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In vitro osteoclastogenesis is a central assay in bone biology to study the effect of
genetic and pharmacologic cues on the differentiation of bone resorbing osteoclasts.
To date, identification of TRAP+ multinucleated cells and measurements of osteoclast
number and surface rely on a manual tracing requiring specially trained lab personnel.
This task is tedious, time-consuming, and prone to operator bias. Here, we propose to
replace this laborious manual task with a completely automatic process using algorithms
developed for computer vision. To this end, we manually annotated full cultures by
contouring each cell, and trained a machine learning algorithm to detect and classify
cells into preosteoclast (TRAP+ cells with 1–2 nuclei), osteoclast type I (cells with
more than 3 nuclei and less than 15 nuclei), and osteoclast type II (cells with more
than 15 nuclei). The training usually requires thousands of annotated samples and we
developed an approach to minimize this requirement. Our novel strategy was to train
the algorithm by working at “patch-level” instead of on the full culture, thus amplifying
by >20-fold the number of patches to train on. To assess the accuracy of our algorithm,
we asked whether our model measures osteoclast number and area at least as well
as any two trained human annotators. The results indicated that for osteoclast type I
cells, our new model achieves a Pearson correlation (r) of 0.916 to 0.951 with human
annotators in the estimation of osteoclast number, and 0.773 to 0.879 for estimating the
osteoclast area. Because the correlation between 3 different trained annotators ranged
between 0.948 and 0.958 for the cell count and between 0.915 and 0.936 for the
area, we can conclude that our trained model is in good agreement with trained lab
personnel, with a correlation that is similar to inter-annotator correlation. Automation of
osteoclast culture quantification is a useful labor-saving and unbiased technique, and
we suggest that a similar machine-learning approach may prove beneficial for other
morphometrical analyses.

Keywords: osteoclasts, automatic quantification of osteoclasts, machine learning, object detection, deep
learning, convolutional neural network (CNN), deep neural networks (DNN), artificial intelligence
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INTRODUCTION

Bone is a highly dynamic tissue that undergoes continuous
remodeling throughout life, in a process involving the concerted
actions of monocyte-derived osteoclasts that resorb mineralized
tissue, and mesenchymal osteoblasts that deposit new bone
(Teitelbaum, 2007; Clarke, 2008; Karsenty et al., 2009).

Bone mass is carefully maintained by a tight coordination
of the activity of the bone-resorbing osteoclasts and bone-
forming osteoblasts (Boyle et al., 2003; Teitelbaum and Ross,
2003; Takayanagi, 2007; Zaidi, 2007), and an imbalance between
their activities results in skeletal pathologies such as osteoporosis
(Bruzzaniti and Baron, 2006; Novack and Teitelbaum, 2008).
Compounds demonstrating any ability to modulate the balance
between osteoclasts and osteoblasts are thus of great interest in
treating such diseases.

Osteoclast precursor differentiation to functionally active
multinucleated osteoclasts depends on administration of
macrophage colony stimulating factor (M-CSF) and receptor
activator for nuclear factor kappa B ligand (RANKL)
(Teitelbaum, 2000).

This process, called osteoclastogenesis can be examined
in vitro using a well-established and commonly used assay in
which bone marrow derived macrophages are cultured with
M-CSF and RANKL (Marino et al., 2014). During differentiation,
the cells acquire a higher expression of tartrate-resistant acid
phosphatase (TRAP) (Minkin, 1982) and fuse together to become
multinucleated cells (Hata et al., 1992). Osteoclasts are commonly
defined in vitro as TRAP positive (using specific staining)
multinucleated cells. This assay is important for the experimental
screening of therapeutic candidates targeting osteoclastogenesis
and bone resorption.

The current gold standard method for quantifying osteoclast
formation in culture is based on manual counting of TRAP-
positive, multinucleated (≥3 nuclei) cells visualized under
the microscope, which is both a subjective and a time-
consuming process of evaluation (Marino et al., 2014). To
overcome this significant drawback, we now present an unbiased
high-throughput approach that enables fast and accurate
measurement of osteoclast number and area for more efficient
screening of potential therapeutic agents in bone biology.
With the development of machine learning techniques, image
classification and object detection applications are becoming
more accurate and robust. As a result, machine learning
based methods are being applied in a wide range of fields.
The use of computer vision algorithms for the analysis of
microscopic images has received growing interest in recent
years. Such methods have been used for tasks such as detecting
cell membranes (Ciresan et al., 2012), detecting cell nuclei
(Xue and Ray, 2017), and segmenting cells (Ronneberger
et al., 2015). This success motivated us to develop such
an approach for osteoclasts. We note that existing tools
cannot be directly applied to our setting due to its unique
characteristics (see below).

