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Abstract: Photocatalytic water splitting for hydrogen generation is a significant pathway for sus-
tainable energy conversion and production. The photocatalysts with a Z-scheme water splitting
charge transfer pathway is superior due to the good separation and migration ability of photoexcited
charge carriers. Herein, Co3O4/g-C3N4 photocatalysts with Z-scheme charge transfer pathway were
successfully constructed by an electrostatic interaction-annealing method. The as-prepared Co3O4/g-
C3N4 ultra-thin nanosheets were tested and analyzed by XRD, EA, ICP, SEM, TEM, AFM, XPS,
UV-Vis DRS, PL and photoelectrochemical measurements. Moreover, the influences of fabrication
parameters on performance of Co3O4/g-C3N4 catalysts were investigated, and 0.5% Co3O4/g-C3N4

exhibited the optimal activity. Based on the characterization and catalytic performance, the Z-scheme
charge transfer pathway of Co3O4/g-C3N4 was established and put forward. To further improve the
catalytic performance of Co3O4/g-C3N4, 0.5% Pt was added as a co-catalyst. The obtained Pt/0.5%
Co3O4/g-C3N4 was recyclable and remained the original catalytic water splitting performance within
20 h. The modification of Co3O4 and Pt improved the separation and migration of e− and h+, and
induced the increased hydrogen evolution rate of g-C3N4.

Keywords: Co3O4/g-C3N4 ultra-thin nanosheets; Z-scheme charge transfer pathway; photocatalytic;
water splitting; H2 evolution

1. Introduction

Photocatalytic hydrogen generation is a high efficiency, environmentally friendly and
economically practical technology for utilizing solar energy [1–3]. It promises a sustainable
alternative via semiconductors to address environmental issues and energy shortages
all around the world [4–6]. The strong optical absorption ability, high separation and
migration efficiency and stability are major factors for the photocatalysts’ activity for
hydrogen evolution [7,8]. Now efforts have been devoted to fabricating more and more
effective semiconductors for solar-energy utilization and conversion, majorly categorized
as metal oxides, amorphous (oxy)-hydroxides, (oxy)nitrides, (oxy)sulphides and polymeric
catalysts [9,10].

Graphitic carbon nitride (g-C3N4) is a robust and nontoxicity polymeric catalyst with
good properties [11]. It was constructed by the polymerization method as a photocatalytic
water splitting catalyst in 2009 [12]. Up to now, g-C3N4 has been widely developed as an
emerging and prospective catalyst in different areas, for example photocatalytic degra-
dation of pollution [13], hydrogen evolution through photocatalytic water splitting [14]
and CO2 reduction [15]. Nowadays g-C3N4 with various morphologies have emerged,
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such as quantum dots [16,17], nanotubes [18,19], bulk g-C3N4 and g-C3N4 nanosheets [20].
Two-dimensional g-C3N4 nanosheets have been intensively explored because of their
outstanding photocatalytic performance in the past few years [20]. For example, the hy-
drogen generation ability of two-dimensional g-C3N4 nanosheets was improved by Lu
and co-workers [21]. It is reported that g-C3N4 nanosheets have an improved catalytic per-
formance compared with bulk g-C3N4, benefiting from its enlarged redox potentials [22],
and prolonged charge carrier lifetime. As has been reported, a short transfer path can be
obtained in the g-C3N4 nanosheets [22]. Therefore, efficient performance of g-C3N4 with
2D ultra-thin structure can be anticipated. In 2015, Liu and co-workers reported that the
as-synthesized g-C3N4 nanosheets possessed an efficient water splitting ability by nature-
inspired environment “phosphorylation” [23]. Unfortunately, g-C3N4 has a lot of defects,
such as an inner self-combination of electrons and holes, limited light response ability, and
so on [24]. To overcome the above shortcomings and greatly enhance its photocatalytic
H2 production activity, semiconductor composite [25], dye sensitization, and co-catalyst
modification [26] have been tried.

