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CORONAVIRUS

Immune life history, vaccination, and the dynamics of
SARS-CoV-2 over the next 5 years
Chadi M. Saad-Roy1*, Caroline E. Wagner2,3,4*, Rachel E. Baker2,3, Sinead E. Morris5, Jeremy Farrar6,
Andrea L. Graham2, Simon A. Levin2, Michael J. Mina7, C. Jessica E. Metcalf2,8, Bryan T. Grenfell2,8,9†

The future trajectory of the coronavirus disease 2019 (COVID-19) pandemic hinges on the dynamics of adaptive
immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); however, salient features
of the immune response elicited by natural infection or vaccination are still uncertain. We use simple
epidemiological models to explore estimates for the magnitude and timing of future COVID-19 cases, given
different assumptions regarding the protective efficacy and duration of the adaptive immune response to
SARS-CoV-2, as well as its interaction with vaccines and nonpharmaceutical interventions. We find
that variations in the immune response to primary SARS-CoV-2 infections and a potential vaccine can lead to
markedly different immune landscapes and burdens of critically severe cases, ranging from sustained
epidemics to near elimination. Our findings illustrate likely complexities in future COVID-19 dynamics and
highlight the importance of immunological characterization beyond the measurement of active infections for
adequately projecting the immune landscape generated by SARS-CoV-2 infections.

T
he novel severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) beta-
coronavirus (b-CoV) pandemichas resulted
in substantial morbidity andmortality,
with over 27 million confirmed cases

worldwide at the time of writing. To curb viral
transmission, nonpharmaceutical interventions
(NPIs), including business and school closures,
restrictions onmovement, and total lockdowns,
have been implemented to various degrees
around the world. Major efforts to develop
effective vaccines and antivirals are ongoing.
Understanding the future trajectory of this

disease requires knowledge of the population-
level landscape of immunity, generated by the
life histories of SARS-CoV-2 infection or vacci-
nation among individual hosts. We show that
the nature of secondary infection, particularly
the degree of acquisition, retransmission, and
clinical severity of subsequent infections with
the same pathogen, is particularly important.
The nature of acquired immune responses after
natural infection varies substantially among
pathogens. At one endof this immune spectrum,
natural infection withmeasles (1) or smallpox

(2) virus results in lifelong protection from the
reacquisition and retransmission of secondary
infections. Many other infections [e.g., influ-
enza (3) and respiratory syncytial virus (RSV)
(4)] confer imperfect or transient clinical and
transmission-blocking immunity by either
pathogen evolution or waning immunological
memory. Finally, phenomena such as antibody-
dependent enhancement (ADE) associatedwith
prior natural infection [e.g., dengue (5)] or a
vaccine [e.g., RSV (6)] could result inmore clin-
ically severe secondary infections. Furthermore,
the immunity conferred by vaccines may not
provide complete protection against reinfec-
tion and/or disease (7), and this protection
may be inferior to that acquired after natural
infection (8). Nevertheless, imperfect vaccines
that reduce both the clinical severity and trans-
missibility of subsequent infections (if they do
occur) can still provide population-level disease
protection (7, 9, 10).
The nature of the immune response after

natural SARS-CoV-2 infection remains an area
of active investigation (11–18). Reports from
serological population- and individual-level
studies demonstrate that detectable antibody
levels can wane over the first few months post-
infection (19), yet recent findings demonstrate
robust antibody responses 4 months after in-
fection (20). This is broadly consistent with
serum antibody levels against the seasonal
coronavirus human coronavirusOC43 (HCoV-
OC43) [which belongs to the same b-CoV genus
as SARS-CoV-2 (21)], which wane on the time
scale of a few months (22) to 1 year (23). Such
seasonal b-CoVs (which also include HCoV-
HKU1) are thought to cause repeated infections
throughout life (24), although a significant
biennial component in their dynamics implies

at least some herd protection (21, 25). This
genus also contains other viruses that cause
severe infections in humans, includingMiddle
East respiratory syndrome and SARS-CoV-1
coronaviruses (21). Whereas humoral immu-
nity to SARS-CoV-1 is believed to last up to
2 to 3 years (26, 27), antigen-specific T cells
against this virus were found to be detectable
for at least 11 years after infection (28). Indeed,
T cell–mediated responses likely play a central
role in controlling SARS-CoV-2 replication and
disease (14, 15). Recent evidence of preexisting
T cells (14, 15) and antibodies (29) capable of
cross-reacting with SARS-CoV-2 suggests that
immunological memory responses elicited dur-
ing infection with seasonal coronaviruses may
also affect coronavirus disease 2019 (COVID-19)
susceptibility anddisease risk. Finally, although
it is currently unclear whether ADE influences
the pathogenesis of SARS-CoV-2, it has been
hypothesized that severe COVID-19 cases may
arise from the presence of nonneutralizing
antibodies from prior coronavirus infections
(30), in agreement with earlier proposals for
related coronaviruses (31–33).
Various epidemiological models have been

