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We modeled the impact of bed-net use and insecticide treated nets (ITNs), temperature, and treatment on malaria transmission
dynamics using ordinary differential equations. To achieve this we formulated a simple model of mosquito biting rate that depends
on temperature and usage of insecticides treated bed nets. We conducted global uncertainty and sensitivity analysis using Latin
Hypercube Sampling (LHC) and Partial Rank Correlation Coefficient (PRCC) in order to find the most effective parameters that
affect malaria transmission dynamics. We established the existence of the region where the model is epidemiologically feasible.
We conducted the stability analysis of the disease-free equilibrium by the threshold parameter. We found the condition for the
existence of the endemic equilibrium and provided necessary condition for its stability. Our results show that the peak ofmosquitoes
biting rate occurs at a range of temperature values not on a single value as previously reported in literature. The results also show
that the combination of treatment and ITNs usage is the most effective intervention strategy towards control and eradication of
malaria transmissions. Sensitivity analysis results indicate that the biting rate and themosquitoes death rates are themost important
parameters in the dynamics of malaria transmission.

1. Introduction

Malaria is one of the most devastating infectious diseases in
the world and is caused by Plasmodium parasite, which is
transmitted via the bites of infected mosquitoes. Among the
high risk groups are pregnant women, nonimmune travelers,
and children [1]. In pregnant women, malaria has adverse
effect on birth outcome which includes low birth weight,
abortion, and still born [1]. Apart from health related prob-
lems, it also imposes huge socioeconomic burden in malaria-
endemic nations. As discussed in Forouzannia andGumel [2]
the annual economic burden of malaria in Africa alone was
estimated to be around US $8 billion. These necessitated the
formation of several intervention strategies inmany countries
to mitigate the impact of malaria disease. This includes
the use of insecticide treated bed nets (ITNs), intermittent
preventive treatment (IPT) especially, for pregnant women
during antenatal period, reducing mosquitoes population
through the destruction of breeding sites or killing of the

larva stage at breading sites that cannot be destroyed [3–5].
Other interventions strategies are the use of indoor residual
spraying (IRS) in killing infected mosquitoes resting indoors
after blood meal and the use of sterile insect technique
[6]. Despite broad efforts for eradication, malaria remains
a significant problem resulting in the death of millions of
people [2, 7–9]. Most malaria cases and deaths occur in sub-
Saharan Africa with Nigeria and Democratic Republic of
Congo accounting for about 40% of malaria mortality world-
wide [9]. There are a number of characteristics of malaria
disease that complicates control efforts. Typical among them
is clinical immunity, which is a situation where protection
against the clinical symptoms of the disease is developed
despite the presence of the parasites [7, 10, 11]. Others include
seasonality [12, 13] and treatment failure thatmight occur due
to wrong dosage of medication; see [2] and the references
therein. In the context of malaria transmission, seasonality
encapsulates complex phenomenon whose definition varies
in many studies. Temperature variations have been reported
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by many to play significant role in the dynamics of malaria
transmissions. For example, the report of Roll Back Malaria
2015 indicates that a rise in temperature by 2-3∘C will
increase the number of people at climatic risk of malaria
by 3–5%. Furthermore, the abundance of mosquitoes and
the transmission risk have been reported to be influenced
by temperature [13–16]. At high temperature, studies have
indicated that people are unlikely to use ITNs much [17].

Mathematical models of malaria transmission have been
developed by several researchers to gain insight into the
dynamics of the disease transmission so as to contribute
towards its eradication. Some of these models can be found
in [18–23].These models are in varying degree of complexity.
For example, themodel of [2] is an age-structuredmodel with
several compartments. The model of [7] is made up of four
compartments comprising of only the human population. In
the model of [5, 17] the authors introduced explicit equation
for the proportion of ITNs use as a function of mosquito
biting rates.

Some of the problems that complicate malaria control
include (1) the presence of individuals who are clinically
immune to the disease but can transmit it through bite from
susceptible mosquitoes and (2) hot weather which can lead to
reduction in the use of ITN. For these reasons, it is important
to study the qualitative impact of treatment, immunity, and
seasonality on the dynamics of malaria transmission. In this
work, we present a vector-hostmodel ofmalaria transmission
dynamics of immune and nonimmune human populations
that accounts for the impact of ITN usage and seasonality on
the disease. We propose a model of mosquito biting rate as a
nonlinear function of temperature and ITN usage to mimic
seasonality. This will help in devising optimal intervention
strategies that will offer more realistic predictions to control
malaria spread. To the best of our knowledge, this is the first
vector-host mathematical model for malaria transmission,
which explores the impact of daily temperature variations
and ITNs usage on control of malaria transmissions. The
current study extends the work of [7] by designing a vector-
host model for malaria transmission dynamics. The study
also extends the work of [17] by modeling the mosquito
biting rate as a function of temperature to mimic seasonality.
The paper is organized as follows. We formulated the model
in Section 2 and analyzed it qualitatively in Section 3, in
Section 4 we conducted global uncertainty and sensitivity
analysis, Section 5 is the discussion part, and in Section 6 we
present our conclusions.

2. Model Formulation

In this section, we modify an existing mathematical model
for malaria transmission dynamics developed by [7]. The
process of the modification is presented below. Following [7]
we defined naive individuals as those who have never been
infected with malaria, or those who have been infected but
have not developed clinical immunity, or those who have
lost all immunity. Similarly, clinically immune individuals are
those with immunity to clinical symptoms. The total human
population denoted by𝑁ℎ is divided into mutually exclusive

subpopulations of susceptible naive 𝑆𝑛, susceptible clinically
immune 𝑆𝑐, infected naive 𝐼𝑛, and infected clinically immune𝐼𝑐, so that𝑁ℎ = 𝑆𝑛 + 𝑆𝑐 + 𝐼𝑛 + 𝐼𝑐.

The total mosquitoes population denoted by 𝑁𝑚 is
divided into compartments of susceptible and infected
mosquitoes, so that𝑁𝑚 = 𝑆V + 𝐼V.

All recruitment is assumed to be into the susceptible naive
human population generated via birth and/or immigration at
a rate 𝜆ℎ𝑁ℎ.The population of naive susceptible individuals
(𝑆𝑛) is increased by naive infected individuals that recovered
without immunity at a rate 𝛾𝑁𝑁, treated naive individuals
that recovered without immunity at a rate 𝜖𝑛𝑛, and clinically
immune individuals that lost immunity at a rate 𝛼𝑐. The
population of naive susceptible individuals (𝑆𝑛) is decreased
by natural death rate 𝜙ℎ = (𝜇ℎ2𝑁ℎ + 𝜇ℎ) and force of
infection (Λ ℎ), following effective contacts with infected
mosquito. Here 𝜇ℎ2 and 𝜇ℎ represent the density dependent
and density independent part of human death rate and
emigration, respectively. We model the force of infection
from mosquitoes to human as Λ ℎ = 𝑎(𝛽(𝑇))𝑏𝐼V/𝑁ℎ.

