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ABSTRACT

Background: Pericardial fat (PF) is highly associated with cardiovascular disease but the 
effectiveness of surgical resection of PF is still unknown for myocardial mitochondrial 
structure and function in acute myocardial infarction (AMI) with obesity. The aim of this 
study was to demonstrate the difference in myocardial mitochondrial structure and function 
between obese AMI with additionally resected PF and those without resected PF.
Methods: Obese rats with 12-week high fat diet (45 kcal% fat, n = 21) were randomly assigned 
into 3 groups: obese control, obese AMI and obese AMI with additionally resected PF. One 
week after developing AMI and additional resection of PF, echocardiogram, myocardial 
mitochondrial histomorphology, oxidative phosphorylation system (OXPHOS), anti-oxidative 
enzyme and sarcoplasmic reticulum Ca2+ ATPase 2 (SERCA2) in the non-infarcted area were 
assessed between these groups.
Results: There was significant improvement of systolic function in AMI with PF resection 
compared with the AMI group in the echocardiogram. Even though the electron microscopic 
morphology for the mitochondria seems to be similar between the AMI with PF resection and 
AMI groups, there was an improved expression of PGC-1α and responsive OXPHOS including 
NDUFB3, NDUFB5 and SDHB are associated with the ATP levels in the AMI with PF resection 
compared with those in the AMI group. In addition, the expression levels of antioxidant 
enzymes (MnSOD) and SERCA2 were improved in the AMI with PF resection compared with 
those in the AMI group.
Conclusion: Surgical resection of PF might ameliorate myocardial mitochondria dysfunction 
in obese AMI.
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INTRODUCTION

Cardiovascular disorders are the leading cause of death representing all global deaths1 
and acute myocardial infarction (AMI) is a common cause of cardiovascular disorders.2 
Ischemia with inflammation in the cardiomyocyte is the main pathophysiology of AMI.3 
In addition, obesity is strongly associated with an increased risk of developing AMI or 
heart failure.4,5 Especially, pericardial fat (PF) has been shown to have a diverse role6 in 
locations not classically associated with adipose tissue storage,7 but with the occurrence 
of cardiovascular events.8 A large amount of PF has been known to be significantly 
associated with cardiovascular diseases,2-5 and decrease anti-inflammatory adiponectin 
production and increase the synthesis of pro-inflammatory adipokines in obesity.6 In 
response to AMI, mesenchymal cells from the PF could migrate into the myocardium to be 
transformed into fibroblasts7,8 and shift to a nidus for inflammation and oxidative stress 
subsequent to aggravating cardiovascular disease,7,8 which demonstrates the paracrine 
effect of PF as a pathological transformation for cardiac damage and dysfunction. A recent 
study demonstrated that surgically resected PF improved the inflammatory status.9-11 
In addition, mitochondrial oxidative phosphorylation system (OXPHOS) and adenosine 
triphosphate (ATP) in the cardiomyocyte were mainly suppressed in the animal with cardiac 
dysfucntion12,13 and PGC-1α with oxidative stress was also significantly associated with heart 
failure.14-16

Therefore, we investigated whether surgical resection of PF ameliorates myocardial 
mitochondrial structure, and dysfunction in the AMI obese rat model.

METHODS

Rats and housing
Animal female Wistar rats (6 weeks old, 160 g) were purchased from Harlan (Madison, WI, 
USA) and housed in the Animal Care Center of Eulji University in Daejeon under controlled 
conditions. The rats were housed in pairs at 23 ± 1°C with a 12 hours light/dark cycle and given 
access to water and rat chow consisting of a ‘high fat diet (HFD)’ (45% calories from fat).

Study design
After 12 weeks of HFD, all rats (n = 21) were randomly assigned into 3 groups: control, 
AMI, and AMI with PF resection. Subjects were anesthetized with 10% chloral hydrate by 
peritoneal injection and ventilated with a rodent respirator. The chest was opened through 
the left thoracotomy so that the left anterior descending coronary could be visualized and 
permanently ligated with a 7-0 silk suture at the site of its emergence from the left ventricle or 
so that a sham operation could be performed without ligation as described previously.15 The 
control group (n = 7) had the sham operation among the rats (n = 14) who had a permanent 
ligation of the left anterior descending artery, the AMI with PF resection group (n = 7) had an 
additional PF resection (Supplementary Fig. 1). In the AMI with PF resection group, the PF 
covering the anterior aspect of the heart was removed during the AMI operation.