Here, we report the development of an artificial intelligence-
based object detection method designed to identify, classify, and
quantify osteoclasts in cultures.

To our knowledge, there is no publicly- or commercially
available software dedicated to in vitro osteoclast detection and
evaluation. Previously developed AI-based approaches for cell
detection are not applicable for this purpose due to its unique
characteristics; the structure of osteoclasts is different from other
cells (multinucleated TRAP-stained cells); collecting data for
training an AI system dedicated to osteoclasts is time consuming
(i.e., annotating a single culture takes several hours to annotate),
thus limiting the number of examples that can be obtained in
a timely manner. In order to overcome these challenges, we
describe a method we developed to train our model on TRAP-
stained osteoclast cultures and thereby increase the effective size
of the training data.

For the purpose of training and evaluating our algorithm,
we manually annotated 11 full osteoclast cultures containing
thousands of cells. Osteoclast precursor cultures were treated
with M-CSF and RANKL to induce differentiation. Images
resulting from the TRAP staining were used to train the system
to identify and count multinucleated TRAP+ osteoclasts, and to
further validate and generalize the method. The trained model
was tested on images that were not included in the training phase.

MATERIALS AND METHODS

Materials
Minimum Essential Medium α (Alpha-MEM) and fetal bovine
serum (FBS), referred to here as “Standard medium,” were
purchased from Rhenium (Modiin, Israel), and culture plates
were from Corning (New York, NY, United States). As a source of
M-CSF, we used supernatant from CMG 14–12 cells, containing
1.3 µg/ml M-CSF (Takeshita et al., 2000). RANKL was purchased
from R&D Systems, Minneapolis, MN, United States.

Animals
Female wild type mice of the inbred strain C57BL/6J-RccHsd,
aged 8–12 weeks were purchased from Envigo (Israel) and
housed at the Tel-Aviv University animal facility. These
mice were used for the generation of bone marrow derived
macrophages (BMDM). Animal care and all procedures were
in accordance with and with the approval of the Tel Aviv
University Institutional Animal Care and Use Committee (Permit
number 01-19 -032).

Cell Culture
Bone marrow cells were harvested from femurs and tibias of 8-
to 12-week-old female mice. Cells were seeded on tissue-culture
treated plates in standard medium (alpha-MEM supplemented
with 10% fetal bovine serum). On the following day, non-
adherent cells were seeded in non–tissue culture-treated plates in
standard medium supplemented with 100 ng/ml M-CSF, which
induces cell proliferation and differentiation into preosteoclasts.

For the osteoclastogenesis assay, preosteoclasts were plated
in 96-well plates (8,000 cells per well) with standard medium
supplemented with 20 ng/ml M-CSF and 50 ng/ml RANKL,
replaced every 2 days. On the 4th day, cells were stained using a
TRAP staining kit (Sigma-Aldrich, St. Louis, MO, United States),
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and multinucleated (≥3 nuclei) TRAP-positive cells were defined
as osteoclasts. Images were acquired at a magnification of ×4
(Evos FLC, Life Technologies, MS, United States) (Hiram-Bab
et al., 2015). An open-source graphical image annotation tool was
used to measure osteoclast number and surface area from a single
operator manual tracing for each well as previously described
(Wada, 2016).

Machine Learning Pipeline
Machine learning algorithms are used in a wide range of domains
and underlie many technologies such as speech recognition,
image understanding, machine translation, fraud detection, and
face recognition.

To understand how machine learning algorithms work, we can
consider an image categorization problem where the task of the
model is to label an image with the name of the object in the
image. Formally, the goal is to map from an input image X to an
output label Y. The learning model is then simply a function from
X to Y. In order to learn this function, one collects a “training”
dataset of X-Y pairs (i.e., images and the corresponding correct
label), and the learning process seeks a function that fits this
training data well.

A key question is of course what type of functions to use
when mapping X to Y. In recent years, functions mimicking
neural networks have been found to work particularly well for
a wide range of problems (Figure 1). This approach is also
known as deep learning because it involves a multi-layered
computation process.