Here 𝑏 is the probability of infection of susceptible human
per bite by an infected mosquito and 𝑎 ≡ 𝑎(𝛽(𝑇)) is the
biting rate of mosquitoes on susceptible human; 𝛽 ≡ 𝛽(𝑇)
represents the proportion of ITN usage and depends on
environmental temperature𝑇. See (7) for the functional form
of 𝛽.We assumed that temperature is a parameter that is time
independent to make the analysis easier. Thus,

𝑑𝑆𝑛𝑑𝑡 = 𝜆ℎ𝑁ℎ − (𝜇ℎ2𝑁ℎ + 𝜇ℎ) 𝑆𝑛 + (𝜖𝑛𝑛 + 𝛾𝑁𝑁) 𝐼𝑛+ 𝛼𝑐𝑆𝑐 − Λ ℎ𝑆𝑛. (1)

The clinically susceptible population is generated by the
treated naive individuals that become clinically immune,
infected naive individuals that recovered with clinical immu-
nity at a rate 𝛾𝑁𝐶, infected clinically immune individuals
that recovered with clinical immunity at a rate 𝛾𝐶, and
treated clinically immune infected individuals that recover
at a rate 𝑇𝑐. It is decreased by susceptible clinically immune
individuals that lose immunity at rate 𝛼𝑐, natural death at
rate 𝜙ℎ, and the force of infection that pushed out susceptible
clinically immune human into infected clinically immune
population as a result of contact with infected mosquitoes
at rate Λ ℎ. We assume that clinically infected individuals
recover into the clinically susceptible compartment only.
Thus, 𝑑𝑆𝑐𝑑𝑡 = (𝑇𝑛 − 𝜖𝑛𝑛 + 𝛾𝑁𝐶) 𝐼𝑛 − Λ ℎ𝑆𝑐 + (𝑇𝑐 + 𝛾𝐶) 𝐼𝑐− (𝛼𝑐 + 𝜇ℎ2𝑁ℎ + 𝜇ℎ) 𝑆𝑐. (2)

The population of infected naive humans is generated by the
population of the infectious susceptible naive human that
become infected. It is decreased by the treated infected naive
individuals at a rate𝑇𝑛, infected naive individuals that recover
without immunity at a rate 𝛾𝑁𝑁, infected naive individuals
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Figure 1: (a) Effects of location parameter on the biting rate for 𝑇0 = 27∘C. (b) Effects of scale parameter on the biting rate for ℎ = 0.1∘C.
that recover with immunity at a rate 𝛾𝑁𝐶, the natural death𝜙ℎ, and disease induced death rate 𝛿𝑁.Thus,𝑑𝐼𝑛𝑑𝑡 = Λ ℎ𝑆𝑛 − (𝑇𝑛 + 𝛾𝑁𝑁 + 𝛾𝑁𝐶) 𝐼𝑛 − (𝜇ℎ2𝑁ℎ + 𝜇ℎ) 𝐼𝑛− 𝛿𝑁𝐼𝑛. (3)

The population of infected clinically immune human is
generated by the population of susceptible clinically immune
humans that become infected. It is decreased by the treated
infected clinically immune individuals at a rate𝑇𝑐, population
of clinically immune individuals that recover with immunity
at a rate 𝛾𝐶, the natural death 𝜙ℎ, and disease induced death
at a rate 𝛿𝐶.Thus,𝑑𝐼𝑐𝑑𝑡 = Λ ℎ𝑆𝑐 − 𝛾𝐶𝐼𝑐 − (𝜇ℎ2𝑁ℎ + 𝜇ℎ) 𝐼𝑐 − 𝑇𝑐𝐼𝑐 − 𝛿𝐶𝐼𝑐. (4)

The population of susceptible mosquitoes is generated by
birth at a rate 𝜆V. It is reduced by natural death 𝜙V = (𝜇V2𝑁𝑚+𝜇V), contact with ITNs at the rate 𝛽𝜇V3, and infection when in
contact with infected human at rate Λ V = (𝐼𝑐𝜏𝑐 + 𝜏𝑛𝐼𝑛)/𝑁ℎ.
The parameters 𝜇V and 𝜇V2 represent the density independent
and density dependent parts of the mosquitoes death rate,
respectively. Here 𝜏𝑛 = 𝑎𝑐1, 𝜏𝑐 = 𝑎𝑐2, and 𝑐1 and 𝑐2 are the
probabilities that susceptible mosquitoes become infectious
after biting an infected naive or clinically immune human,
respectively. Thus,𝑑𝑆V𝑑𝑡 = 𝜆V𝑁𝑚 − (𝐼𝑐𝜏𝑐 + 𝜏𝑛𝐼𝑛) 𝑆V𝑁ℎ− (𝜇V2𝑁𝑚 + 𝜇V + 𝛽𝜇V3) 𝑆V. (5)

The population of infected mosquitoes is increased by
infected susceptible mosquitoes at rate Λ V. It is decreased by

the natural death 𝜙V and death when they come into contact
with ITN 𝛽𝜇V3.Thus,𝑑𝐼V𝑑𝑡 = (𝐼𝑐𝜏𝑐 + 𝜏𝑛𝐼𝑛) 𝑆V𝑁ℎ − (𝜇V2𝑁𝑚 + 𝜇V + 𝛽𝜇V3) 𝐼V. (6)

In the report of [17], the authors model the mosquitoes biting
rate as a linear function of ITN usage while [24] considers a
more general form.None of these authors consider the impact
of temperature on bed-net use despite its significance. In this
work we model the biting rate as𝑎 = 𝛽max − 𝛽 (𝛽max − 𝛽min) , (7)

where 𝛽 = 𝑒−ℎ(𝑇/(𝑇−𝑇0))2 represents the proportion of
ITN usage and the parameters 𝑇0 and ℎ are location and
scale parameters measured in ∘C, respectively. The choice of
temperature as a parameter in the biting rate is to mimic
seasonality. The justification of this novel approach is due
to many reports in literature on the relative importance of
temperature in malaria transmission dynamics as outlined
in the introduction. In Figure 1, we study impact of shape
and scale parameters on the biting rate. From Figure 1, we
observe that the optimum temperature for the biting rate
is not a single temperature value as discussed in [25] but a
range of values. In [15], the authors review some calibrated
models of temperature variations in terms of mosquitoes
biting rates. One of the findings is that biting rates are
optimal at certain temperature values. Typical values reported
are 24.4∘C, 25.0∘C, 26.3∘C, and 27.5∘C. In this work we are
reporting a range of values that encapsulates individual values
from several reports. From Figure 1(a), it can be seen that
before the maximum biting rate is attained, high values of
location parameter will predict relatively lower biting rates.
This finding is in contrast to the result of increasing the scale
parameter as depicted on Figure 1(b).
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Table 1: Description of state variable of the model.

Variable Description𝑆𝑛 Population of susceptible naive human𝐼𝑛 Population of infected naive human𝑆𝑐 Population of susceptible clinically immune human𝐼𝑐 Population of infected clinically immune human𝑁ℎ Total human population𝑆V Population of susceptible mosquitoes𝐼V Population of infected mosquitoes𝑁𝑚 Total population of mosquitoes

It follows, based on the above derivations and assump-
tions, that the model for the transmission dynamics of
malaria is given by the following deterministic system of
nonlinear differential equations. Flow diagram of the model
is depicted in Figure 2, and the state variables and parameters
of the model are described in Tables 1 and 2, respectively:𝑑𝑆𝑛𝑑𝑡 = 𝜆ℎ𝑁ℎ − (𝜇ℎ2𝑁ℎ + 𝜇ℎ) 𝑆𝑛 + (𝜖𝑛𝑛 + 𝛾𝑁𝑁) 𝐼𝑛