Among the semiconductor composites, the Z-scheme charge transfer pathway is
a practical strategy. Its prominent advantages are the efficient separation of e− and h+

at conduction band edges (ECB) of one semiconductor and valence band edges (EVB) of
other semiconductors, respectively. Therefore, it can inhibit the inner self-combination of
electrons and holes. The transfer process schematic diagram has the same shape as the
letter Z, called the Z charge transfer pathway. What is more, it is extensively utilized by
researchers to boost the effective separation and migration of charges, facilitate hydrogen
generation of water splitting and perform a superior photocatalytic performance. For
instance, Xie and co-workers synthesized Ag-AgI/BiOI-Bi2O3 photocatalyst with Z-scheme
multi-charge transfer pathway, which exhibited excellent photocatalytic performance [27].
Qu et al. constructed Ag2MoO4/Ag/AgBr Z-scheme composites. The obtained composites
exhibited an excellent performance for RhB photocatalytic degradation under various
reaction conditions [28]. The photocatalysts with Z-scheme photocatalytic charge transfer
pathway have different band structures. The p-type transition metal oxide semiconductor,
Co3O4, is a narrow band gap photocatalyst, and has been widely employed as an excellent
catalyst [29]. Co3O4 and g-C3N4 can meet the requirements of Z-scheme charge transfer
pathway due to their suitable valence band edges and conduction band edges [30]. Through
the modification of Co3O4 and construction of Z-scheme charge transfer pathway, an
electric field between Co3O4 and g-C3N4 photocatalysts is constructed, which is of benefit
to the charge separation and migration. Therefore, improved photocatalytic performance
can be obtained on Co3O4/g-C3N4.

Co3O4/g-C3N4 catalysts have been applied to degrade tetracycline [30], several dye pol-
lutants [31] and photocatalytic water oxidation [32]. They all exhibited outstanding photocat-
alytic performances. For instance, Jin et al. synthesized Co3O4/g-C3N4 as peroxymonsulfate-
mediated photocatalytic catalysts, which showed good activity for tetracycline degrada-
tion [30]. Qu et al. synthesized Co3O4/g-C3N4 composites with outstanding photocatalytic
peroxymonosulfate activation performance for dyes’ degradation [31].

As has been reported, introducing co-catalysts can greatly improve the hydrogen evo-
lution reaction performance of semiconductors. Researchers have found that modification
with noble metal Pt can boost the photocatalysts’ water splitting activity [33,34]. As an
electron mediator, Pt has a low Fermi level, which has an important impact on the H2
evolution performance.

Based on former reports, g-C3N4 nanosheets with uniform thickness were synthesized
by a polymerization method in the paper. Co3O4 was then introduced via an electro-
static interaction–calcination method to form Z-scheme charge transfer pathway in order
to obtain efficient separation of charge carriers and high photocatalytic water splitting
performance. With further Pt modification, better activity was obtained. The Z-scheme
photocatalytic charge transfer pathway of Co3O4/g-C3N4 was put forward based on the
experimental data.
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2. Materials and Methods
2.1. Materials

All the reagents that were used were analytical pure. Triethanolamine (TEOA) was
purchased from Aladdin Industry Corporation, Shanghai, China. Melamine was purchased
from Tianjin Jiangtian Chemical Technology Co. Ltd., Tianjin, China. Ammonia chloride
was purchased from Wind Ship Chemical Reagent Technology Co. Ltd., Tianjin, China.
Anhydrous ethanol and ammonium bicarbonate were purchased from Guangfu Technology
Development Co. Ltd., Tianjin, China. Cobalt chloride hexahydrate and chloroplatinic acid
were purchased from Masco Chemical Co. Ltd., Tianjin, China.

2.2. Fabrication of g-C3N4

The large-scale production of few-layer and ultra-thin g-C3N4 nanosheets with uni-
form thickness was performed by the facile method of polymerization. 5 g melamine and
10 g ammonia chloride were fully grinded into powder and then calcinated at 550 ◦C for
4 h in the air atmosphere. This product was collected and named as g-C3N4.

2.3. Synthesis of the Ultra-Thin Co3O4/g-C3N4 Catalysts

The series Co3O4/g-C3N4 nanosheets were prepared via electrostatic interaction
and calcination methods. 0.72 g g-C3N4 was sonicated for 0.5 h to disperse in 100 mL
anhydrous ethanol. Subsequently, different masses of CoCl2·6H2O were added into the
above system, followed with a stoichiometric ratio of NH4HCO3, and n(CoCl2·6H2O):
n(NH4HCO3) = 1:3 [31]. After continuous stirring for 6 h, the sample was centrifugated,
washed and dried at 85 °C. The as-synthesized materials were calcinated at 350 ◦C for
2 h. The series Co3O4/g-C3N4 catalysts with various mass ratios were collected, and are
denoted as 0.3, 0.5, 1, 3, 6, 12 wt.% Co3O4/g-C3N4, respectively.