developed to capture how the diversity or
variation in immune responses influences
population-level infection dynamics. For in-
stance, the well-known Susceptible-Infected-
Recovered (SIR) model is suitable for modeling
thedynamics of perfectly immunizing infections
such as measles (34), whereas the Susceptible-
Infected-Recovered-Susceptible (SIRS) model
captures the epidemiology of imperfectly im-
munizing infections such as influenza; here,
individuals eventually return to a fully or sub-
stantially susceptible class after a finite period
of immunity, because of either waning mem-
ory or pathogen evolution (35). More complex
compartmental models have also been devel-
oped to study infections characterized by in-
termediate immune responses lying between
these two extremes, such as rotavirus (36)
and RSV (4).
Here, we adopt a generalization of these

models, the SIR(S) model (35), outlined sche-
matically in Fig. 1 and fig. S1, to explore how
the pandemic trajectory might unfold for dif-
ferent assumptions regarding the nature of the
adaptive immune response to SARS-CoV-2 in-
fection. Because different adaptive immune re-
sponses may be associated with variations in
the proportion of severe secondary cases, we
also consider a range of values for this fraction
in order to explore the potential future clinical
burden of SARS-CoV-2 infections. Themodel
assumes different infection and immune phe-
notypes, depending on exposure history [see
(37) for the full mathematical details]. Specif-
ically, it interpolates between the fully immu-
nizing SIR model, when immunity is lifelong,
and the imperfectly immunizing SIRS mod-
el via the degree of susceptibility to and
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transmissibility of secondary infections (quan-
tified by the parameters e and a, respectively).
As shown in the representative time series of
Fig. 1, the SIR model results in recurrent epi-
demics fueled by births following the pandemic
peak; by contrast, the SIRS model typically
generates shorter interepidemic periods owing
to the possibility of reinfection and the buffer-
ing of the fully susceptible birth cohort by par-
tially immune individuals (35).
We begin by characterizing the effect of tem-

poral changes in the transmission rate brought
about by climate and the deployment of NPIs
on the predictions of the SIR(S) model under
a range of immunity assumptions. Next, we
examine the impact of a transmission-reducing
vaccine of varying efficacy relative to natural
immunity. Finally, we estimate the postpan-
demic immunity landscape and clinical case
burden for different possible futures (38)
shaped by the various aspects of SARS-CoV-2
biology as well as the presence or absence of
these external drivers and interventions, as
well as vaccine refusal. To focus on the dynamic
impact of natural and vaccinal immunity, we
begin with a simple homogeneous model,
which averages across known heterogeneities
in COVID-19 transmission and severity [age
(39), superspreading events (40), etc.]. We then
use heterogeneous model extensions to show
that such heterogeneities do not impact our

exploration of qualitativemedium-termdynam-
ics under different immunological scenarios.

Seasonal transmission rates and the
deployment of NPIs

Medium-term dynamics will be shaped by
changes in themagnitude of transmission. To
explore the effect of NPIs, we considered two
different scenarios for timed reductions in the
force of infection to 60% of its original value
[in agreement with intermediate levels of
social distancing in (21)]. In Fig. 2, A to C, we
show the time courses of primary and second-
ary infections, assuming single periods of NPI
lasting from weeks 16 to 67 (Fig. 2A) or 16 to
55 (Fig. 2B) and two shorter periods during
weeks 16 to 55 and weeks 82 to 93 separated
by normal interactions (Fig. 2C). We further
assume a seasonal transmission rate derived
from the climate of New York City (37), al-
though in principle this seasonality could also
be derived from other nonclimate factors (25).
The weekly reproduction numbers correspond-
ing to these three scenarios are shown in fig. S2,
D to F. Although these reproduction numbers
are based on those obtained for the related
b-CoV HCoV-HKU1 and are in general lower
than those estimated during the early stages
of the SARS-CoV-2 pandemic (41), theymay be
more appropriate for considering the longer-
term transmission dynamics.