+ 𝛼𝑐𝑆𝑐 − 𝑎𝑏𝐼V𝑆𝑛𝑁ℎ ,𝑑𝐼𝑛𝑑𝑡 = 𝑎𝑏𝐼V𝑆𝑛𝑁ℎ − (𝑇𝑛 + 𝛾𝑁𝑁 + 𝛾𝑁𝐶) 𝐼𝑛− (𝜇ℎ2𝑁ℎ + 𝜇ℎ) 𝐼𝑛 − 𝛿𝑁𝐼𝑛,𝑑𝑆𝑐𝑑𝑡 = (𝑇𝑛 − 𝜖𝑛𝑛 + 𝛾𝑁𝐶) 𝐼𝑛 − 𝑎𝑏𝐼V𝑆𝑐𝑁ℎ + (𝑇𝑐 + 𝛾𝐶) 𝐼𝑐− (𝛼𝑐 + 𝜇ℎ2𝑁ℎ + 𝜇ℎ) 𝑆𝑐,𝑑𝐼𝑐𝑑𝑡 = 𝑎𝑏𝐼V𝑆𝑐𝑁ℎ − 𝛾𝐶𝐼𝑐 − (𝜇ℎ2𝑁ℎ + 𝜇ℎ) 𝐼𝑐 − 𝑇𝑐𝐼𝑐− 𝛿𝐶𝐼𝑐,𝑑𝑆V𝑑𝑡 = 𝜆V𝑁𝑚 − (𝐼𝑐𝜏𝑐 + 𝜏𝑛𝐼𝑛) 𝑆V𝑁ℎ− (𝜇V2𝑁𝑚 + 𝜇V + 𝛽𝜇V1) 𝑆V,𝑑𝐼V𝑑𝑡 = (𝐼𝑐𝜏𝑐 + 𝜏𝑛𝐼𝑛) 𝑆V𝑁ℎ − (𝜇V2𝑁𝑚 + 𝜇V + 𝛽𝜇V1) 𝐼V,𝑑𝑁ℎ𝑑𝑡 = 𝜆ℎ𝑁ℎ − (𝜇ℎ2𝑁ℎ + 𝜇ℎ)𝑁ℎ − 𝛿𝑁𝐼𝑛 − 𝛿𝐶𝐼𝑐,𝑑𝑁𝑚𝑑𝑡 = 𝜆V𝑁𝑚 − (𝜇V2𝑁𝑚 + 𝜇V + 𝛽𝜇V1)𝑁𝑚.

(8)

3. Model Analysis

3.1. Basic Properties of the Model

Lemma 1. Let𝑁∗ℎ , 𝑁∗𝑚 be the equilibrium solutions of the total
human and mosquito populations, respectively. The closed set

Table 2: Parameters and their descriptions.

Parameters Description and dimension𝜆ℎ Recruitment rate into human population(humans × day−1)𝜆V
Recruitment rate into mosquitoes population

(mosquitoes × day−1)𝑇𝑛 Treatment rate of infected naive humans (day−1)𝑇𝑐 Treatment rate of clinically infected immune humans
(day−1)𝑐1 Probability of transmission of infection from

infected naive human to susceptible mosquito𝑐2 Probability of transmission of infection from
infected immune human to susceptible mosquito𝜌 Number of mosquitoes per human host𝑏 Probability of transmission of infection from an

infected mosquito to susceptible human𝑇 Temperature (∘C)𝑇0 Location parameter (∘C)𝛽max Maximum biting rate per mosquito (day−1)𝛽min Minimum biting rate per mosquito (day−1)ℎ Scale parameter (∘C)𝜖𝑛𝑛 Rate at which treated naive individuals recovered
without immunity (day−1)𝛾𝑁𝑁 Rate at which naive individuals recovered without

immunity (day−1)𝛾𝑁𝐶 Rate at which naive individuals recovered with
clinical immunity (day−1)𝛼𝑐 Rate at which clinically susceptible individuals lose

immunity (day−1)𝛿𝑁 Disease induced death rate for a naive individual
(day−1)𝛿𝐶 Disease induced death rate for a clinically immune

individual (day−1)𝛾𝐶 Recovery rate for clinically immune individuals
(day−1)𝜇ℎ2 Density dependent part of the death and emigration

rate for humans (human day−1)𝜇ℎ Density independent part of the death rate for
humans (human day−1)𝜇V Density independent part of the death rate for

mosquitoes (mosquitoes day−1)𝜇V2 Density dependent part of the death rate for
mosquitoes (day−1)𝜇V3 ITN induced death rate for mosquitoes (day−1)

𝐷 = {(𝑆𝑛, 𝐼𝑛, 𝑆𝑐, 𝐼𝑐, 𝑆V, 𝐼V) ∈ 𝑅6+ : 𝑁ℎ ≤ 𝑁∗ℎ , 𝑁𝑚 ≤ 𝑁∗𝑚} is
positively invariant and attracting.

Proof. Adding the first four equations and the last two
equations of model (8) we obtained𝑑𝑁ℎ𝑑𝑡 = 𝜆ℎ𝑁ℎ − (𝜇ℎ2𝑁ℎ + 𝜇ℎ)𝑁ℎ − 𝛿𝑁𝐼𝑛 − 𝛿𝐶𝐼𝑐,𝑑𝑁𝑚𝑑𝑡 = 𝜆V𝑁𝑚 − (𝜇V2𝑁𝑚 + 𝜇V + 𝛽𝜇V1)𝑁𝑚. (9)
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Figure 2: Susceptible humans, 𝑆𝑛, 𝑆𝑐. can be infected by infectious mosquitoes.They then pass to the respective infectious compartments, 𝐼𝑛,𝐼𝑐, before reentering the susceptible classes again or die due to the disease. The susceptible mosquitoes, 𝑆V, can become infected when they
bite infectious humans. The infected mosquitoes then move to the infectious class 𝐼V.
The mosquito population is modeled by logistic growth with
carrying capacity 𝑘V = (𝜆V − 𝜇V − 𝜇V1)/𝜇V2. It is easy to see
that 𝑑𝑁ℎ/𝑑𝑡 ≤ (𝜆ℎ − 𝜇ℎ)𝑁ℎ(1 − 𝑁ℎ/𝑘ℎ) and 𝑑𝑁𝑚/𝑑𝑡 ≤ (𝜆V −𝜇V)𝑁𝑚(1 − 𝑁𝑚/𝑘V). This shows that 𝑑𝑁ℎ/𝑑𝑡 ≤ 0 if 1 ≥ 𝑁ℎ/𝑘ℎ
and it approaches 𝑘ℎ. Similarly, 𝑑𝑁𝑚/𝑑𝑡 ≤ 0 if 1 ≥ 𝑁𝑚/𝑘V and
it approaches 𝑘V.Hence, using comparison theory [2]

𝑁ℎ (𝑡) ≤ 𝑘ℎ𝑁ℎ (0)𝑁ℎ (0) (1 − 𝑒−(𝜆ℎ−𝜇ℎ)𝑡) + 𝑘ℎ𝑒−(𝜆ℎ−𝜇ℎ)𝑡 ,𝑁𝑚 (𝑡) ≤ 𝑘V𝑁𝑚 (0)𝑁𝑚 (0) (1 − 𝑒−(𝜆V−𝜇V)𝑡) + 𝑘V𝑒−(𝜆V−𝜇V)𝑡 . (10)

If 𝑁ℎ(0) ≤ 𝑘ℎ, then 𝑁ℎ(𝑡) ≤ 𝑘ℎ and if 𝑁𝑚(0) ≤ 𝑘V, then𝑁𝑚(𝑡) ≤ 𝑘V.Thus, the region D is positively invariant for the
model. Moreover, if𝑁ℎ(0) ≥ 𝑘ℎ,𝑁𝑚(0) ≥ 𝑘V, then either the
solution enters the region D in finite time or 𝑁ℎ(𝑡) → 𝑘ℎ,𝑁𝑚(𝑡) → 𝑘V, as 𝑡 → ∞.Thus the region attracts all solutions
in 𝑅6+.Now that we have shown that D is positively invariant,
the requirement for existence and uniqueness of solutions
holds for the system [2]. The dynamics of the system in the
region D will henceforth be investigated.