Sampling, histology and transmission electron microscopy (TEM)
The blood samples and myocardial tissues of all rats were collected after the echocardiogram 
and sacrifice. Serum was stored at −80°C until further analyses, and myocardial tissues were 
snap-frozen and stored at −80°C, and some of the non-infarct myocardial tissues were fixed for 
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histologic examination or TEM. Transverse sections in each group were fixed in 10% buffered 
formalin (Sigma Aldrich, Co., St Louis, MO, USA) and embedded in paraffin. Thick transverse 
sections of 1 μm were cut from the tissue block and stained with hematoxylin and eosin,17 and 
myocardial tissues were fixed in 2.5% paraformaldehyde-glutaraldehyde at 4°C for 24 hours and 
then washed with 0.1 M phosphate buffered solution at 4°C. After washing two times, the tissue 
was post-fixed with 1% OsO4 buffered solution (pH 7.4) for 1 hour and 30 minutes. Tissue 
samples were dehydrated by serial ethanol and propylene oxide treatment and embedded in 
Poly/EM Bed812 embedding medium, and the resin was then polymerized in a vacuum drying 
oven (Yamato Scientific, Tokyo, Japan) at 60°C for 48 hours. Non-infarct myocardial tissue was 
sectioned using an EM Ultra-microtome LKB-2088 and stained with 1% toluidine blue, and 
then, ultra-thin sections were double-stained with uranyl acetate and lead citrate and examined 
using a Hitachi H-7600 electron microscope (Hitachi, Tokyo, Japan).

Echocardiogram
An echocardiogram was undertaken one week after the AMI operation as described 
previously.18 All rats were anesthetized by intraperitoneal injection with a mixture of 
ketamine (50 mg/kg) and xylazine (1 mg/kg), and the hair of the chest wall of all rats 
was carefully removed, and warm ultrasound transmission gel was liberally applied to 
ensure an optimal image quality for the echocardiogram. A high-frequency 15-MHz linear 
transducer (Entos CL15-7; Philips Medical Systems, Bothell, WA, USA) connected to an 
ultrasound system (ATL-HDI5000; Philips Medical Systems) was used for the acquisition of 
echocardiographic images. All cardiac structure and function traces were manually measured 
with a caliper by an operator using the leading-edge method according to the American 
Society of Echocardiography.19

Real time polymerase chain reaction
The acquired myocardial tissue was homogenized using a polytron homogenizer (Fisher 
Scientific Inc., Pittsburgh, PA, USA), and the homogenate was stored to permit the complete 
dissociation of nucleoprotein complexes. Homogenates containing 0.2 mL of chloroform 
per 1 mL of TRI Reagent (Molecular Research Center Inc., Cincinnati, OH, USA) were 
shaken, and total RNA from the homogenates was isolated according to the manufacturer’s 
instructions, and equal amounts of total RNA were reverse transcribed into cDNA using 
the iScript cDNA Synthesis Kit (Bio-Rad, Hercules, CA, USA) (The primer sequences are 
listed in the Supplementary Table 1). Real-time polymerase chain reaction was done in a 20 
μL reaction mixture containing 1 μg cDNA, 10 pmol of forward primer and reverse primer 
each, and 10 μL of SYBR Green Supermix (Bio-Rad) using a CFX96 Real-Time PCR Detection 
System (Bio-Rad Laboratories [Singapore] Pte Ltd., Singapore). The threshold cycle values 
for each target mRNA were normalized to the mRNA of glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH), and the relative expression level of each target gene was calculated 
using the CFX Manager software version 1.5 (Bio-Rad).