We find that decreases in the susceptibility
to secondary infection, e, can delay secondary
peaks (compare individual time courses for
different values of e in Fig. 2, A to C). However,
delayed peaks may then be larger, because of
susceptible accumulation (through demogra-
phy or immune waning) and dynamic reso-
nance. These nonmonotonicities in the timing
and size of secondary peaks also occur with
climate-driven seasonal transmission in the
absence of NPIs (37), and the trends are qual-
itatively similar if NPIs are assumed to be
relaxed more gradually (fig. S11). Notably,
the delay that social distancing may cause
in the timing of the secondary peak can also
allow for further accumulation of fully suscep-
tible individuals. This is illustrated in the top
panels of Fig. 2D, where the average infection
rate per infected individual for fully (bSP; red
curve) and partially (ebSS; green curve) sus-
ceptible individuals for the social distancing
scenario outlined in Fig. 2C are shown. We
contrast a reduction in susceptibility to sec-
ondary infection of 50% (e = 0.5, left panels)
with no reduction in susceptibility to sec-
ondary infection (e = 1, right panels). The
corresponding fraction of primary (blue)
and secondary (purple) cases are presented
in the bottom panels. As can be seen, when
the secondary peak does occur, the decrease
in susceptibility to secondary infection (e < 1),
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Fig. 1. Schematic of the SIR(S) model with a flowchart depicting flows
between immune classes. Here, SP denotes fully susceptible individuals;
IP denotes individuals with primary infection that transmit at rate b; R denotes
fully immune individuals (a result of recovery from either primary or
secondary infection); SS denotes individuals whose immunity has waned at
rate d and are now again susceptible to infection, with relative susceptibility e;

IS denotes individuals with secondary infection that transmit at a reduced
rate ab; and m denotes the birth rate (37). Illustrations and flowcharts
of the limiting SIR and SIRS models are also shown (where individuals are
either fully susceptible (S), infected (I), or fully immune (R)), along with
a representative time series for the number of infections in each scenario.
The population schematics were made through use of (62).
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considered in the left panels, results in a
greater number of primary infections during
the second peak relative to the panels on the
right, where e is 1 [and the secondary infec-
tion rate per case (green curves) rises sharply].
Next, an essential part of the planning and

management of future SARS-CoV-2 infections
is the ability to characterize the magnitude
and timing of severe cases requiring hospi-
talization. In Fig. 2E we consider four possible
scenarios for the fraction of severe secondary
cases, xsev,s (37), on the basis of the scenario
depicted in Fig. 2C and assuming 14% of pri-
mary cases are severe (42): (i) no severe cases
associated with secondary infection (xsev,s = 0;

solid red line); (ii) a reduced number of severe
cases with secondary infection relative to pri-
mary infection (xsev,s = 0.07; dashed green line);
(iii) comparable proportions of severe cases
(xsev,s = 0.14; dashed-dotted blue line); and
(iv) a hypothetical greater proportion of severe
cases with secondary infection (xsev,s = 0.21;
purple line with short and long dashes), pos-
sibly owing to phenomena such as ADE.When
the assumed fraction of severe subsequent
infections is high, the fraction of the population
with severe infections during subsequent
infection peaks is found to be comparable to
or even to slightly exceed that observed during
the initial pandemic peak (Fig. 2E). As the

proportion of secondary infections increases
during the later stages of the pandemic, these
findings stress that clinical epidemiological
studies of repeat infections will be critical for
proper planning of health care systems.We also
do not consider any long-term clinical impact
of infection here (43). The impact of increases
in clinical severity with age is addressed below.

Vaccination

The availability of an effective vaccine would
be a key intervention against SARS-CoV-2, and
numerous candidates are in development
(44, 45). Intuitively, if the effective vaccina-
tion rate is sufficiently high, then vaccinal
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Fig. 2. Seasonality in transmission rates and NPIs modulate disease dynamics.
(A to C) Effect of NPI adoption on the time series of primary (solid lines) and
secondary (dashed lines) infections with a seasonal transmission rate derived
from the climate of New York City with no lag between seasonality and epidemic
onset. NPIs that reduce the transmission rate to 60% of the estimated climate
value are assumed to be adopted during weeks 16 to 67 (A), weeks 16 to 55 (B),
or weeks 16 to 55 as well as weeks 82 to 93 (C). Colors denote individual time
courses for different values of e. (D) Time series of the average daily infection rate
per infected individual of fully susceptible (red line) and partially susceptible (green
line) individuals (top row) and the fraction of the population that is infected with
primary (blue line) and secondary (purple line) infections (bottom row), for e = 0.5