3.2. Scaling. To analyze the malaria model (8), we think it
is easier to work with fractional population instead of actual
populations by scaling the population of each class by the total
species population. We let 𝑆𝑛 = 𝑢𝑁ℎ, 𝐼𝑛 = V𝑁ℎ, 𝑆𝑐 = 𝑤𝑁ℎ,𝐼𝑐 = 𝑥𝑁ℎ, 𝐼V = 𝑧𝑁𝑚, 𝑆V = 𝑦𝑁𝑚. We arbitrarily scale the time
variables by 𝜆V by introducing 𝜏 = 𝑡𝜆V so that𝑑𝑢𝑑𝜏 = 1𝜆V

𝑁ℎ (𝑑𝑆𝑛/𝑑𝑡) − 𝑆𝑛 (𝑑𝑁ℎ/𝑑𝑡)𝑁2ℎ ,
𝑑V𝑑𝜏 = 1𝜆V

𝑁ℎ (𝑑𝐼𝑛/𝑑𝑡) − 𝐼𝑛 (𝑑𝑁ℎ/𝑑𝑡)𝑁2ℎ
(11)

and so on for the rest of the variables. In the absence of the
disease, the human population follows logistic growth with

carrying capacity 𝑘ℎ = (𝜆ℎ−𝜇ℎ)/𝜇ℎ2. Following [22] we scaled
the human and vector populations in the first 6 equations of
model (8) using their respective carrying capacities as 𝑁ℎ =𝑘ℎ𝑁∗ℎ ,𝑁𝑚 = 𝑘V𝑁∗𝑚. So we have a new 6-dimensional system
of equations with two additional dimensions for the two total
population variables𝑁ℎ and𝑁𝑚 as𝑑𝑢𝑑𝜏 = (−𝑎1𝑏𝑘V𝑁∗𝑚𝑘ℎ𝑁∗ℎ 𝑧 − 𝜆)𝑢 + 𝛼𝑤 + V𝛾𝑛𝑛 + 𝜆,

𝑑V𝑑𝜏 = − (𝑇𝑗 + 𝛾1𝑛𝑐 + 𝛾𝑛𝑛 + 𝜆 + 𝛿𝑛) V + 𝑎1𝑏𝑘V𝑁∗𝑚𝑘ℎ𝑁∗ℎ 𝑢𝑧,
𝑑𝑤𝑑𝜏 = −𝑤(𝑎1𝑏𝑘V𝑁∗𝑚𝑘ℎ𝑁∗ℎ 𝑧 + 𝛼 + 𝜆) + V (𝑇𝑗 − 𝜖𝑛 + 𝛾1𝑛𝑐)+ 𝑥 (𝑇𝑖 + 𝛾𝑐) ,𝑑𝑥𝑑𝜏 = 𝑎1𝑏𝑘V𝑁∗𝑚𝑘ℎ𝑁∗ℎ 𝑤𝑧 − 𝑥 (𝜆 + 𝑇𝑖 + 𝛾𝑐 + 𝛿𝑐) ,𝑑𝑦𝑑𝜏 = −V𝑦𝑡𝑛 − 𝑥𝑦𝑡𝑐 − 𝑦 + 1,𝑑𝑧𝑑𝜏 = V𝑦𝑡𝑛 + 𝑥𝑦𝑡𝑐 − 𝑧,𝑑𝑁ℎ𝑑𝜏 = (1 − 𝑁ℎ) (1 − 𝜔1)𝑁ℎ − 𝑁ℎ (V𝛿𝑛 + 𝑥𝛿𝑐) ,𝑑𝑁𝑚𝑑𝜏 = (1 − 𝑁𝑚) (1 − 𝜔2)𝑁𝑚 − 𝑁𝑚𝜔3,

(12)

where 𝜆 = 𝜆ℎ/𝜆V, 𝑎1 = 𝑎/𝜆V, 𝑏1 = 𝑏/𝜆V, 𝛼 = 𝛼𝑐/𝜆V, 𝛾𝑛𝑛 =𝛾𝑁𝑁/𝜆V, 𝑇𝑖 = 𝑇𝑐/𝜆V, 𝑇𝑗 = 𝑇𝑛/𝜆V, 𝜖𝑛 = 𝜖𝑛𝑛/𝜆V, 𝛿𝑐 = 𝛿𝐶/𝜆V,𝛿𝑛 = 𝛿𝑁/𝜆V, 𝛾1𝑛𝑐 = 𝛾𝑁𝐶/𝜆V, 𝛾𝑐 = 𝛾𝐶/𝜆V, 𝑡𝑛 = 𝜏𝑛/𝜆V, 𝑡𝑐 = 𝜏𝑐/𝜆V,𝜔1 = 𝜇ℎ/𝜆V, 𝜔2 = 𝜇V/𝜆V, and 𝜔3 = 𝜇V3/𝜆V.
The analytic solution of model (12) will be more tractable

if the number of equations is reduced. To this end, we let
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𝑢 = 1 − V − 𝑤 − 𝑥, 𝑦 = 1 − 𝑧, and by substituting these in
(12), two equations are eliminated leaving us with the reduced
model: 𝑑V𝑑𝜏 = (1 − V − 𝑤 − 𝑥) 𝜉𝑧 − 𝐴V,𝑑𝑤𝑑𝜏 = − (𝜉𝑧 + 𝐹)𝑤 + 𝑚𝑥 + V𝛾𝑛𝑐,𝑑𝑥𝑑𝜏 = −𝐵𝑥 + 𝜉𝑤𝑧,𝑑𝑧𝑑𝜏 = − (V𝑡𝑛 + 𝑥𝑡𝑐 + 1) 𝑧 + V𝑡𝑛 + 𝑥𝑡𝑐,

(13)

where 𝜉 = 𝑎1𝑏𝑘V𝜌/𝑘ℎ, 𝜌 = 𝑁∗𝑚/𝑁∗ℎ ,𝐴 = (𝑇𝑗+𝛾1𝑛𝑐+𝛾𝑛𝑛+𝜆+𝛿𝑛),𝑚 = (𝑇𝑖+𝛾𝑐),𝐵 = (𝑇𝑖+𝛾𝑐+𝜆+𝛿𝑐),𝐹 = 𝛼+𝜆, 𝛾𝑛𝑐 = 𝑇𝑗−𝜖𝑛+𝛾1𝑛𝑐.
3.3. ReproductionNumber andDisease-Free Equilibrium. The
disease-free equilibrium point (DFE) is the solution of the
reduced model (13) when the disease classes are identically
zero. By setting the right hand sides of (13) and the disease
classes to zero, then solving the resulting equations simulta-
neously, we obtained the DFE of the reduced model (13) as𝐸dfe = (𝑤, V, 𝑥, 𝑧) = (0, 0, 0, 0). The nonnegative matrix for
the new infection (ϝ) and the matrix for the transition terms(𝑉) are given by

ϝ = (0 0 𝜉0 0 0𝑡𝑛 𝑡𝑐 0) ,
𝑉 = (𝐴 0 00 𝐵 00 0 1) ,

ϝV−1 = ( 0 0 𝜉0 0 0𝑡𝑛𝐴 𝑡𝑐𝐵 0) .
(14)

The spectral radius is

𝜌 (ϝ𝑉−1) = √ 𝜉𝑡𝑛𝐴 . (15)

We define the reproduction number as

𝑅𝜏 = 𝜉𝑡𝑛𝐴 . (16)

Lemma 2. The equilibrium point 𝐸dfe of the reduced model
(13) is locally asymptotically stable (LAS) if𝑅𝜏 < 1 and unstable
if 𝑅𝜏 > 1.

Proof. The Jacobian matrix evaluated at 𝐸dfe is

𝐽 (𝐸dfe) = [[[[[[
−𝐹 𝛾𝑁𝐶 𝑚 00 −𝐴 0 𝜉0 0 −𝐵 00 𝑡𝑛 𝑡𝑐 −1

]]]]]]
. (17)

The characteristic equation is(𝐹 + 𝜂) (𝐵 + 𝜂) (𝜂 (𝐴 + 1) + 𝜂2 − 𝑡𝑛𝜉 + 𝐴) = 0. (18)

The eigenvalues are𝜂1 = −𝐹,𝜂2 = −𝐵,
𝜂3 = − (𝐴 + 1) − √(𝐴 + 1)2 − 4𝐴 (1 − 𝑅𝜏)2 ,
𝜂4 = − (𝐴 + 1) + √(𝐴 + 1)2 − 4𝐴 (1 − 𝑅𝜏)2 .