Western blot analysis
Acquired myocardial tissues were homogenized in the Pro-Prep Protein Extraction 
Solution (Intron Biotechnology, Seoul, Korea) with protease inhibitor (Roche Applied 
Science, Penzberg, Germany) and phosphatase inhibitor (Roche Applied Science). All the 
homogenates were incubated overall for 30 minutes and centrifuged at 13,000 rpm (4°C) for 5 
minutes, and the supernatant was transferred into a 1.5 ml tube. Lysates were run on a 4–20% 
MP TGX Precast Gel (Bio-Rad) and transferred to PVDF membranes using a wet, vertical 
Criterion Blotter (Bio-Rad). Membranes were blocked with 5% skim milk in 50 mmol/L 
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Tris-HCl (pH 7.4) and 150 mmol/L NaCl (TBS) and then incubated overnight at 4°C with 
antibodies. The anti-GAPDH antibody (1:1,000) was obtained from Cell Signaling (Beverly, 
MA, USA), and the NDUFB3, NDUFB5 and SDHB antibodies (1:1,000) were obtained from 
Novus Biologicals (Littleton, CO, USA).

Antibodies directed against PGC-1α (1:500) were obtained from Cell Signaling. All antibody 
dilutions were made in 0.5% bovine serum albumin [BSA] and 0.1% sodium azide-Tris-
buffered saline-Tween 20 [TBST], and the membranes were incubated with the appropriate 
horseradish peroxidase-conjugated secondary antibody. Secondary antibodies (goat anti-
rabbit IgG) were obtained from Cell Signaling, and the signal was developed using an 
enhanced chemiluminescence detection system (Millipore, Billerica, MA, USA).

ATP measurements
The acquired myocardial tissues were homogenized in mammalian cell ATP lysis solution 
(Perkin-Elmer, Waltham, MA, USA). The whole homogenates were centrifuged at 12,000 
rpm (4°C), and the supernatants were transferred into 1.5 mL tubes. Then, the ATPlite 
assay was performed according to the manufacturer’s instructions (Perkin-Elmer), and the 
luminescence emitted from the ATP-dependent luciferase reaction was calculated using a 
2030 Multi-label Reader (Perkin-Elmer).

Statistical analysis
All parameters were expressed as the mean ± standard deviation and analyzed by one-way 
analysis of variance with Tukey’s post hoc test. Statistical analyses were performed using SPSS 
(version 15.0; SPSS Inc., Chicago, IL, USA), and a P value < 0.05 was considered statistically 
significant.

Ethics statement
All experiments were approved by the Animal Welfare Committee of Eulji University 
(EUIACUC19-28) in Daejeon, Republic of Korea.

RESULTS

The comparison of the echocardiographic parameters between AMI and AMI 
with PF resection
Systolic interventricular septum (IVSs), diastolic interventricular septum (IVSd), and diastolic 
left ventricular posterior wall (LVPWd) were similar between the AMI with PF resection and 
AMI groups (Table 1). However, systolic left ventricular intraventricular dimension (LVIDs) 
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Table 1. The comparison of echocardiographic parameters between groups
Echocardiographic parameters Control group AMI group AMI + PF resection group P value
LVPWs (cm) 0.15 ± 0.02 0.12 ± 0.02 0.12 ± 0.02 0.999
LVIDs (cm) 0.42 ± 0.04 0.64 ± 0.09 0.53 ± 0.11 0.243
IVSs (cm) 0.14 ± 0.03 0.12 ± 0.03 0.11 ± 0.02 0.536
LVPWd (cm) 0.13 ± 0.02 0.13 ± 0.02 0.13 ± 0.02 0.999
LVIDd (cm) 0.59 ± 0.07 0.72 ± 0.11 0.69 ± 0.12 0.490
IVSd (cm) 0.10 ± 0.02 0.12 ± 0.03 0.10 ± 0.02 0.131
AMI = acute myocardial infarction, PF = pericardial fat, LVPWs = systolic left ventricular posterior wall, LVIDs = 
systolic left ventricular intraventricular dimension, IVSs = systolic interventricular septum, LVPWd = diastolic 
left ventricular posterior wall, LVIDd = diastolic left ventricular intraventricular dimension, IVSd = diastolic 
interventricular septum.
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and diastolic left ventricular intraventricular dimension (LVIDd) were slightly decreased 
in the AMI with PF resection group compared to the AMI group which shows that the left 
ventricular systolic function was significantly recovered in the AMI with PF resection group 
compared to the AMI group (34.3 ± 3.8% vs. 28.5 ± 7.3%, P = 0.041) (Fig. 1).