For comparison, the pure Co3O4 was fabricated by calcination of CoCl2·6H2O at
600 ◦C for 4 h.

2.4. Characterization

The X-ray powder diffraction (XRD) was characterized by a diffractometer from
Rigaku Corporation. Scanning electron microscopy image was observed by a SU3500
(Hitachi, Tokyo, Japan) microscope. Elemental analysis was explored by Elemental An-
alyzer (Vario EL cube, Langenselbold, Germany). The ICP analysis was performed by
Inductive Coupled Plasma Emission Spectrometer (SpectroBlue, Kleve, Germany). Trans-
mission electron microscopy (TEM) was observed by a FEI TalosF200X instrument. EDS
analyses were characterized by an energy dispersive X-ray spectroscope (Bruker, Billerica,
MA, USA). Atomic force microscopy (AFM) images were performed by the Bruker icon
AFM instrument. The X-ray photoelectron spectroscopy (XPS, Thermo escalab 250Xi)
analysis was characterized on a photoemission spectroscopy, using a mono AlKα radiation
source. The UV–Vis diffuse reflection spectra (UV–Vis DRS) was explored by a UV–Vis
spectrophotometer (UV3600-Plus, Shimadzu, Kyoto, Japan). Photoluminescence spectra
(PL) was conducted by a spectrophotometer (PTI, New York, NY, USA). Electrochemical
experiments were explored with a workstation (Zahner Zenium, Kronach, Germany).

2.5. Photocatalytic Activity

The H2 production tests were implemented with the catalyst (50 mg), which was
dispersed in triethanolamine solution (10% vol TEOA) in the Labsolar-6A online system.
0.5 wt.% Pt, which was used as co-catalyst, was in-situ reduced by light on the catalysts by
adding H2PtCl6 aqueous solution in the above suspension of the reaction. After vacuuming,
the Argon gas was added. A 300 W Xenon lamp was served to achieve the system
irradiation during tests. The solution temperature was controlled at 5 ◦C to avoid the
thermal effect produced by light. Additionally, the tests were carried out using a gas
chromatograph and the carrier gas is Argon (GC D7900 II, Tianmei, Shanghai, China).
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3. Results and Discussion
3.1. XRD Analysis

The XRD measurement was characterized to confirm the phase of the catalysts, as
shown in Figure 1. The peaks at 2θ = 13. 0 and 27.7◦ were indexed to the characteristic
peaks of g-C3N4 [5,35]. The diffraction peaks at 2θ = 19.0◦, 31.3◦, 36.9◦, 38.5◦, 44.8◦, 55.7◦,
59.4◦ and 65.2◦ were indexed as (1 1 1), (2 2 0), (3 1 1), (2 2 2), (4 0 0), (4 2 2), (5 1 1) and
(4 4 0) plane of cubic Co3O4 (PDF#42-1467), respectively. It was evident that the peaks of
Co3O4 and g-C3N4 were both existed in the 6% and 12% Co3O4/g-C3N4 photocatalysts’
XRD patterns. No obvious Co3O4 peaks were observed in Co3O4/g-C3N4 samples with
0.3%, 0.5%, 1% and 3% Co3O4. That might be owing to the relatively low content and
high distribution of Co3O4 [36]. What is more, as clearly demonstrated, the peaks of the
photocatalysts were sharp and strong, illustrating that the samples possessed an excellent
crystallization. There were no peaks of other phases in Figure 1, which indicated the good
purity of the synthesized photocatalysts.
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3.2. EA and ICP

For the g-C3N4 sample, the atomic ratio of C element and N element was investigated
by EA. The value exhibited a result that the atomic ratio of C/N = 3.00: 4.27, which was very
close to the value of g-C3N4. Based on XRD analysis results, the as-synthesized products
were pure g-C3N4.

The amounts of Co element in the as-prepared catalysts were monitored by the ICP.
The actual contents of 0.3%, 0.5%, 1%, 3%, 6% and 12% Co3O4/g-C3N4 is 0.3540, 0.5354,
1.146, 3.038, 6.253, 12.44 wt.%, respectively. The corresponding contents of Co3O4 in the
series Co3O4/g-C3N4 photocatalysts are close to theoretical values. Due to the negative zeta
potentials of g-C3N4, there was strong electrostatic interaction between Co2+ and g-C3N4
nanosheets [37]. As a result, the added Co2+ should have no considerable loss. Actually,
the actual weight ratio of Co3O4 to g-C3N4 in the prepared Co3O4/g-C3N4 catalysts was a
little higher than original CoCl2·6H2O to g-C3N4. It was assignable to the slight weight
loss after the second calcination process of g-C3N4.