(19)

Clearly, 𝜂𝑖, 𝑖 = 1, 2, 3, are negatives and that 𝜂4 is negative
provided 𝑅𝜏 < 1.
3.4. Endemic Equilibrium Point and Backward Bifurcation.
Further analysis of the model is done by finding the endemic
equilibrium solutions 𝑥∗, V∗, 𝑤∗, 𝑧∗ of the reduced model
(13). First we state the following.

Theorem 3. The reduced model has the following:

(1) A single endemic equilibrium solution if 𝑅𝜏 ≥ 1, or𝑅1 = 1, and 𝑃1𝑅𝜏 > 𝑃3.
(2) Two endemic equilibrium solutions if 𝑃1𝑅𝜏 > 𝑃3 and𝑅1 = 4𝑃2𝑃4(1 − 𝑅𝜏)/(𝑃1𝑅𝜏 − 𝑃3)2 < 1.
(3) No endemic equilibrium solution otherwise.

Here 𝑃1 = 𝐴(𝜆𝑡𝑛 + 𝛾𝑁𝐶𝑡𝑐), 𝑃2 = 𝐴(𝜆𝑡𝑛 + 𝛾𝑁𝐶𝑡𝑐 + 𝜆 + 𝛾𝑁𝐶),𝑃4 = 𝐵𝐹𝑡2𝑛, and 𝑃3 = 𝑡𝑛(𝐵𝐹𝑡𝑛 + 𝜆𝐴 + 𝐵𝐹 + 𝐵𝛾𝑁𝐶).
Proof. To prove this, we first expressed the right hand side of
the reduced model (13) in terms of the equilibrium solutions𝑥∗, V∗, 𝑤∗, 𝑧∗. We then eliminated the rest of the variables
leaving only one equation in terms of 𝑧∗ as𝑧∗2 (𝜉2 (𝑧∗2 (𝜆𝑡𝑛 + 𝛾𝑁𝐶𝑡𝑐 + 𝜆 + 𝛾𝑁𝐶)+ 𝑧∗ (−𝜆𝑡𝑛 − 𝛾𝑁𝐶𝑡𝑐))+ ((𝐵𝐹𝑡𝑛 + 𝜆𝐴 + 𝐵 (𝐹 + 𝛾𝑁𝐶)) 𝑧∗𝑖 − 𝐵𝐹𝑡𝑛) 𝜉+ 𝐴𝐵𝐹) = 0.

(20)

This equation can be written in terms of 𝑅𝜏 as𝑃2𝑅𝜏2𝑧∗2 + (−𝑃1𝑅𝜏2 + 𝑃3𝑅𝜏) 𝑧∗ − 𝑃4𝑅𝜏 + 𝑃4 = 0. (21)



International Scholarly Research Notices 7

The nonzero solutions of (21) can be written as

𝑧∗𝑖 = (𝑃1𝑅𝜏 − 𝑃32𝑃2𝑅𝜏 )(1 ± √1 − 4𝑃2𝑃4 (1 − 𝑅𝜏)(𝑃1𝑅𝜏 − 𝑃3)2 ) . (22)

It can be seen from (22) that, for 𝑅𝜏 > 1, 𝑧∗𝑖 can only have one
positive value. We expressed the other variables in terms of𝑧∗𝑖 as 𝑥∗𝑖 = 𝑧∗𝑖 2𝜉𝛾𝑁𝐶(1 − 𝑧∗𝑖 ) (𝜆𝜉𝑧∗𝑖 𝑡𝑛 + 𝜉𝑧∗𝑖 𝛾𝑁𝐶𝑡𝑐 + 𝐵𝐹𝑡𝑛) ,

V∗𝑖 = (𝜆𝜉𝑧∗𝑖 + 𝐵𝐹) 𝑧∗𝑖(1 − 𝑧∗𝑖 ) (𝜆𝜉𝑧∗𝑖 𝑡𝑛 + 𝜉𝑧∗𝑖 𝛾𝑁𝐶𝑡𝑐 + 𝐵𝐹𝑡𝑛) ,𝑤∗𝑖 = 𝐵𝑧∗𝑖 𝛾𝑁𝐶(1 − 𝑧∗𝑖 ) (𝜆𝜉𝑧∗𝑖 𝑡𝑛 + 𝜉𝑧∗𝑖 𝛾𝑁𝐶𝑡𝑐 + 𝐵𝐹𝑡𝑛) .
(23)

It is clear from (23) that 𝑥∗𝑖 , V∗𝑖 , 𝑤∗𝑖 are positive whenever 𝑧∗𝑖
is. Hence, the endemic equilibrium point exists when 𝑅𝜏 > 1
and is uniquely given by 𝐸𝑖 = (𝑥∗𝑖 , V∗𝑖 , 𝑤∗𝑖 , 𝑧∗𝑖 ), 𝑖 = 1 or 2.

Now suppose 𝑃1𝑅𝜏 − 𝑃3 > 0 and 𝑅1 < 1. It is clear
from (22) that both values of 𝑧∗𝑖 are positive. In this case, the
equilibria can be written as 𝐸𝑒 = (𝑥∗𝑖 , V∗𝑖 , 𝑤∗𝑖 , 𝑧∗𝑖 ), 𝑖 = 1, 2.

This establishes the second part ofTheorem 3. It can easily
be seen from (22) that the other possibilities𝑅1 > 1, or𝑅1 = 1,𝑃1𝑅𝜏 < 𝑃3, or 𝑅1 < 1, 𝑃1𝑅𝜏 < 𝑃3 will not result in any real
positive value of 𝑧∗𝑖 .

Backward bifurcation, which is a situation where the
locally asymptotically stable DFE coexists with a locally
asymptotically stable endemic equilibrium point, has been
observed in many epidemic models. See, for instance, [2,
7, 28, 29]. In this scenario, the requirement for the basic
reproduction number to be less than one for the disease to
be eradicated no longer holds. Condition (2) of Theorem 3
provides possibility of backward bifurcation in our model.
Here we provide parameter range within which backward
bifurcation is likely to happen. To do this, it is enough to
show that there is a positive endemic equilibrium when the
basic reproduction number 𝑅𝜏 < 1. We state the result in the
following lemma.

Lemma 4. The reduced model (13) undergoes backward bifur-
cation when 𝑃3/𝑃1 < 𝑅𝑏𝜏 < 𝑅𝜏 ≤ 1, where𝑅𝑏𝜏

= 𝑃1𝑃3 − 2𝑃2𝑃4 + 2√𝑃12𝑃2𝑃4 (1 − 𝑃3/𝑃1) + 𝑃22𝑃42𝑃12 . (24)

To prove this, we first solve for the value of 𝑅𝜏 such that (𝑃1𝑅𝜏−𝑃3)2 + 4𝑃2𝑃4(𝑅𝜏 − 1) = 0, where we obtained two possibilities
as 𝑅𝑏𝜏

= 𝑃1𝑃3 − 2𝑃2𝑃4 + 2√𝑃12𝑃2𝑃4 (1 − 𝑃3/𝑃1) + 𝑃22𝑃42𝑃12 ,

𝑅1𝜏
= 𝑃1𝑃3 − 2𝑃2𝑃4 − 2√𝑃12𝑃2𝑃4 (1 − 𝑃3/𝑃1) + 𝑃22𝑃42𝑃12 .

(25)

Using condition (2) of Theorem 3 and (25), backward bifurca-
tion will occur if 𝑅𝜏 < 1 and 𝑅𝜏 > max{𝑃3/𝑃1, 𝑅𝑏𝜏, 𝑅1𝜏}. Now it
is clear that 𝑅𝑏𝜏 > 𝑅1𝜏. Now consider the difference

𝑅𝑏𝜏 − 𝑃3𝑃1
= 2 (−𝑃2𝑃4 + √𝑃12𝑃2𝑃4 (1 − 𝑃3/𝑃1) + 𝑃22𝑃42)𝑃12> 0.