Histomorphology and transmission electron microscopic images of 
mitochondria in the myocardium
The electron microscopic images of the non-infarct area between the AMI and AMI with 
PF resection groups seem to be similar at first look (Fig. 2). However, the myocardial 
mitochondria in the AMI with PF resection group showed more electro-dense cristae and 
membrane than those in the AMI group.
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Fig. 1. The comparison of cardiac function between AMI and AMI with PF resection. EF was measured by 
echocardiography. Values are expressed as mean ± standard deviation. 
AMI = acute myocardial infarction, PF = pericardial fat, EF = ejection fraction. 
*P < 0.05.

A B

Fig. 2. The electron microscopic image of the mitochondria in the peri-infarction area between AMI and AMI with 
PF resection. (A) AMI; (B) AMI with PF resection. Transmission electron microscopic images (×3,000; scale bar 
1,000 nm) in the myocardia. 
AMI = acute myocardial infarction, PF = pericardial fat.
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mRNA expressions of some OXPHOS subunits, antioxidant enzyme and 
sarcoplasmic reticulum Ca2+ ATPase 2 (SERCA2)
Among the genes of complexes I and II implicated in cardiovascular diseases,20 the 
expressions of OXPHOS in the real-time quantitative RT-PCR showed that the NADH 
dehydrogenase (ubiquinone) 1 beta subcomplex (NDUFB) 5 was significantly decreased 
in the AMI group but was significantly recovered in the AMI with PF resection group 
as previously reported.21 However, the expression of NDUFB3, cytochrome c1 (CYC1), 
NADH dehydrogenase (ubiquinone) flavoprotein 1 (NDUFV1) and NADH dehydrogenase 
(ubiquinone) Fe-S protein 1 (NDUFS1) were not different between the AMI with PF resection 
and AMI groups (data not shown). The expression of complex II/succinate dehydrogenase B 
subunit (SDHB) was also significantly decreased in the AMI group but was recovered in the 
AMI with PF resection group (Fig. 3). In addition, the expressions of anti-oxidant enzymes 
such as superoxide dismutase (SOD) and SERCA2 were decreased in the AMI group but were 
recovered in the AMI with PF resection group (Figs. 3 and 4).
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Fig. 3. The comparison of OXPHOS subunit mRNA expression between AMI and AMI with epicardial adipose 
resection. mRNA expression levels of the following OXPHOS subunits are depicted; NDUFB3 of complex I (A); 
NDUFB5 of complex I (B); SDHB of complex II (C). Representative blots for OXPHOS subunit: NDUFB5 level (D). 
Values are expressed as mean ± standard deviation. 
OXPHOS = oxidative phosphorylation system, AMI = acute myocardial infarction, NDUFB = NADH dehydrogenase 
(ubiquinone) 1 beta subcomplex, SDHB = succinate dehydrogenase B subunit, PF = pericardial fat. 
*P < 0.05 vs. control; #P < 0.05 vs. AMI.
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ATP and western blot analysis of NDUFB 5 and PGC-1α
The levels of ATP synthesis were significantly decreased in the AMI group but were recovered 
in the AMI with PF resection group. PGC-1α was significantly decreased in the AMI group but 
was recovered in the AMI with PF resection group (Fig. 5, Supplementary Fig. 2).

DISCUSSION

In the present study, OXPHOS subunit NDUFB5, SDHB and PGC-1α with ATP were decreased 
in AMI group but recovered in AMI with PF resection group compared with those in the AMI 
group. SERCA2 expression and MnSOD were also significantly decreased in AMI group but 
recovered in AMI with PF resection group compared with those in the AMI group.
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*P < 0.05 vs. control.
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A large amount of PF lead to decline release of adiponectin and instead synthesizes 
proinflammatory adipokines6 and the mesenchymal cells from the epicardium could 
migrate to be transformed into fibroblasts.7,8 The accumulation of PF is accompanied by 
inflammation and fibrosis22-24 and the release of proinflammatory adipocytokines from 
PF depots may thus contribute to the comorbidities that are characteristically seen in heart 
failure. Regardless of the source of systemic inflammation, PF itself leads to inflammation 
and fibrosis of the neighboring myocardium to development of heart failure.25