3.3. Morphology Analysis

The microstructure of as-fabricated catalysts was presented in Figure 2. From Figure 2a,
Co3O4 had polyhedral structure, and the 0.5% Co3O4/g-C3N4 showed an irregular and
crinkly structure. Pt/0.5% Co3O4/g-C3N4 exhibited 2D morphology with a crinkly nanosheet
structure, which seem to be a loose and soft product with a diameter of several microme-
ters. As observed in the images, the microstructures of 0.5% Co3O4/g-C3N4 and Pt/0.5%
Co3O4/g-C3N4 were nanosheets. The composition and elements distribution of 0.5%
Co3O4/g-C3N4 and Pt/0.5% Co3O4/g-C3N4 were further investigated by EDS maps, as
displayed in Figures 3 and 4. All of the elements were uniformly dispersed in the photcata-
lysts, and no signals of other elements were observed. Furthermore, the existence of C, N,
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Co, O and Pt were highly coincided with the area of g-C3N4. It seems that Co3O4 and Pt
could be uniformly deposited on the g-C3N4.
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3.4. AFM Analysis

To further investigate the structure and height profiles of the photocatalysts, AFM was
performed. The images and corresponding thickness of samples were presented in Figure 5.
The architectures of the g-C3N4 were 2D ultra-thin nanosheets, with 1–2 nm step height. As
illustrated in Figure 5c,d, there is no obvious step height change for 0.5% Co3O4/g-C3N4
ultra-thin nanosheets. Additionally, g-C3N4 and 0.5% Co3O4/g-C3N4 nanosheets both
exhibited few-layer ultra-thin nanosheets with uniform thickness. Ultrathin nanosheets
had a short bulk diffusion length [22,38]. Compared with bulk g-C3N4, ultrathin g-C3N4
nanosheets and 0.5% Co3O4/g-C3N4 photocatalysts had a shorter electron transfer path,
which can increase the lifetime of photoexcited electrons. The unique structure of few-layer
g-C3N4 photocatalyst generated numerous charge transfer nanochannels and provided a
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short transfer path for electron transfer, which would promote the efficient separation and
migration of e− and h+ [22].
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3.5. XPS Analysis

To confirm the element compositions and chemical states in the as-synthesized 0.5%
Co3O4/g-C3N4, the XPS analysis was conducted. From XPS survey spectrum (Figure 6a),
C 1s, N 1s and O 1s peaks were evident. What is more, no signals assigned to other elements
were displayed in this survey spectrum, suggesting that the purity of the samples is very
high. As displayed in Figure 6b, the peak at 287.7 eV is due to sp2 C atoms, which can bond
to N atoms in catalysts [39]. Additionally, the peak at 293.1 eV is owing to π-excitation [40].
Evidently, N 1s has three different peaks at 398.1 eV, 400.0 eV and 404.0 eV in Figure 5c
assigning to sp2 N atoms of triazine rings, bridging nitrogen atoms in (N–(C)3) and the
charging effects of the hetero-cycles or positive charge localization [41], respectively. The
Co 2p at the peaks of 780.4 and 796.1 eV are ascribed to Co 2p3/2 and Co 2p1/2, suggesting
that Co3O4 exists in the photocatalysts [42,43]. Compared with g-C3N4, there was negative
energy shift of C 1s and N 1s in 0.5% Co3O4/g-C3N4 photocatalysts, indicating that the e−

are transferred from Co3O4 to g-C3N4 [31]. As discussed in the Z-scheme charge transfer
system, e− on CB of Co3O4 can migrate to VB of the other semiconductor. Therefore,
Z-scheme charge transfer pathway of Co3O4/g-C3N4 system agreed with the results of
negative binding energy shift in 0.5% Co3O4/g-C3N4 photocatalysts. These results take
firm evidence that the Co3O4 and g-C3N4 were co-existed in the samples and Z-scheme
charge transfer pathway was constructed in photocatalysts.
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3.6. UV–Vis DRS Analysis