(26)

In analogous fashion we show that 𝑃3/𝑃1 > 𝑅1𝜏. Hence we get
the result.

3.5. Stability of the Unique Endemic Equilibrium. Under the
hypothesis of condition (1) of the theorem, the endemic
equilibrium point of the reduced model (13) exists and is
unique. Some of its local stability properties can now be
investigated. Without loss of generality, we assume that the
endemic equilibrium point is 𝐸1 = (𝑥∗1 , V∗1 , 𝑤∗1 , 𝑧∗1 ) and
we dropped the asterisks. The local stability of 𝐸1 is now
investigated by linearizing the right hand side of model (13)
about the equilibrium solution.This gives the Jacobianmatrix𝐽 (𝐸1)
= [[[[[[[[

−𝜉𝑧1 − 𝐹 𝛾𝑁𝐶 𝑚 −𝜉𝑤1−𝜉𝑧1 −𝜉𝑧1 − 𝐴 −𝜉𝑧1 −𝜉V1 − 𝜉𝑤1 − 𝜉𝑥1 + 𝜉𝜉𝑧1 0 −𝐵 𝜉𝑤10 −𝑡𝑛𝑧1 + 𝑡𝑛 −𝑡𝑐𝑧1 + 𝑡𝑐 −𝑡𝑐𝑥1 − 𝑡𝑛V1 − 1
]]]]]]]]
. (27)

The characteristic polynomial is𝜂4 + 𝐴3𝜂3 + 𝐴2𝜂2 + 𝐴1𝜂 + 𝐴0 = 0, (28)

where𝐴3 = V1𝑡𝑛 + 𝑥1𝑡𝑐 + 2𝜉𝑧1 + 𝐴 + 𝐵 + 𝐹 + 1,𝐴2 = ((𝑧1 − 1) (1 − V1 − 𝑥1 − 𝑤1) 𝑡𝑛 + 𝑧1 + 2V1𝑧1𝑡𝑛) 𝜉+ (𝐴 + 𝐵 + 𝐹) V1𝑡𝑛 + (2𝑥1𝜉𝑧1 + (𝐴 + 𝐵 + 𝐹) 𝑥1) 𝑡𝑐+ ((𝑧1 − 1)𝑤1𝑡𝑐 + 𝑧1) 𝜉 + 𝜉2𝑧12+ (𝐴 + 𝐵 + 𝐹 + 𝜆 + 𝛾𝑁𝐶) 𝜉𝑧1 + 𝐴𝐵 + 𝐴𝐹 + 𝐵𝐹 + 𝐴+ 𝐵 + 𝐹,
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𝐴1 = (−𝑧1 + 1) (𝜉2𝑧1 + 𝜉𝐾1) (𝑤1 + 𝑥1) 𝑡𝑛+ 𝐹𝜉 ((𝑧1 − 1) (𝑤1𝑡𝑐 + 𝑡𝑛) + 𝑧1)+ 𝜉𝐵 (𝑧1 + (𝑧1 − 1) 𝑡𝑛)+ 𝑧1𝜉2 ((𝑧1 − 1) (𝑤1𝑡𝑐 + 𝑡𝑛) + 𝑧1)+ 𝐴𝜉 ((𝑧1 − 1)𝑤1𝑡𝑐 + 𝑧1)+ (𝜉2𝑧12 + (𝐵 + 𝐾2 + 𝜆 + 𝛾𝑁𝐶) 𝜉𝑧1 + 𝐾1𝐴 + 𝐵𝐹)⋅ 𝑥1𝑡𝑐+ (𝜉2𝑧1 + ((𝐴 + 𝜆 + 𝛾𝑁𝐶) 𝑧1 + 𝐾1) 𝜉 + 𝐾1𝐴 + 𝐵𝐹)⋅ V1𝑡𝑛 + (𝜆 + 𝛾𝑁𝐶) 𝜉2𝑧12+ (𝐴𝜆 + 𝐵𝐹 + 𝐵𝛾𝑁𝐶 + 𝜆 + 𝛾𝑁𝐶) 𝜉𝑧1 + (𝐵𝐹 + 𝐾1) 𝐴+ 𝐵𝐹,
𝐴0 = 𝑅𝜏 (𝑧1𝑃1𝑅𝜏 + 𝑃4) 𝐴 (𝑅𝑇 − 1)(1 − 𝑧1) 𝑡𝑛2 ,
𝐾1 = 𝐵 + 𝐹,𝐾2 = 𝐴 + 𝐹,
𝑅𝑇 = 𝑧1𝑅𝜏𝑄1 + 𝑃24𝑅𝜏 (𝑧1𝑃1𝑅𝜏 + 𝑃4)2 ,

(29)

𝑄1 = 𝑧1(𝑃3𝑅𝜏 + 𝑃4)𝑃1 + 𝑧1(−2𝑧1 + 3)𝑃2𝑃4𝑅𝜏 + (−𝑧1 +2)(𝑧12𝑃1𝑃2𝑅𝜏2+𝑃3𝑃4).Notice that𝐴3,𝐴2,𝐴1 are all positives
and 𝐴0 can be positive or negative depending on the sign of(𝑅𝑇 − 1). Hence, by Hurwitz criterion, for 𝐸1 to be locally
stable, it is necessary that 𝑅𝑇 > 1.
3.6. Effects of ITNs Use and Temperature on the Basic
Reproduction Number. We evaluate the effects of ITNs
use and temperature on the dynamics of malaria on the
reduced model (13) through their elasticity indices 𝑅𝛽𝜏 =(𝛽/𝑅𝜏)(𝜕𝑅𝜏/𝜕𝑇) and 𝑅𝑇𝜏 = (𝑇/𝑅𝜏)(𝜕𝑅𝜏/𝜕𝛽), respectively; see
[24, 26] for more explanation on this procedure. The analyt-
ical formulations of the elasticity indices of the proportion
of ITNs use and temperature with respect to 𝑅𝜏 are given,
respectively, by (30) and (31).

𝑅𝛽𝜏 = 2𝛽 𝛼 (𝛽max − 𝛽min)𝛼 (𝛽max − 𝛽min) − 𝛽max
< 0, (30)

𝑅𝑇𝜏 = 2𝑇 ℎ (𝑇 + 𝑇0) 𝑒−𝜁 (𝛽max − 𝛽min)(𝑇 − 𝑇0)3 (𝑒−𝜁 (𝛽max − 𝛽min) − 𝛽max) ,𝑇 ̸= 𝑇0, (31)

where 𝜁 = ℎ𝑇/(𝑇 − 𝑇0)2. The implication of (30) is that an
increase in the number of ITNs usedwill bring about decrease
in the reproduction number and vice versa. This finding
corroborates the report of [24]. From (31), the reproduction
number will increase with temperature whenever 𝑇 < 𝑇0 and
will decrease with temperature whenever 𝑇 > 𝑇0. In other
words, the reproduction number is not a monotonic function
of temperature. It should be understood that this type of
sensitivity analysis only focuses on specific parameters. It
does not indicate the effect of concurrent, large perturbations
in all model parameters which is almost always the case
in epidemiology. In order to gain more insight into the
sensitivities of the conglomerations of the parameters, we
carry out more investigations in the next section.