There is previous report on the relationship between the resection of PF and cardiac 
dysfunction. The accumulation of PF is also clinically associated with cardiac dysfunction, 
and structural remodeling in obese people,26,27 and surgical resection for PF in AMI could 
induce beneficial effects for ischemic heart disease.9-11

Mitochondria have been found to play an important role in the cardiac energetics in 
the energy production of ATP28 and mitochondria occupy 30–40% of the total area of a 
cardiomyocyte, where it is indispensable for normal cardiac energetics.29,30 The ob/ob 
and db/db mice and fa/fa rats with systolic dysfunction which show a decreased rate of 
intracellular Ca2+ reduction via SERCA2 in myocytes.31-36 Mitochondria are also responsible 
to maintain in tricellular Ca2+ turnover and the constant energy demands by oxidative 
phosphorylation (gene set as OXPHOS), and decreased calcium handling was found in the 
heart failure.37,38 In addition, mitochondrial genes such as OXPHOS and PGC1-α, a key 
metabolic regulator that coordinates in mitochondrial biogenesis13,21 and PGC1-α also 
acts as a crucial regulator of oxidative metabolism in cardiovascular disease. PGC1-α-null 
mice develop heart failure due to reduced mitochondrial OXPHOS in myocardial energy 
metabolism39 and oxidative stress has been known to be another axis in heart failure, and 
deficiencies of anti-oxidant enzyme contribute to mitochondrial damage in AMI40,41 as well.

In the present study, the myocardial mitochondria in the AMI with PF resection group 
showed more electro-dense cristae and membrane than those in the AMI group. The 
mitochondrial outer membrane has specific components for communication with other 
intra-cellular organelles and for the recognition and import of mitochondrial proteins 
while the inner membrane, the tubular-like cristae is the main machinery for respiratory 
chain complex containing OXPHOS for oxidative phosphorylation in the form of ATP. In 
our present study, it is speculated that more electro-dense crista might be related to more 
respiratory capacity in the mitochondria energy metabolism in the PF resection group.42 
The expression of SERCA2 was recovered in the AMI with PF resection group compared 
with that in the AMI group, and the expressions of the OXPHOS subunit NDUFB5, SDHB, 
anti-oxidant enzyme and PGC-1α were also recovered in the AMI with PF resection group 
compared with those in the AMI group which were subsequently associated with increased 
ATP levels. Improved mitochondrial ATP synthesis in the non-infarct area might be related 
to increased systolic function in the AMI with PF resection group. However, further basic 
study is needed to support the beneficial effect for improvement of cardiac systolic function 
in the resection of PF.

There are some limitations in this study. First, this study included a relatively small number 
of animals which may limit the generalization of the results. Second, the volume and area of 
resected PF could be dependent on the operator and cardiac anatomy. Especially, pericardial 
or epicardial fat in the small animal was indistinguishable during the AMI operation. Third, 
a more detailed targeted experiment is needed to investigate the relationship between PF 
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resection and the improvement of cardiac systolic function. Forth, the experiment was a 
prospective study, but unmeasured selection bias may exist. Collectively, PF resection might 
be a beneficial effect to ameliorate myocardial mitochondrial dysfunction in the obese AMI 
rat model.

In conclusion, even though the myocardial mitochondrial morphology in the non-infarction 
area seemed to be similar between the AMI and AMI with PF resection groups, AMI with PF 
resection showed improved expressions of PGC-1α, antioxidant enzyme and OXPHOS subunit 
associated with ATP synthesis compared to AMI. Therefore, surgical resection of PF in the 
obese AMI might ameliorate myocardial mitochondria dysfunction.

SUPPLEMENTARY MATERIALS

Supplementary Table 1
Primer sequences of real-time polymerase chain reaction

Click here to view

Supplementary Fig. 1
Study design and comparison of weight gain between AMI and AMI with PF resection. Data 
are expressed as mean ± standard error (n = 7).

Click here to view

Supplementary Fig. 2
The example for comparison of western blot analysis of NDUFB5 and PGC-1α between AMI 
and AMI with PF resection. (A) NDUFB5 level; (B) PGC1-α level.

Click here to view
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