(left column) and e = 1 (right column) for the NPI scenario outlined in (C). (E) Time
series of estimated numbers of severe infections for the NPI scenario defined in
(C) for four different estimates of the fraction of severe cases during primary
infections (xsev,p) and secondary infections (xsev,s) with e = 0.5 (top row) and e =
1 (bottom row). These are xsev,p = 0.14, xsev,s = 0 (solid red line); xsev,p = 0.14, xsev,s =
0.07 (dashed green line); xsev,p = 0.14, xsev,s = 0.14 (dashed and dotted blue line);
and xsev,p = 0.14, xsev,s = 0.21 (purple line with long and short dashes). In all
panels, the relative transmissibility of secondary infections and duration of natural
immunity are taken to be a = 1 and 1/d = 1 year, respectively. The effects
of NPIs and other parameter variations can be explored interactively at https://
grenfelllab.princeton.edu/sarscov2dynamicsplots.
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herd immunity generated by a transmission-
blocking vaccine could control or eliminate
the infection. However, this becomes harder to
achieve when vaccinal and natural immunity
is imperfect and secondary infections occur,
or when logistical or other constraints limit
vaccine deployment.We extend themodel (37)
to include a vaccinated class, V, and make
the relatively optimistic assumption that a
transmission-reducing vaccine begins to be
introduced to general populations (the tvax)
after 1.5 years. We also consider seasonal trans-
mission rates, as in fig. S3, and the deployment

of NPIs according to the scenario described in
Fig. 2B. We assume that a constant proportion,
n, ranging from 0% ≤ n ≤ 1% of the fully and
partially susceptible populations (SP and SS), is
effectively vaccinated every week and acquires
transmission-blocking immunity for, on aver-
age, a period 1/dvax. For comparison, it was
estimated that in response to the 2009 H1N1
pandemic, one or more doses of the monoval-
ent vaccinewere administered to 80.8million
vaccinees during October 2009 to May 2010
in the United States (46), which implies a rate
of vaccination coverage of about 27% after a

period of 8 months for persons aged at least
6 months in the United States, although rates
between different nations varied (47). This
crudely corresponds to a weekly vaccination
rate of 1% (48) (as with other parameter var-
iations, different scenarios for vaccination can
be explored with the accompanying Shiny
application). Finally, we assume that the im-
munity conferred from effective vaccination
wanes at rate dvax, which in general may differ
from the waning rate of immunity from nat-
ural infection, d. The modified set of ordi-
nary differential equations in this scenario
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Fig. 3. Impact of vaccination and vaccinal immunity on disease dynamics.
(A) Modified model flowchart that incorporates a vaccinated class V (37).
(B) Total infected fraction of the population at equilibrium as a function of the
vaccination rate n for different values of the duration of vaccinal immunity
(1/dvax = 0.25 years, green lines; 1/dvax = 0.5 years, red lines; and 1/dvax = 1 year,
blue lines) and the susceptibility to secondary infection (e = 0.5, solid lines; e =
0.7, dashed lines; and e = 1, dotted lines). (C) Daily proportion of susceptibles
who must be vaccinated in order to achieve a disease-free state at equilibrium as a
function of e for different values of the duration of vaccinal immunity (1/dvax =
0.25 years, solid line; 1/dvax = 0.5 years, dashed line; and 1/dvax = 1 year, dotted
line). In (B) and (C), the relative transmissibility of secondary infections and
duration of natural immunity are taken to be a = 1 and 1/d = 1 year, respectively,
and the transmission rate is derived from the mean value of seasonal New York

City–based weekly reproduction numbers (�R0 = 1.75) (fig. S2C) (37). (D and E) The
ratio of the total number of primary (D) and secondary (E) infections with
vaccination versus without vaccination, during years 1.5 to 5 (i.e., after the

introduction of the vaccine) are plotted as a function of the weekly vaccination
rate n and the duration of vaccinal immunity 1/dvax. (F to I) Time series
of the various immune classes plotted for different values of the vaccination
rate n. The top row [(F) and (H)] contains the time series of primary (IP, solid
lines) and secondary (IS, dashed lines) infections, whereas the bottom row
[(G) and (I)] contains the time series of the fully susceptible (SP, solid lines), naturally
immune (R, dashed lines), and partially immune (SS, dotted lines) subpopulations.
The duration of vaccinal immunity is taken to be 1/dvax = 0.5 years (shorter than
natural immunity) in (F) and (G), and 1/dvax = 1 year (equal to natural immunity) in
(H) and (I). In (D) to (I), the relative susceptibility to secondary infection, relative
transmissibility of secondary infections, and duration of natural immunity are taken to
be e = 0.7, a = 1, and 1/d = 1 year, respectively. Vaccination is introduced 1.5 years after
the onset of the epidemic (i.e., during the 79th week) following a 40-week period of
social distancing during which the force of infection was reduced to 60% of its original
value during weeks 16 to 55 (i.e., the scenario described in Fig. 2B), and a seasonal
transmission rate derived from the climate of New York City with no lag is assumed.
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corresponding to the flowchart in Fig. 3A is
also presented in (37).
In Fig. 3B, we begin by considering the long-