4. Global Uncertainty and Sensitivity Analysis

One of the important components of epidemic modeling is
parameter estimation. This is because many factors combine
to form variability in inputs into the model output. These
factors may include erroneous parameter estimation and
uncertainty in the exact parameter values. For this reason, it
is important to determine parameters that have substantial
influence on the results. This can be achieved through
sensitivity and uncertainty measurement that can be done
more easily due to rapid growth in computing technology. For
example, Sampling and Sensitivity Analysis Tools (SaSAT)
is software developed for sensitivity analysis [30]. In our
model, the proportion of infectious human population, V,𝑥, are regulated by various malaria-related epidemiological
parameters that are shrouded with uncertainty. Following
[30], we use the Latin Hypercube Sampling (LHS) and Partial
Rank Correlation Coefficient (PRCC) techniques to perform
a global uncertainty and sensitivity analysis of the reduced
model (13). We sample all the twenty-five parameters of
the model and then carry out simulations to measure their
statistical influence on the proportion of infectious humans
V, 𝑥. Using published results in literature, we assigned upper
and lower bounds for each parameter as shown on Table 3.
As in [24, 30], we assumed that each parameter follows a
uniform distribution and then draw 1000 samples from the
distribution.This gives a 1000×25matrix whose rows consist
of unique collections of parameters. For each row of the
matrix, the reduced model (13) is integrated using MATLAB
ode45 and we record the proportion of infected humans
at each time step. Typical results of such calculations are
depicted on Figure 3. The legend and the axes labels on A4
are the same for all the subfigures. From Panel A1 of the
figure 𝑅𝜏 > 1 and there is no bifurcation. This implies that
the disease will invade and will persist. In this case, it is
possible to eradicate the disease by using any intervention
that will decrease the reproduction number to below unity.
Panels A2 and A4 depict the scenario 𝑅𝜏 < 1 and there is
no bifurcation. This means that the disease will not persist
and will not invade. In Panel A3 we have typical scenario
where the endemic equilibrium point and the DFE coexist.
In this case, the disease will persist but will not invade.
The results suggest that it is the presence of the immune
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Table 3: Parameters, their baseline values, and the ranges for sensitivity analysis.

Parameter Baseline value Range Reference𝜆ℎ 9.3614×10−5 [2.7, 14] × 10−5 [26]𝜆V 0.4478 [0.27, 0.7] [8, 26]𝑇𝑛 0.1201 [0.03704, 0.4] [21]𝑇𝑐 0.0476 [0.003704, 0.2] [21]𝑐1 0.2299 [0.1, 0.7] [24]𝑐2 0.5342 [0.072, 0.64] [24]𝜌 7 [2, 8] [27]𝑏 0.8 [0.1, 0.8] [8, 26]𝑇 22 [20, 35] Estimated𝑇0 30.6 [27, 31] Estimated𝛽max 0.6334 [0.1, 1] [24]𝛽min 0.0696 [0, 0.1] [24]ℎ 0.3165 [0.1, 0.5] Estimated𝜖𝑛𝑛 0.2201 [0.1, 0.5] Estimated𝛾𝑁𝑁 0.0805 [0.056, 0.2] [24]𝛾𝑁𝐶 0.0106 [0.0014, 0.017] [7, 24]𝛼𝑐 0.0022 [55 × 10(−6), 11 × 10(−3)] [7, 24]𝛿𝑁 5.7341 × 10−5 [0, 4.1] × 10−4 [26]𝛿𝐶 3.2084 × 10−4 [0, 4.1] × 10−4 [26]𝛾𝐶 0.0101 [0.0014, 0.017] [7, 24]𝜇ℎ2 6.0146 × 10−7 [1, 100] × 10−8 [26]𝜇ℎ 1.6728 × 10−5 [1, 20] × 10−6 [26]𝜇V 0.0668 [1, 100] × 10−3 [26]𝜇V2 6.8754 × 10−4 [1, 1000] × 10−6 [26]𝜇V3 0.0995 [0.0476, 0.1] [24]

individuals that makes the disease persist. The strategy that
will be adopted here will be examined through sensitivity
analysis. From the 1000 collections of unique parameters, 469
satisfy the condition for backward bifurcation. We selected
one of these collections as our baseline values as shown
on Table 3 except for 𝑇𝑖. We conducted sensitivity analysis
on the bifurcation parameter using PRCC with the baseline
values. To achieve this, we set 𝑇𝑖 = 0.5532 and allow 𝑐1
to vary in the range [0.2299, 0.35]. The results are depicted
on Figure 4. The existence of backward bifurcation implies
that the classical requirement for 𝑅𝜏 < 1 for an epidemic
to be eradicated no longer holds. The region to the left
of the bifurcation point represents the area where malaria
will not invade and will not persist (comfort zone), whereas
the region enclosed by the solid red and the dash-dotted
curves and 𝑅𝜏 = 1 represent the area where malaria will
persist but will not invade. If malaria is to be eradicated,
the comfort zone should be maximized subject to 𝑅𝜏 ≤ 1
or we must have 𝑅𝜏 < 𝑅𝑏𝜏. The natural question is what
are those parameters that are the most important to the
bifurcation parameter? To investigate this, we conducted
sensitivity analysis on the bifurcation parameter using the
469 samples mentioned earlier. The results of this analysis
are depicted on Figure 5. From the figure, the parameters 𝑐1,𝑇𝑖, 𝑐2, 𝑇𝑗 are the most sensitive to the bifurcation parameter
in that order, while in decreasing order of importance the

following have the least significance in terms of bifurcation;𝛽min, 𝜇ℎ2, 𝑏, ℎ, and 𝜖𝑛𝑛. Increasing 𝑐1 and 𝑇𝑖 will bring
about increase in the bifurcation parameter.The public health
implication of this result is that increase in treatment of the
clinically immune individuals will increase the comfort zone.
However, parameter sensitivities on bifurcation parameter
should not be taken in isolation. Thus, we draw new 1000
samples for all the 19 parameters affecting 𝑅𝜏 and using these
samples, we carry out sensitivity analysis on𝑅𝜏 using LHS and
PRCC.The results of these analyses are depicted on Figure 6.
We list the following parameters in order of their importance
on 𝑅𝜏, 𝛽max, 𝜇ℎ2, 𝜇2, and 𝑇 from Figure 6, while the following
have least importance and are listed in decreasing order of
importance: 𝜇V, 𝜆V, 𝛿𝑁, and 𝜇V3.
4.1. Intervention Strategies. In our model, there are many
biological parameters that influence disease dynamics. Also,
there are intervention parameters that are crucial for elim-
inating an epidemic. These are 𝛽, 𝑇𝑖, 𝑇𝑗. We consider a
range of different intervention strategies by taking 1000
samples using LHS for 19 parameters of the model. The
intervention parameters were not sampled but are given
specific values as shown on Table 4. Similarly, 𝑇, 𝑇0, and ℎ
were not sampled because 𝛽 is constant for a given run of
simulation. We used MATLAB ode45 suite to integrate the
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Figure 3: Time course of the reducedmodel with initial condition (𝑤, V, 𝑥, 𝑧) = (0.1, 0.2, 0.005, 0.3).Panel A1 corresponds to case𝑅𝜏 = 4.0573,𝑅𝑏𝜏 = 0.3920. Panel A2 corresponds to case 𝑅𝜏 = 0.5341, 𝑅𝑏𝜏 = 0.9952. Panel A3 corresponds to case 𝑅𝜏 = 0.3397, 𝑅𝑏𝜏 = 0.0901. Panel A4
corresponds to case 𝑅𝜏 = 0.092, 𝑅𝑏𝜏 = 0.4143. The legend and labels on A4 are the same for all the subfigures.
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reduced system (13) using the initial condition: (𝑤, V, 𝑥, 𝑧) =
(0.1, 0.2, 0.005, 0.3). For each run of simulation, we recorded
the sum of proportions of infected human over the entire
time steps. The results of these intervention strategies are
presented in the form: NNN ≡ 𝑇𝑗 = 0, 𝑇𝑖 = 0, 𝛽 = 0; NNY ≡𝑇𝑗 = 0, 𝑇𝑖 = 0, 𝛽 = 0.9; NYN ≡ 𝑇𝑗 = 0, 𝑇𝑖 = 0.2, 𝛽 = 0,
and so forth. The first means no treatment of both the naive
and clinically infected populations and no ITN coverage.The
second means coverage, no treatment of both the naive and
clinically infected populations with 90% ITN coverage. Alto-
gether there are 8 different interventions which correspond
to 8000 simulations.The box plot of the results is depicted on
Figure 7. The strategy YYY appears to be the best. It skews
to the right and is characterized by low median and small
interquartile range and the presence of large upper outliers.
The strategiesNNYandNYY are the better options after YYY.
These further demonstrate the effectiveness of ITNs usage
and that any intervention with ∗∗N (any intervention that
does not constitute ITNs coverage) is relatively ineffective.
The public health interpretation of this result is that reducing
contacts between humans and mosquitoes is important in
controlling the size of the infectious human population. We
conducted further sensitivity analysis by integrating the time
dependent dynamics of (13) using 1000 parameter sets used
in plotting Figure 3 and the same initial conditions. To do
that, the nondimensional time [0, 30] was divided into 50
times steps and we recorded the number of infected humans
at each time step. The results of these analyses are shown
on Figure 8 for the nondimensional time 𝜏 = 20. The
PRCC for 𝛾𝑁𝑁 is the largest and positive, which indicates
that rate of recovery without immunity can increase the
number of infected humans. The PRCC for 𝛿𝐶 is the second
largest inmagnitude and has negative sign.This indicates that
death rate of clinically immune individuals will decrease the
number of infectious humans. The parameter 𝛽min has the
least importance. The PRCCs results depicted on Figure 8
correspond to a single time step; however, the dynamics
of the PRCCs is likely to vary over time. Hence, to fully
characterize how sensitive the infectious human population
is to the parameters of the reduced system (13), we look into
the evolution of the PRCCs over time and the results are
depicted on Figures 9 and 10 for 0 ≤ 𝜏 ≤ 30. We grouped
the parameters in the figures for the purpose of clarity of
presentation only. The results on these figures indicate that,
initially, 𝜇ℎ2 and 𝜇V2 are the most significant parameters.
While increase in 𝜇V2 will result in decreasing the number
of infected humans, increase in 𝜇ℎ2 will lead to increase in
the number of infected human. See panel 1 on Figure 9. The
maximum biting rate 𝛽max and the density dependent part
of mosquitoes death rate appear to be the most important
parameters in the long run. The public health implication
of this is that increased ITNs coverage and death rate of
mosquitoes can lead to the control of malaria transmission.