The UV–Vis DRS spectrophotometer analysis was performed to measure optical ab-
sorption properties of the catalysts. 0.5% Co3O4/g-C3N4 possessed a strong absorption
and its edge located at 443 nm in Figure 6a. Additionally, although the absorption edges
and bandgap energies of g-C3N4 and 0.5% Co3O4/g-C3N4 had no apparent distinction,
optical absorption intensity of 0.5% Co3O4/g-C3N4 was apparently increased, which made
it easier to harvest light. The spectra (Figure 7a) of the catalysts suggested that the samples
displayed a strong absorption all between 200–440 nm, which covered ultraviolet and
visible regions. These photocatalysts can respond to the visible light and their responsive-
ness was enhanced, which has probably a more important advantage to photocatalytic
water splitting. Bandgaps of Co3O4, g-C3N4 and 0.5% Co3O4/g-C3N4 photocatalysts were
achieved by the Tauc plots, and results are presented in Figure 7b. The bandgap (Eg) of
catalysts can be received by the Tauc Equation [44]. Because the Co3O4 [45] and g-C3N4 [46]
are typical direct semiconductors, n in the Tauc equation should be all 1/2. The Eg of
as-prepared g-C3N4 and Co3O4 are 2.8 eV and 2.0 eV, respectively. The ECB values of Co3O4
and g-C3N4 are obtained via this equation.

ECB= χ − Ee − 0.5Eg (1)



Nanomaterials 2021, 11, 3341 9 of 14

χ for g-C3N4 and Co3O4 are 4.64 [47] and 5.90 [48], respectively. ECB of g-C3N4 and Co3O4
are −1.26 eV and 0.4 eV, respectively. So EVB values of g-C3N4 and Co3O4 are 1.54 eV and
2.4 eV, respectively. Because of the appropriate band structure of two semiconductors, the
e− would like to transfer from CB of Co3O4 to VB of g-C3N4. Finally, e− and h+ accumulate
at CB of g-C3N4 and VB of Co3O4, respectively. Charge carriers can be effectively separated.
These data of g-C3N4 and Co3O4 can be known based on the formulas and experiments.
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3.7. PL

As displayed in Figure 8, the recombination ability of e− and h+ was speculated from
the photoluminescence intensity of the samples. All the photocatalysts were evaluated
at the excitation wavelength, which was 320 nm. Generally, the higher intensity of the
PL emission spectra means a worse separation ability of carriers [49]. The spectrum of
0.5% Co3O4/g-C3N4 catalyst showed lower emission intensity than the intensity of g-
C3N4, leading to a lower recombining frequency of e− and h+ in 0.5% Co3O4/g-C3N4.
The lower the peak of photoluminescence spectra presented, the more excellent catalytic
performance can be anticipated. It seems that 0.5% Co3O4/g-C3N4 catalyst may have a
better photocatalytic performance than pure g-C3N4.
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3.8. Photoelectrochemical Analysis

The photocurrent measurement was produced under the irradiation of 429 nm wave-
length light, as illustrated in Figure 9. The photocurrent immediately increased to a value
and remained when the light irradiated on the catalysts. The photocurrent decreased as
soon as the light turned off. It manifested that 0.5% Co3O4/g-C3N4 has a photocurrent
response and the photocurrent value is around 10 nA at 0.1 V. However, no photocurrent
existed in g-C3N4. It indicated that 0.5% Co3O4/g-C3N4 is visible to light-responsive
photocatalysts. After Co3O4 was introduced, the g-C3N4 catalyst can respond to visible
light, and a photocurrent was exhibited. That should be attributed to the formation of
Z-scheme charge transfer pathway, which resulted in improved separation and migration
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of the photo-induced charges. As a result, a photocurrent with higher intensity can be
obtained.
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3.9. Photocatalytic Activity and Cycling Tests