term equilibrium infection burden (37) driven
by vaccination at a weekly rate n, for a variety
of immunity assumptions. As expected, a re-
duction in the susceptibility to secondary in-
fections (e) results in a smaller number of
infections at steady state in the absence of
vaccination. Further, both e and the duration
of vaccinal immunity (1/dvax) affect the vacci-
nation rate required to achieve a disease-free
state at equilibrium. At the limit of fully immu-
nizing primary infections and vaccines (e = 0),

relatively low vaccination rates are sufficient
to achieve zero infections at steady state. How-
ever, as immunity becomes more imperfect
(larger e), increasingly high vaccination rates
are required to eliminate infections, particu-
larly when the duration of vaccinal immunity
is short. This is further emphasized in Fig. 3C,
where theminimumvaccination rate n required
to achieve a disease-free state at equilibrium
(37) is shown as a function of e for different
values of the duration of vaccinal immunity.
These results underline that reductions in in-
fection achievable through vaccination are in-
herently related to the efficacy of the vaccine

and the nature of the adaptive immune re-
sponse (49).
We next explore the medium-term dynamic

effect of vaccination. Figure 3D shows the
ratio of the total number of primary infections
during years 1.5 to 5 (i.e., after the vaccine is
introduced) relative to the zero vaccination
case for different values of the vaccination rate
n and the duration of vaccinal immunity 1/dvax.
Figure 3E shows the equivalent for secondary
infections. The burden of primary infection de-
creases with increasing vaccination rate for a
given value of vaccinal immunity, 1/dvax. How-
ever, for the shortest durations of vaccinal im-
munity, achievable reductions in the number
of secondary cases begin to plateau even for
high vaccination rates. This saturation is due
to the rapid return of vaccinated individuals to
the partially susceptible class if vaccinal immu-
nity is short-lived. Further, if vaccinal immunity
wanes very rapidly, vaccination can transiently
increase the total number of secondary cases.
To further emphasize the dependence of the
model results on the vaccination rate and du-
ration of vaccinal immunity, we present time
courses of infections and immunity for dif-
ferent durations of vaccinal immunity and
vaccination rates in Fig. 3, F to I. In line with
intuition, the model illustrates that both high
vaccination rates and relatively long durations
of vaccine-induced immunity are required to
achieve the largest reductions in secondary
infection burdens.

Infection, disease, and immunity landscape for
different possible futures

Figure 4 is a synoptic view of the medium-
term impact of vaccination and natural immu-
nity on the immune landscape and incidence
of severe disease. We consider four scenarios,
assuming seasonal transmission (as in fig. S3)
and social distancing according to the pat-
tern depicted in Fig. 2B. Figure 4, A and B,
corresponds to futures without vaccination,
with Fig. 4A illustrating a more pessimistic
scenario of greater susceptibility to secondary
infections (e = 0.7), a relatively short period
of natural immunity (1/d = 0.5 years), and a
greater proportion of severe cases with second-
ary infection. In contrast, the more optimistic
future of Fig. 4B assumes reduced susceptibil-
ity to secondary infections (e = 0.5), a longer
duration of natural immunity (1/d = 2 years),
and a smaller proportion of severe cases with
secondary infection. In both cases, the initial
pandemic wave is the same, but in the more
optimistic scenario (Fig. 4B), natural immunity
is longer lasting and, consequently, subsequent
infection peaks are delayed. Furthermore, the
reduction in susceptibility to secondary infec-
tion (smaller e) in Fig. 4B suppresses the later
peaks dominated by secondary infections (Fig.
4A), and substantially less depletion of fully
susceptible individuals occurs. In Fig. 4, C andD,
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Fig. 4. Time series of the fraction of the population with severe primary or secondary cases (top)
and area plots of the fraction of the population comprising each immune (SP, R, SS, V) or infection
(IP, IS) class (bottom) over a 5-year time period under four different future scenarios. In all plots, the
relative transmissibility of secondary infections (a) is taken to be 1, the fraction of severe primary cases (xsev,p)
is assumed to be 0.14, a seasonal transmission rate derived from the climate of New York City with no lag
is assumed, and a period of social distancing during which the force of infection is reduced to 60% of its
original value during weeks 16 to 55 (i.e., the scenario described in Fig. 2B) is enforced. (A and B) Two
scenarios in which no vaccination occurs: a more pessimistic natural immunity scenario, with e = 0.7, 1/d =
0.5 years, and 21% of secondary cases being severe (A) and a more optimistic natural immunity scenario,
with e = 0.5, 1/d = 2 years, and 7% of secondary cases being severe (B). (C and D) Two scenarios in which
vaccination is introduced at a weekly rate n of 1% at tvax of 1.5 years after the onset of the pandemic:
with all the parameters in (A) along with vaccinal immunity lasting 1/dvax of 0.25 years (C) or with all the
same parameters as in (B) along with vaccinal immunity lasting 1/dvax of 1 year (D).
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these pessimistic and optimistic scenarios are
translated into futures with vaccination, which
is assumed to be introduced at a weekly rate
n of 1% after a tvax of 1.5 years. The future
described in Fig. 4C assumes all the same
outcomes as in Fig. 4A and incorporates vac-
cination with short-lived vaccinal immunity
(1/dvax = 0.25 years). The future presented in
Fig. 4D assumes all the same outcomes as in
Fig. 4B in addition to vaccinal immunity last-
ing for 1/dvax of 1 year.
Figure 4, C and D, emphasizes the impor-