5. Discussion

Mosquitoes are very efficient vectors of human diseases and
are responsible for transmitting some of themany devastating
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Figure 7: Box plots showing the sum of proportion of infected
human populations subjected to different intervention strategies.

diseases today. For many of these diseases, climate change
is key in determining the ability of a mosquito to transmit
the disease through the population effectively. One of such
diseases is malaria, which is widely considered as the most
devastating and the most prevalent human vector borne
disease, with one-half of the world population living in areas
where there is risk of infection [14]. Two of the factors that
complicate malaria control are as follows.

(1) Seasonal changes: This has strong influence on
malaria transmission which makes it difficult to
predict future malaria intensity accurately. There is
no single definition of seasonality in relation to
malaria in the literature. Malaria metrics such as the
mosquito biting rates have been investigated in many
studies in relation to temperature; see for instance
[15]. Numerous values ofmosquitoes biting rates have
been reported in literature. Inmany studies, the biting
rate has constant values and these values are mostly
different. Given the importance of biting rate as a
driving force for malaria transmission, there is the
need to conduct further studies on this so as to discern
the factors that bring about changes in the biting rate.
Typical of these factors is seasonality. This is because
transmission rate of malaria has been reported to
peak in certain period of the year. It is quite reasonable
to model the biting rates as a function of temperature
in order to mimic seasonality.

(2) Clinical immunity: Another factor that complicates
malaria control is that individuals living in regions
where malaria is endemic can develop immunity to
malaria which enables them to remain asymptomatic
while still carrying the parasites [7, 31]. The devel-
opment of acquired clinical immunity by individuals
will result in such individuals not seeking treatment
for a long time.Thus, they will harbor the disease and
can transmit it when bitten by mosquitoes.

From Panels A1 and A3 of Figure 3, the infectivity of the
clinically infected individuals does not wane with time. This
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Table 4: Parameter values used for interventions.

Parameter/symbolic representation N Y𝑇𝑗 0 0.5𝑇𝑖 0 0.2𝛽 0 0.9

might be partly attributed to the reason outlined in bullet (2)
above. In view of this finding, one may pause the question;
how do we control malaria without treatment? We believe
that treatment is inevitable oncemalaria cases are established.
In this case one can consider a number of other intervention
strategies that can be combined together with treatment
towards control and eradication of malaria transmission.
Modeling the dynamics of malaria by separating human pop-
ulation into immune and nonimmune classes, incorporating
the temperature and ITNs use as part of mosquitoes biting
rates and sensitivity analysis is the main focus of this paper.

Our simple model of temperature dependent biting rate
generalizes calibrated model results reviewed by [15]. The
local sensitivity analysis indices results are in line with
literature reports. For instance, it is common knowledge that
the use of fan in our houses could reduce contact between
human and mosquitoes and this can lead to reduction in
transmission of malaria. The local sensitivity analysis of the
reproduction number in relation to temperature results also
supports this observation and other similar findings in many
reports. See [15] and the references therein.

To eradicate malaria in bistable regions, we need to make𝑅𝑏𝜏 > 𝑅𝜏.This can be achieved by considering strategies that
will decrease 𝑅𝜏 or increase 𝑅𝑏𝜏 sufficiently. The sensitivity
analysis results reveal that we need to embark on combination

of strategies that will decrease the possibilities of immune
individuals becoming infective and treating them in order to
effectively reduce 𝑅𝜏. This is quite difficult because clinically
immune population are not likely to seek treatment for a
long time. Moreover, failing to detect the parasite in them
may not necessarily mean the absence of the disease. In view
of these difficulties, the best thing to do is to embark on
maximum ITNs usage. Is there any way in which the rate at
which immune individuals lose their clinical immunity can
be accelerated? if so, then it will help towards increasing 𝑅𝑏𝜏
and hence malaria eradication in a bistable region. Other
metrics that will assist significantly in this direction are the
increase in mosquitoes death rates and temperature. In some
African countries such as Nigeria where malaria is endemic
and electricity supply is erratic, improved supply of electricity
will enable people to use fans and air conditioning system to
provide relatively colder environment in their houses. It will
also help to provide enabling environment for effective usage
of ITNs and also reduces human-mosquitoes contact.

In general, the sensitivities of the model parameters are
time dependent. In other words, themost sensitive parameter
of the model at the onset of the epidemic may not necessarily
maintain the same status at later times. Of particular interest
is the fact that the maximum biting and death rates of
mosquitoes are the most important parameters in the long
run. The public health implication of this is that combined
effort should be put in place in reducing human-mosquitoes
contact and reduction of mosquito population by any means
possible.

6. Conclusion

In this paper, we formulated a deterministic model of malaria
transmission by dividing the human population broadly
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according to whether an individual is immune to clinical
symptoms of malaria or not. We proposed a simple model
with mosquitoes biting rate that is temperature dependent so
as to mimic seasonality. We investigated stability conditions
for the disease-free equilibrium point and we have found
the necessary condition for the unique endemic equilibrium
point to be locally stable. We have also shown the range of
parameter values in which backward bifurcation can occur.
We conducted global sensitivity analysis using Latin Hyper-
cube Sampling and Partial Rank Correlation Coefficient in
order to identify the most important parameters that govern
the dynamics of malaria transmissions.

We find that the combination of treatment and usage
of insecticide treated net is the most effective strategy for
malaria control. Provision of relatively colder environment
will positively impact malaria control. Mosquitoes biting and
death rates are the most important parameters of malaria
transmissions. The peak of mosquitoes biting rates occurs
not at a single temperature value but as a range of values.
Temperature is positively correlated to the reproduction
number. The disease-free equilibrium point of the model is
locally asymptotically stable when the reproduction number
is less than one and unstable when it is greater than one.
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