Arguably, the most striking successes of deep learning to
date are in the field of computer vision, where the goal is to
develop algorithms that perform a semantic analysis of images,
in a manner similar to the human visual system. This field has
undergone a revolution since the introduction of the AlexNet
architecture (Krizhevsky et al., 2012), and many other more
advanced architectures since (Simonyan and Zisserman, 2014;
Szegedy et al., 2015; He et al., 2016). AlexNet is an example
of a so-called Convolutional Neural Network (CNN) model.
These models use specific connectivity patterns between layers
to form an architecture that utilizes the spatial structure within
images (Figure 2).

Object Detection
Our goal in this study was to automatically evaluate the number
and area of osteoclasts in TRAP-stained cultures. To perform this
task, we need to detect the cells in an image and then predict the
total number of cells and the ratio between the area covered by
cells and the size of the culture. This problem is closely related
to the machine vision problem of Object Detection, which is
designed to locate and correctly classify objects in images.

Object detection is a key task in computer vision and has been
the focus of much research in recent years (Girshick et al., 2014;
Girshick, 2015; Ren et al., 2015). Algorithms developed for this
purpose are at the heart of many evolving technologies including
autonomous vehicles (Menze and Geiger, 2015) and robotics
(Jia et al., 2011). The purpose of object detection pipelines is to
locate and correctly classify objects in images (see Figure 3). The
architecture used for objective detection is a variant of the CNNs

described above, but with additional mechanisms for finding
multiple objects in an image and providing suitable bounding
boxes and visual categories.

This study is based on the Single Shot Detection (SSD)
architecture (Liu et al., 2016), which has proven useful for
detecting small objects (Lam et al., 2018). SSD consists of two
parts: (1) A backbone Convolutional Neural Network that extracts
features from an input image, and (2) several convolutional
layers with detection heads that output bounding boxes and
the corresponding class followed by Non-Maximum Suppression
(NMS) to filter overlapping bounding boxes (Felzenszwalb et al.,
2009; Girshick et al., 2014; Girshick, 2015; Figure 4).

The most common use of SSD is for object detection in
natural images. As a training set for such SSD models, one uses
large datasets of natural images that have been annotated with
bounding boxes for visual objects, as well as their visual labels
such as the Pascal VOC and MSCOCO datasets (Lin et al., 2014;
Everingham et al., 2015).

Here our focus is quite different, as we are interested in
detecting images in cell cultures, and thus models trained on
natural images are not directly applicable. Instead, the approach
we took here is to collect a new dataset of annotated cell
images and use this to train a new model. This process will be
described in more detail.

Data Collection
One of the main challenges in utilizing deep learning algorithms
in various domains is the need for vast amounts of labeled
data for training. Manually labeling data for object detection is
a time consuming and expensive process due to the need to
annotate each bounding box. In addition, the human annotator
may require specific training. In this section we describe the data
collection process and considerations.

For data annotation, we used an open-source annotation
tool (Wada, 2016) to mark polygons around the cells
(Figure 5). Marking polygons is more time-consuming
than bounding boxes but it allows for a more versatile
application such as running algorithms that quantify the
contour of cells and segmentation (not tested in the scope of
the current study).

We divided the cells into four different types (Figure 6): (1)
preosteoclast – TRAP+ cells with 1–2 nuclei; (2) osteoclast type
I – cells with more than (≥) 3 nuclei and less than 15 nuclei; (3)
osteoclast type II – cells with more than (≥) 15 nuclei; (4) ghost
cells – vanished cells which are distinguishable by their silhouette.

Full cultures may contain over 500 cells (Figure 5) and are
hard to label accurately. To produce meaningful annotations, we
divided each culture into equally sized regions, which are each
annotated as separate images. This introduces a trade-off between
the annotation speed and the precision of the annotations. We
found that dividing each culture well to 16 regions, produced
accurate annotations in a reasonable time.

For the annotation process, regions without any cells were
discarded; this resulted in 133 regions with an average of 66.4
cells per region from 11 wells. Manually annotating a region took
between several minutes for regions with few cells, and over an
hour for regions with more than 100 cells (see Figure 7). Among
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FIGURE 1 | Schematic representation of neural nets. Each circle corresponds to a neuron in a neural net. A neuron is typically a linear function of the previous layer
followed by a non-linearity. Left: A neural net with a single hidden layer. Right: Deep neural net with 3 hidden layers.

FIGURE 2 | Representation of a convolutional neural network. Each convolution operation consists of applying the same filters across the image to obtain a feature
map in the following layer. The final iteration produces a fully connected layer similar to a regular neural net.

the 133 regions we annotated, 27 regions had more than 100 cells
(Figure 7 [right]).