tant role that even an imperfect vaccine could
have on SARS-CoV-2 dynamics and control
[compare with (7, 9, 10)]. Vaccination substan-
tially reduces subsequent peaks in clinically
severe cases, although in the pessimistic future
later infection peaks dominated by secondary
infections can still occur (Fig. 4C). Furthermore,

if a transmission-blocking vaccine confers a
relatively long period of protection, and if
we make optimistic assumptions regarding
the nature of the adaptive immune response
(Fig. 4D), a sufficient proportion of fully sus-
ceptible individuals can be immunized to
suppress future outbreaks within the 5-year
time period considered. These trends are
qualitatively conserved for different vaccine
deployment strategies, such as a pulse of im-
munization after a tvax of 1.5 years in which a
fixed percentage of the fully and partially sus-
ceptible populations (SP and SS) are vacci-
nated (fig. S12). However, without sustained
immunization strategies, the waning of vac-
cinal immunity results in a lower susceptible
depletion over time and larger future out-
breaks relative to the scenarios presented in
Fig. 4, C and D.

Impact of heterogeneity
Transmission and clinical heterogeneity
COVID-19 shows marked heterogeneity in
transmission and clinical severity with age and
other variables (40). There are also marked
individual heterogeneities, often associated
with superspreading events. It is useful to
distinguish “environmental” heterogeneity,
where high transmission is associated with
local environmental (or sociological) factors
such as low air exchange, and “intrinsic” het-
erogeneity, e.g., where certain individuals
have consistently higher contact rates (40).
A number of studies have explored the pos-
sibility that intrinsically higher transmission
rates for some individuals could reduce the
immune threshold for natural or vaccinal herd
immunity to COVID-19 (39, 50), echoing clas-
sical theory (51).
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Fig. 5. Effect of vaccine refusal on disease dynamics. (A) Daily proportion
of vaccine-adopting individuals from the partially and fully susceptible immune classes
who must be immunized in order to achieve R0 < 1 as a function of the fraction
of the population that refuses the vaccine (37) for different values of the duration
of vaccinal immunity (1/dvax = 0.25 years, solid line; 1/dvax = 0.5 years, dashed
line; 1/dvax = 1 year, dotted line) and different values of the susceptibility to
secondary infection e [e = 0.5 (left) e = 0.7 (middle) or e = 1 right)]. (Top row)
Homogeneous transmission between vaccine adopters and refusers (c11 = c12 =
c21 = c22 = 1). (Middle row) Increased transmission associated with vaccine refusers
(c11 = 1, c12 = 1.25, c21 = 1.25, and c22 = 1.5). (Bottom row) Decreased transmission
associated with vaccine refusers (c11 = 1, c12 = 0.825, c21 = 0.825, and c22 = 0.75).
(B) Maximum fraction of the population that can refuse vaccination for herd

immunity to still be achieved as a function of the contact rate among vaccine
refusers c22 (37). In (A) and (B), the transmission rate is derived from the
mean value of seasonal New York City–based weekly reproduction numbers

(�R0 = 1.75) (37) (fig. S2C). (C) Time series of the fraction of the population with
severe primary or secondary cases (top) and area plots of the fraction of the
population comprising each immune (SP, R, SS, V) or infection (IP, IS) class
(bottom) over a 5-year time period. The parameters in the left two series are
identical to those in Fig. 4C, and the parameters in the right two series are identical
to those in Fig. 4D. Additionally, the fraction of the population refusing vaccines
is taken to be N2 = 0.3. (Top row) Homogeneous mixing with c11 = c12 = c21 = c22 = 1.
(Bottom row) Increased contacts among vaccine refusers and c11 = 1, c12 = 1.25,
c21 = 1.25, and c22 = 1.5.

