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Summary

Co-stimulation is a fundamental component of T cell biology and plays a key role in determining the 
quality of T cell proliferation, differentiation, and memory formation. T cell-based immunotherapies, 
such as chimeric antigen receptor (CAR) T cell immunotherapy, are no exception. Solid tumours have 
largely been refractory to CAR T cell therapy owing to an immunosuppressive microenvironment 
which limits CAR T cell persistence and effector function. In order to eradicate solid cancers, increas-
ingly sophisticated strategies are being developed to deliver these vital co-stimulatory signals to 
CAR T cells, often specifically within the tumour microenvironment. These include designing novel 
co-stimulatory domains within the CAR or other synthetic receptors, arming CAR T cells with cyto-
kines or using CAR T cells in combination with agonist antibodies. This review discusses the evolving 
role of co-stimulation in CAR T cell therapies and the strategies employed to target co-stimulatory 
pathways in CAR T cells, with a view to improve responses in solid tumours.
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Introduction

Immunotherapies are an increasingly prevalent thera-
peutic option for patients with cancer. Chimeric antigen 
receptor (CAR) T cell immunotherapy is a strategy to 
genetically engineer patient T cells with a synthetic re-
ceptor targeting a specific antigen [1]. The CARs are 
composed of an antigen binding single-chain fragment 
variable (scFV) extracellular domain, transmembrane 
domain, and the intracellular CD3ζ and co-stimulation 
signalling domains. CAR T cells are currently FDA ap-
proved for the treatment of certain B cell malignancies 
[2]. However the overall responses are disappointing in 
solid cancers [3]. This is due to several factors such as an 
immunosuppressive tumour microenvironment (TME), 
poor trafficking into the tumour and limited persistence 
of CAR T cells [4].

Optimal T cell activation results from cognate antigen 
recognition (signal 1), co-stimulation (signal 2), and cyto-
kine support (signal 3). The precise timing and context of 
co-stimulation signals are understood to ultimately de-
fine the effectiveness of the T cell response [5]. Integrating 
this understanding with CAR T cell design will lead to 
more robust CAR T cell therapies for solid cancers. This 
review will summarize the role of co-stimulation in CAR 
T cell therapies with a focus on strategies to improve re-
sponses in solid cancers.

Importance of co-stimulation in CAR design

The first generation of CARs were developed more than 
30  years ago. These CARs contained a single CD3ζ 
chain but did not include any co-stimulation intracel-
lular domain, thus had limited anti-tumour function 
due to the lack of co-stimulation. In an early phase 
I  study using the first-generation CAR against alpha-
folate receptor (FR) in metastatic ovarian cancer, none 
of the treated patients developed any anti-tumour re-
sponse, demonstrating the importance in incorporating 
co-stimulation in the CAR design [6]. The first studies ex-
ploring the use of co-stimulation in CAR T cells included 
a CD28 co-stimulation intracellular domain into the 
CAR receptor [7]. CD28 co-stimulation domain greatly 
enhanced CAR T cell function leading to early clinical 
responses to CAR T cell therapy, highlighting the import-
ance of co-stimulation signalling [8, 9]. In an early trial, 
a patient with advanced follicular lymphoma was treated 
with a CD19-CAR that contained a CD28 co-stimulation 
domain. This patient’s cancerous B cells were eliminated 
and absent for at least 39 weeks after CAR T cell trans-
fusion. Inspired by the success, other co-stimulatory do-
mains have been included in CARs and some trials have 
demonstrated great success [8, 9].

Until now only a limited number of co-stimulatory 
domains have been thoroughly investigated [10]. CD28 
and 4-1BB (CD137) are the best characterized domains 
and the only two included in current FDA approved CAR 
T cell formulations (Table 1). These domains trigger dis-
tinct downstream signalling pathways resulting in ei-
ther increased persistence or enhanced effector function 
of CAR T cells [11]. The selection of co-stimulatory 
domains within the CAR is believed to be key to over-
coming barriers imposed by solid tumours. Screening 
approaches have demonstrated a wide range of novel 
candidate co-stimulatory domains which can be incorp-
orated into CARs [12]. To this end, many groups are 
exploring additional domains such as OX40 (CD134), 
CD27, GITR (CD357), and ICOS (CD278) [13–17] 
(Fig. 1-1). CARs including one co-stimulatory domain 
are classified as second generation, while those including 
two co-stimulatory domains are classified as third gen-
eration. Third-generation CARs demonstrated superior 
anti-tumour responses and magnitude of in vivo ex-
pansion compared to second-generation CARs in some 
studies. Ramos et al. demonstrated that third-generation 
CAR T cells persisted longer and with superior in vivo 
expansion compared to second-generation CAR T cells 
in relapsed/refractory non-Hodgkin lymphoma pa-
tients [18]. However, other studies have demonstrated 
opposing results. For example, a study comparing the 
second-generation anti-PSCA-CD28 CAR with the third-
generation anti-PSCA-CD28-4-1BB CAR indicated that 
the second-generation CAR was superior in their anti-
tumour effect in a human pancreatic cancer xenograft 
model [19]. The superiority of third-generation CARs is 
therefore still debatable. Collectively, these studies dem-
onstrated that co-stimulation within the CAR receptor is 
a key factor determining CAR T cell efficacy.