Patch Generation Strategy
Deep learning algorithms typically require a large number of
examples for effective training. The considerations and challenges
in annotating cell cultures described in the section “Data
Collection” restrict the number of fully labeled cultures available.
Thus, our main challenge was to train a deep neural network
on relatively few training samples. A major advance made here
stems from the realization that, in contrast to “images in the
wild” where a single object can span most of the image, images
of cultured cells can be viewed at a wide range of resolutions and
preserve their semantic properties due to the small size of each
cell compared to the entire culture. For example, when estimating
the number of cells and the area covered by cells, we can restrict

ourselves to small sections of the culture at any given point of
time and still produce a perfectly annotated culture. This is not
true when objects extend over a large section of the image such as
in Figure 3.

Motivated by this observation, our strategy was to operate
in small patch levels of 1

8 ×
1
8 , which means that each

culture comprises 64 non-overlapping patches. This strategy
also provides many different options for sampling (overlapping)
patches and offers a substantial increase in the number of samples
the model can be trained on. Specifically, we sampled a random
region of the culture with 10 to 15% of the original width and
height. The upper-left coordinate of the region defines the patch
location. This process generates an enormous number of options
for selecting a patch from a given culture. For example, given an
image of a culture of size 1,000 × 1,000, there are more than
8502
· 502 (≈1.8 · 109) different ways to sample a patch by this
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FIGURE 3 | Output of SSD trained on Pascal VOC. The algorithm detects and wraps the objects with bounding boxes as well as correctly classifying them into the
relevant class (the classification is depicted by the bounding box color: red corresponds to “Person” class, blue to “Dog” class, yellow to “Car” class, and green to
“Bicycle” class).

FIGURE 4 | SSD architecture illustration. VGG16 (Simonyan and Zisserman, 2014) is used as a base network. Detection heads are connected to numerous
convolution layers (denoted as “Conv”) to account for different resolutions.

FIGURE 5 | Manual annotation of osteoclasts in cultures. Left: A full culture to be annotated. Right: A crop of size 1
16 ×

1
16 of a fully annotated culture.

procedure. Here, we sampled 3,600,000 random patches from 10
wells used for training.

Another mechanism for increasing the size of training data,
is to apply non-informative transformations to training points.

For example, adding a small amount of noise to an image
is unlikely to change the semantic content, but provides a
new data point for the algorithm to train on. In the deep-
learning literature, this is known as “Data Augmentation”
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FIGURE 6 | Images of the four different cell types. The first three images depict cells with different number of nuclei. The rightmost cell is a ghost cell.

FIGURE 7 | Distribution of the number of cells per region. The number of cells per region ranged from 5 annotated cells (left) to 158 annotated cells (middle). The
right panel shows a histogram representing the number of cells per region.

(Shorten and Khoshgoftaar, 2019). Here, we augmented the
training data by applying a combination of the following
transformations: (i) random photometric distortions, affecting
brightness, hue, and saturation, (ii) random vertical flips of the
patches, and (iii) rotations of the patches by 90

◦

, 180
◦

, and 270
◦

.
Training the model with only 10 images of complete cultures

did not allow for meaningful image detection. In contrast, the
above procedures for generating random patches significantly
increased the size of the training data, and thus improved
the learned model.

Configuration and Hyperparameters
Our implementation was written in PyTorch, a deep learning
library (Paszke et al., 2019) written in Python and C++. We used
an open-source project as our starting point for SSD1. Since object
detection pipelines were designed to detect bounding boxes, we
transformed each polygon created during the annotation process
to the tightest square containing the entire cell (Figure 8).

The implementation of SSD contains more than a dozen
different hyperparameters, and we adapted some settings to fit
our unique data. The main change involves reducing the number
of convolution layers from 6 to 4, which removes bounding

1https://github.com/amdegroot/ssd.pytorch

boxes spanning large sections of an input image. These objects
are common in natural data (Figures 3, 4) and less relevant
for culture well images (Figure 8). The modification of the
architecture along with our strategy to operate on patches allows
us to detect cells with sizes 51–383 µm.

Training
Because our scheme for augmentation extracts patches from full
cultures, we dedicated 10 cultures for training, and 1 culture for
testing. As is common practice for object detection, we utilized
VGG16 (Simonyan and Zisserman, 2014), which was previously
trained on ImageNet (Russakovsky et al., 2015) as the backbone
network, and resumed training from these initial weights. We
trained for 120,000 iterations with a batch size of 32 using
an Adam optimizer (Kingma and Ba, 2014) with a learning
rate of 0.00001.