RESEARCH | RESEARCH ARTICLE



We approximate the impact of intrinsic het-
erogeneity using a two-subpopulation exten-
sion of our homogeneous model (37) (figs. S13
to S15). As well as varying transmission be-
tween groups, the model assesses covariation
between transmission rate and clinical sever-
ity. For example, this framing broadly reflects
age-structured heterogeneities, in which more
clinically threatened older groups might have
a lower (because of fewer contacts or possible
shielding) or higher [if long-term care facilities
are hit (40)] transmission rate. We show that
moderate heterogeneities do not affect our
qualitative projections about the impact of
partial natural or vaccinal immunity on epi-
demic dynamics (figs. S14 and S15). As ex-
pected, intrinsic transmission heterogeneity
does reduce future burden if there is strong
and durable immunity (39, 50) (compare Fig.
4B with figs. S14B and S15B, particularly the
subsequent epidemic peaks), because high-
transmission individuals would become im-
mune early, reducing average reproduction
ratios [and modulating the herd immunity
threshold (39, 50)]. However, this impact of in-
trinsic heterogeneity isweakened [or “buffered”
(35)] if immunity is imperfect (compare Fig. 4A
with figs. S14A and S15A); this is because high-
ly transmissive individuals (e.g., those with a
larger social network) contribute proportion-
ately more to secondary transmission when
they enter the partially susceptible state. Again,
this subtlety illustrates the complexities of even
simple variations in immune life history.

Vaccine hesitancy

There is an extensive body of theory on vaccine
hesitancy (52, 53). In the homogeneous case,
vaccine refusal essentially trades off against
vaccine uptake; however, if refusers are spa-
tially or socially clustered, there may be more
impact of refusal, both epidemiologically and
in terms of the social contagion which under-
lies it (52). We use a simple adaptation of
our models (37) to explore how transmission
heterogeneity influences the epidemiological
impact of hesitancy (Fig. 5). As in the vaccina-
tion rate titration presented in Fig. 3, B and
C, a larger fraction of vaccine refusers in a
homogeneous population increases the nec-
essary vaccination rate for herd immunity
(Fig. 5A, top). This effect is amplified when the
susceptibility to secondary infection is high
(compare columns) or the duration of vaccinal
immunity is short (compare individual curves).
In the heterogeneous case, where vaccine re-
fusers are assumed to have different transmis-
sion rates because of higher or lower adherence
to NPIs, the minimum vaccination rate to
achieve herd immunity is further altered. This
can be seen by comparing the rows of Fig. 5A,
ordered on the basis of homogeneous contact
rates (top), increased contact rates for vaccine
refusers (middle), and decreased contact rates

for vaccine refusers (bottom). Notably, we find
that when vaccine refusers have increased con-
tact rates relative to the rest of the population,
vaccination alone may not be able to prevent
an outbreak (Fig. 5B). Alternatively, a decrease
in contact rates for vaccine refusers decreases
their impact. Finally, in Fig. 5C, we reproduce
the area plots from Fig. 4, C and D, assuming
that 30% of the population refuses the vac-
cine. This estimate is broadly consistent with
recent polls conducted in the United States
and Canada (54, 55). We find that the overall
disease burden critically depends on the dura-
tion and strength of immunity and is larger if
vaccine refusers have higher contact rates rela-
tive to the rest of the population (compare top
and bottom rows).

Caveats

To focus on immune dynamics, we have made
several simplifying assumptions. First, we have
assumed that transmission of SARS-CoV-2 is
seasonal and similar to that of the related
b-CoV HCoV-HKU1, although we have also
explored the effect of diminished seasonality
(37). Second, we have simplified the important
role for heterogeneities, such as age, clinical
severity, transmissibility (40), and adaptive
immune response (16) to primary and second-
ary (and beyond) infections. Notably, higher
viral loads or contact rates in some individuals
can lead to superspreading events and heter-
ogeneous transmission patterns (40). Addi-
tionally, the severity of an infection, especially
if associated with higher viremia than inmild
cases, could affect the nature of the subse-
quent adaptive immune response, via antigen-
driven expansion of the antibody response (17)
or exhaustion of the T cell response (18). We
have explored the effect of these heteroge-
neities on disease dynamics via a simplemodel
extension (figs. S13 to S15); we find that dy-
namic impacts of immune variation projected
by our homogeneous model are qualitatively
robust to these inclusions. Finally, we have
considered highly simplified scenarios for
NPI adoption and vaccination.
The dynamic impact of these and other pa-

rameter variations can be explored interac-
tively at https://grenfelllab.princeton.edu/
sarscov2dynamicsplots. For example, strat-
egies to suppress future outbreaks [e.g., (56)]
could be simulated by increasing the duration
and strength of NPIs, then exploring optimal
vaccine deployment as vaccines are developed
and rolled out. See (37) for a full discussion of
all caveats and future directions.