As illustrated in Figure 10a, g-C3N4 exhibits no activity. However, the series Co3O4/g-
C3N4 catalysts all present good photocatalytic performance, and 0.5% Co3O4/g-C3N4
has the fine H2 evolution rate of 8.774 µmol·g−1·h−1. Obviously, the modification of
Co3O4 can greatly promote the water splitting reaction rate of g-C3N4. The results of
photocatalytic activity tests can be proved by photoelectrochemical analysis. As indicated
in the photoelectrochemical analysis, the g-C3N4 can respond to 429 nm only after Co3O4
was modified. Therefore, the quantum yield of g-C3N4 is low. Catalytic activity of g-C3N4
is also low. The photoluminescence spectra analysis showed that e− and h+ in the g-C3N4
have higher recombination rates. It suggested that g-C3N4 has a lower photocatalytic
hydrogen production.
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According to the band structure of Co3O4 and g-C3N4 as we noted above, the reason-
able photocatalytic charge transfer pathway was preliminarily put forward to explain the
reason for catalytic improved-performance of 0.5% Co3O4/g-C3N4 in Figure 11. The elec-
trons of Co3O4 and g-C3N4 are photo-generated from VB to CB in response to irradiation.
After calcination, interaction between Co3O4 and g-C3N4 was enhanced. The e− on CB of
Co3O4 would quickly migrate to VB of g-C3N4 and combine with h+, which replaced inner
self-combination. Some holes were reacted with TEOA, which worked as an oxidation
sacrificial agent. Therefore, the electric field between Co3O4 and g-C3N4 was formed,
with electrons and holes accelerated at different parts. The electric field can promote the
directional transfer of charges and introduction of Co3O4 can boost the electric field of
Co3O4/g-C3N4. Hence, the existence of Co3O4 effectively promoted the interfacial charges
to separate and transfer and the hydrogen generation, leading to superior photocatalytic
performance. What is more, the XPS analysis indicated that e− are transferred from Co3O4
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to g-C3N4 nanosheets. It suggested that the Z-scheme charge transfer pathway was in
agreement with experiment results.
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The probable reactions process of photocatalytic hydrogen generation is as follows:

Co3O4/g-C3N4+hv → Co3O4(e
−+h+)/g-C3N4(e

−+h+
)

(2)

h+
VB(Co 3O4) + TEOA → oxidation product of sacrificial reagent (3)

e−CB(g-C 3N4) + 2H2O → H2+2OH− (4)

Thence, the proposed Z-scheme charge transfer pathway of photocatalysts showed
good separation and migration of e− and h+. The obvious enhancement of the hydrogen
generation ability of the 0.5% Co3O4/g-C3N4 ultra-thin nanosheets may attribute to the
significant and ideal Z-scheme photocatalytic charge transfer pathway.

After Pt was added, further efforts were made to improve the performance of Co3O4/g-
C3N4. As presented in Figure 10a, Pt/0.5% Co3O4/g-C3N4 exhibited a predominant rate
and the average rate was up to 1620 µmol·g−1·h−1. This is 2.1 times the photocatalytic
performance of Pt/g-C3N4.

To explore the influence of Co3O4 contents on the performance of the Pt/Co3O4/g-
C3N4, results of Pt/Co3O4/g-C3N4 with different Co3O4 contents were shown in Figure 10b.
From this figure, it can be observed that all photocatalysts manifested improved hydrogen
generation activity compared with Pt/g-C3N4, except Pt/12% Co3O4/g-C3N4. Owning
to the relatively low content of Co3O4 (0.5 % Co3O4), Pt was mainly deposited on g-C3N4
nanosheets. When the catalyst was illuminated, the electrons migrated from Co3O4 to
g-C3N4, and were finally transferred to Pt. The H+ in the solution obtained the electrons
from the Pt particles to form H2. When the Co3O4 content was relatively low (0.3%),
Z-scheme charge transfer pathway is still the main pathway in this photocatalytic system.
However, the amount of electrons and holes in Co3O4 was relatively low than that in the
0.5% one. Therefore relatively large amounts of holes in g-C3N4 were reacted with TEOA
instead of combining with the electrons in Co3O4. As a result, e− and h+ in the Pt/0.3%
Co3O4/g-C3N4 have higher recombination rates than in Pt/0.5% Co3O4/g-C3N4, and the
Pt/0.3% Co3O4/g-C3N4 exhibited lower photoactivity. When Co3O4 contents increased,
Co3O4 will accumulate. More and more Pt/Co3O4 interfaces formed, and the electrons
migrated from Co3O4 to Pt, instead of combining with the holes in g-C3N4. Consequently,
the Z-scheme charge transfer pathway was blocked, and the activity of Co3O4/g-C3N4
decreased with the increasing Co3O4 contents.

Cycling stability tests of the optimal Pt/0.5% Co3O4/g-C3N4 were evaluated by a
recycle experiment, which was presented in Figure 12. It could suggest that after four suc-
cessive cycles, no noticeable diminution was observed within 20 h with TEOA as sacrificing
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agents, suggesting that the Pt/0.5% Co3O4/g-C3N4 photocatalyst had an excellent stability
and it is reusable for practical applications.
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