Detection in Large Images
As already discussed, our model was trained to detect cells
in small patches. We therefore also needed a mechanism that
could allow us to apply the model to images that are larger
than these small patches. A simple strategy, which we employed
here, is to divide the large image into a set of non-overlapping
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FIGURE 8 | SSD implementation using bounding boxes. Left: patch with polygons annotated by a human annotator; Right: patch after transforming the polygons to
the tightest square surrounding a polygon. Blue bounding boxes correspond to type I osteoclasts and red bounding boxes correspond to type II osteoclasts.

FIGURE 9 | Agreement level on the cell counting task of Type 1 osteoclasts. Shaded area represents the variation boundaries. Upper row: correlation between the
three annotators for the cell counting task performed on the same set of culture images. Bottom row: correlation between each annotator and the model’s prediction
for the cell counting task.
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FIGURE 10 | Area estimation task for osteoclasts Type 1. Upper row: correlation between each annotator on a single culture and the other two annotators on the
area estimation task. Bottom row: correlation between each annotator and the model’s prediction on the area estimation task.

TABLE 1 | Correlation coefficients between human annotators and the model for
cell counting.

Annotator II Annotator III Model

Correlation coefficients for preosteoclast numbers

Annotator I 0.506 0.819 0.879

Annotator II 0.687 0.730

Annotator III 0.920

Correlation coefficients for Type 2 osteoclast numbers

Annotator I 0.952 0.955 0.968

Annotator II 0.960 0.913

Annotator III 0.921

Correlation coefficients for Ghost cell numbers

Annotator I 0.597 0.287 0.269

Annotator II 0.781 0.410

Annotator III 0.423

small patches and apply the model to each one individually.
The output is then simply the union of the outputs from the
small patches. Since our model was trained on 1

8 ×
1
8 images,

we had 64 patches per culture. It is true that splitting images
into non-overlapping patches may split some cells across multiple
patches and may therefore be considered a disadvantage (see
“Error Analysis”). However, in practice, we found that the naive

TABLE 2 | Correlation coefficients between human annotators and the model for
cell area measurements.

Annotator II Annotator III Model

Correlation coefficients for preosteoclasts area

Annotator I 0.656 0.865 0.937

Annotator II 0.708 0.753

Annotator III 0.891

Correlation coefficients for Type 2 osteoclasts area

Annotator I 0.980 0.978 0.995

Annotator II 0.991 0.978

Annotator III 0.978

Correlation coefficients for Ghost cells area

Annotator I 0.326 −0.007 0.590

Annotator II 0.917 0.300

Annotator III 0.070

approach worked satisfactorily, and more sophisticated schemes
were not necessary.

Evaluation
The main focus in bone cell culture analysis is to quantify the
number and area of the cells rather than predicting the location
of the cells inside the culture. Thus, the natural metrics for
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FIGURE 11 | Error in annotation due to overlapping of cells over multiple patches. These two cropped images of cultures are divided into 9 smaller patches. Left:
Cells that are split across different patches are marked in opaque green. Right: a single cell split across different patches is marked in opaque violet and is covered
by two bounding boxes, one in the upper patch and one in the lower one.

evaluation are the number of cells detected and the area covered
by cells. Since these are inherently regression tasks, we report the
Pearson correlation of (i) the human inter-annotator agreement
for both the number and area covered by TRAP+ multinucleated
osteoclasts (Figures 9, 10 upper rows), and (ii) the agreement
between the model-predicted and human annotation for these
measurements (Figures 9, 10 bottom rows). In these correlation
analyses, the residuals were all normally distributed (as calculated
using the D’Agostino & Pearson test in Prism 7.0, α = 0.05,
p > 0.4).

RESULTS

Inter Annotator Agreement
To verify meaningful annotations, we asked three annotators
to annotate a test culture divided into 14 regions (the test
culture consists of 16 regions, 2 regions did not contain
any cells). We then evaluated the inter annotator agreement
for the detection and analysis of preosteoclasts, Type 1 and
2 osteoclasts, and ghost cells (Figures 9, 10 upper rows,
Tables 1, 2), which is an important measure of the accuracy
and reproducibility of the labeling process. Because the most
relevant osteoclastic cell type is a TRAP+ osteoclast with
3 to 15 nuclei (Type 1), it was important that our model
discriminate between preosteoclasts and Type 1 cells as well
as between Type 1 and Type 2 osteoclasts. The correlation
between the 3 annotators was near-perfect for Type 1 and Type
2 osteoclast counting and area (>0.915), but more moderate
coefficients were obtained for the detection of preosteoclasts
(from 0.506 to 0.865). The discrepancies in annotation were
mainly due to differences in the exhaustiveness of the labeling,
which mostly affects the counting of small cells. Since the
contribution of the small cells to the estimated area is low,
there is still a high level of agreement for area measurements.
Notably, the agreement among the human annotators on the

identification of Ghost cells was generally low (0 to 0.917,
Tables 1, 2).