Conclusion

We have examined how plausible variations
in the natural immune response after SARS-
CoV-2 infection and vaccination could inter-
act with seasonal drivers and NPIs to shape
the medium-term epidemic dynamics, clinical

burden, and immunity landscape to COVID-19.
In locations where we expect substantial cli-
matically driven seasonal variation in trans-
mission, such as New York City, the model
predicts that a reduction in susceptibility to
secondary infection or a longer duration of
immunity may lead to a larger secondary in-
fection peak, which may occur earlier if the
duration of natural immunity is longer. With
smaller annual fluctuations in climate, we find
that this nonmonotonic behavior is increasingly
suppressed; however, this effect is sensitive to
the assumed form of climatic influences on
SARS-CoV-2 transmission,whichwehave taken
here to be very similar to those of the related
b-CoVHCoV-HKU1. The subsequent pattern of
infection peaks is even more sensitive to the
relative fraction and transmissibility of primary
and secondary cases, as well as the fraction of
severe cases for each category. Overall, whereas
climatic effects or other seasonal modulators
of the transmission rate increase in importance
as the pandemic progresses (25), our results
underline that understanding the immunol-
ogy of secondary infection (whichmodulates
susceptible supply) is even more dynamically
important, especially in the medium term.
The pandemic trajectory can also be sub-

stantially altered by mass deployment of vac-
cines; however, the impact on burden is strongly
dependent on the efficacy of the vaccine and
the nature of the adaptive immune response.
Recent vaccine trials in mice and rhesus ma-
caques indicate the generation of robust im-
mune responses, clinical protection from severe
disease, and no evidence of ADE after viral
challenge, possibly indicating a more optimis-
tic immune scenario (44). Vaccine hesitancy
could also decrease vaccination rates (53), lead-
ing to lower levels of population immunity.
Nevertheless, even with imperfect vaccinal im-
munity and moderate vaccination rates, our
results indicate that vaccination may accel-
erate pandemic control. Ultimately, quanti-
tatively projecting the impact of vaccination,
antivirals, and therapeutics will require more
granular immuno-epidemiological models;
however, parameterizing suchmodelswill con-
tinue to present huge challenges for this novel
virus. We argue that a family of simple and
more complex models, with a careful focus
on model comparison and averaging, is the
way ahead (57).
Our work underlines that relying on the

status of infection of an individual as the main
observable during an ongoing epidemic is in-
sufficient to characterize the complex immune
landscape generated by the pandemic. This is
in line with ongoing calls for the development
of a Global Immunological Observatory for the
surveillance of population-level susceptibility
and immunity to circulating pathogens, as well
as the emergence of new strains (58–60). Given
the increasingly recognized importance of both
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T cell–mediated (14, 15) and antibody-mediated
(11–13) adaptive immune responses in the rec-
overy from SARS-CoV-2 infection, regular test-
ing of antibody presence, and correlates of
protection such as neutralization, as well as
T cell immunity, in parallel with viral testing,
will be required to adequately characterize
population-level natural and vaccinal immu-
nity to this pathogen. Specifically, our model
indicates a key need to establish (i) the dura-
tion and strength of transmission-blocking
and clinical immunity after primary (and sub-
sequent) infection and vaccination; (ii) pop-
ulation and individual variations in these
parameters (age, sex, etc.); and (iii) the impact
of viral evolution, coinfection, and other path-
ogen characteristics on COVID-19 infection
and disease. Quantifying these parameters
will require long-termmajor investments in
integrated viral and immune surveillance.
Moving beyond the current pandemic, these
structures (and associated developments in
biology, informatics, and translation) will be
powerful bases for understanding and combat-
ing inevitable futuremicrobial threats (58–60).
This work emphasizes the complex depen-

dence of the immune landscape generated by
SARS-CoV-2 infection on the presently uncer-
tain nature of the adaptive immune response
to this virus and the efficacy of potential future
vaccines. Depending on how these unfold, the
model predictions for future clinical burdens
range from sustained epidemics to near–case
elimination. Consequently, accurately charac-
terizing the individual immune life histories
and the cumulative immune landscape of the
population to SARS-CoV-2 primary and sec-
ondary infection and vaccination will be crit-
ical for the management and control of the
ongoing pandemic.
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