highlights the promising utility of RNS
for the treatment of complex, pediatric, drug-resistant PGE
with absence seizures, the conclusions drawn are limited by
the single patient sample size, short follow-up duration, and
the potential under-reporting of absence seizure frequency.
Repeat scalp EEG has not been performed in our patient
since placement of RNS device, resulting in reliance on
patient and family report for clinical absence seizure frequency.
Our patient did have other seizure types emerge throughout
his course, which precludes classifying his case as pure
PGE, and presented unique challenges to his treatment
plan. However, he originally presented with and continued
to suffer from clearly well-defined typical absence seizures,
which are the primary target of his RNS therapy. Successful
treatment in our patient’s case may highlight the possible
role for thalamic RNS therapy in patients with primary
generalized epilepsy as well as other cases of complex epilepsy

in which cortico-thalamic networks are thought to play a
large role.

The development of novel therapies for the treatment
of pediatric drug-resistant PGE remain an important area
of investigation. Children with PGE experience considerable
burden on their quality of life and often experience cognitive,
behavioral, and developmental deficits as a result of uncontrolled
epilepsy during this critical period of brain development (4–7).
Neocortical RNS implantation has been used successfully for
the treatment of pediatric drug-resistant seizures in a few
cases (42–45). Together, these provide preliminary evidence
that RNS is a viable therapeutic option for patients with
drug-resistant epilepsy who are not candidates for resective
epilepsy surgery.
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