Model vs. Human Annotation Agreement
Next, to assess the prediction accuracy of our model, we
evaluated the agreement between our model and the three
human annotators on the same set of images. These images
were from a test set that was not used for training purposes.
Overall, we found a high level of agreement between the
model and human annotators (Figures 9, 10 bottom row,
Tables 1, 2). When running our model on the same images
used for the inter-annotator correlation, the model agreed
with all 3 annotators with correlation coefficients >0.7 for
preosteoclasts and Type 1 and 2 osteoclasts. Notably, the
correlation among the three human annotators was similar and
sometimes even inferior to the model-to-human correlation. In
line with the inter-annotator low level of agreement on the
identification of Ghost cells, the model’s correlation with the
human annotators was also low (Tables 1, 2). For osteoclast
(Type 1 and 2) counting, the correlation between the model
and the human annotators ranged from 0.913 to 0.968, and for
the area between 0.773 and 0.995 (Figures 9, 10 bottom row,
Tables 1, 2). These correlation coefficients are comparable to
the inter-annotator coefficients that ranged from 0.948 to 0.960,
and from 0.915 to 0.991, respectively (Figures 9, 10 top row,
Tables 1, 2).

Error Analysis
In this section we describe the errors that our model makes.
The most common issue is with cells that span multiple patches.
This problem is introduced due to the resolution at which the
model operates and is most frequently evident in bounding boxes
that only partially cover the designated cells, as depicted in
Figure 11 [left]. This type of error has a minor effect on the cell
counting task, as most cells are covered by a single bounding
box. In the area estimation task, this type of error causes partial
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coverage of the cells. In rare cases, a single cell is covered by
two bounding boxes (See Figure 11 [right]), which causes double
counting of a cell and has no effect on the area estimation task.
A visual inspection of the predictions on the test images resulted
in 15 erroneous cells from a total of 896 detected cells, which
corresponds to 1.5% of the cells in the entire well. The impact
of this type of error is therefore negligible.

DISCUSSION AND CONCLUSION

We describe a novel method for rapidly and automatically
quantifying osteoclast cultures that uses deep learning methods
developed for object detection. Previously developed AI-based
approaches for cell detection do not recognize the unique
characteristics of osteoclasts and do not differentiate between cell
types based on their nuclei number. For the training step, we
manually annotated the type and location of each cell in 11 full
cultures containing thousands of cells. The novelty of our strategy
is that we train an SSD by working at “patch-level” instead of on
the full culture and thereby generate more data for the algorithm
to train on. The results indicate that our trained model is in good
agreement with the human annotators, with a correlation that
is similar to inter-annotator correlation. Our model performed
especially well for the measurement of Type 1 and Type 2
osteoclast numbers and area. Measurements of preosteoclasts
were slightly less satisfactory, although the model agreed with
the human annotator to a similar degree and sometimes
better than human annotators agreed among themselves. The
identification of Ghost cells seems to be particularly problematic
with little agreement among the human annotators or between
the annotators and the model for these cells.

It should be noted that other experimental settings, e.g., using
human cells, and different staining protocols, grayscale images,
or camera resolutions, may require dedicated training of the
algorithm. In such instances, we suggest that the use of the
protocol reported here to generate large numbers of training
images will provide a customized model that will perform
satisfactorily in each specific setting. Using the same approach,
the model could be further improved to detect subclasses of
osteoclasts, i.e., 3 to 5 nuclei versus 6 to 10 and 11 to 15 nuclei. In
theory, the model could also be trained to recognize and measure
fluorescence-stained cultures.

In conclusion, we have developed a satisfactory method for
the automation of osteoclast culture analysis that can detect
and quantify TRAP-positive, multinucleated osteoclasts. This
model discriminates between classical osteoclasts (3 to 15

nuclei) and abnormal “giant” cells (>15 nuclei). This model is
therefore a useful labor-saving technique and we suggest that a
similar approach may prove beneficial in facilitating other image
related analysis tasks.
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