Co-stimulation delivered intrinsically within the CAR 
can be coupled with other methods of co-stimulation 
to overcome the key barriers imposed by solid cancers. 
Some novel designs include co-stimulatory domains 
from certain signalling pathways. CARs incorporating 
MyD88 domains along with intracellular domains of 
CD40 demonstrated improved efficacy. The incorpor-
ation of these ‘MC’ co-stimulatory domains resulted 
in increased long-lived central memory CAR T cells 
associated with improved clinical outcomes [20, 21]. 
Coupling co-stimulation and CAR engagement affords 
precise control over when and how co-stimulation is de-
livered. Other strategies may include transducing add-
itional genes that code for cytokines, synthetic signalling 
domains and receptors into the CAR T cells. For ex-
ample, a study included a JAK-STAT signalling domain 
into a CAR to resemble γ-chain cytokine signalling and 
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resulted in increased CAR T cell proliferation in vivo 
in a model of oesophageal cancer [22]. Including do-
mains such as this within the CAR circumvents poten-
tial cytokine release syndrome (CRS) associated with 
non-specific secretion of cytokine and avoids adminis-
tration of toxic cytokines. Toll-like receptors (TLR) are 
known co-receptors in T cells, and CARs incorporating 
TLR domains are being developed [23]. TLR2 is ex-
pressed on memory T cell subsets and detects pathogen-
associated molecular pattern (PAMPs) and endogenous 
danger-associated molecular patterns (DAMPs), such 
as heat shock protein (HSPs) and amyloids [24, 25]. 
Unlike commonly used domains, TLR2 signals through 
MyD88 to improve cytokine secretion and effector 
function in T cells [26, 27]. The incorporation of TLR2 
domains improved the efficacy of MUC1-CAR T cell 
function in a solid tumour model [28].

Synthetic and combinatorial co-stimulatory 
receptors enhance CAR T cell function

CAR T cells can be transduced to express additional 
synthetic receptors, which act in trans or parallel with 

CAR receptors to provide co-stimulation to CAR T cells. 
These receptors often target molecules overexpressed by 
the TME. Switch receptors link a checkpoint extracel-
lular domain to a co-stimulatory intracellular domain, 
for example, PD-1 (CD279) and CD28 [29] (Fig. 1-2). 
This PD-1-CD28 receptor delivers CD28 co-stimulation 
to CAR T cells when ligating PD-L1 (CD274), which 
is overexpressed by solid tumours. The ligation leads 
to enhanced cytokine secretion and restimulation of 
the switch CAR cells. In two models of mesothelin and 
several PSCA+ solid tumours, the switch CAR anti-
tumour effect is stronger than the non-switch CAR cells 
used in combination with pembrolizumab (anti-PD-1), 
indicating that signalling through CD28 of the switch 
receptor is driving this effect [30]. Inverted cytokine re-
ceptors (ICR) function similarly to switch receptors but 
leverage the abundance of immunosuppressive cytokines 
in the TME [31, 32]. ICRs couple an extracellular do-
main of an immunosuppressive cytokine receptor such 
as IL-4 with an intracellular signalling domain of a pro-
survival cytokine receptor such as IL-7. These receptors 
deliver pro-survival cytokine signals (signal 3) in the pres-
ence of suppressive cytokines in the TME (Fig. 1-2). For 

Table 1.  FDA-approved CAR T therapies and their associated co-stimulatory domains. Data collected from Clinicaltrials.
gov and fda.gov

Product Company Target Disease Co-stimulatory 
domain

Clinical Trial

KYMRIAH 
(tisagenlecleucel)

Novartis CD19 Diffuse large B cell lymphoma 
(DLBCL), high grade B-cell 
lymphoma and DLBCL arising 
from follicular lymphoma.

4-1BB NCT02445248

YESCARTA  
(axicabtagene ciloleucel)

Kite Pharma CD19 DLBCL not otherwise specified, 
primary mediastinal large B-cell 
lymphoma, high grade B-cell 
lymphoma, and DLBCL arising 
from follicular lymphoma.

CD28 NCT02348216

BREYANZI 
(lisocabtagene 
maraleucel)

Juno Therapeutics CD19 DLBCL, high-grade B-cell 
lymphoma, primary mediastinal 
large B-cell lymphoma, and 
follicular lymphoma grade 3B

4-1BB NCT02631044 
NCT03484702 
NCT03744676 
NCT03310619 
NCT03483103 
NCT03331198 
NCT03743246 
NCT03435796

ABECMA  
(Idecabtagene vicleucel)

Celgene Corporation BCMA Relapsed/refractory multiple 
myeloma

4-1BB NCT03361748  
NCT02215967  
NCT02658929

TESCARTUSa  
(brexucabtagene 

autoleucel)

Kite Pharma CD19 Relapsed/refractory mantle cell 
lymphoma

CD28 NCT02601313

aTESCARTUS employs the identical retroviral vector to YESCARTA however is manufactured using a distinct protocol which enriches for T cells.
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example, CAR T cells expressing a GM-CSF-IL-18 ICR 
were able to mediate tumour regression in HER2 and 
EphA2 solid tumour models. In this design, the ICR con-
tained an extracellular domain of the GM-CSF receptor 
and the signalling domains of the IL-18 receptor (GM18). 
GM18 can be activated in the tumour by endogenous 
GM-CSF of the TME, leading to enhanced CAR T cell 
survival and tumour cell clearance [33]. GM-CSF has 
also been targeted with an IL-2-based ICR [34]. These 
additional co-stimulatory triggers may synergize with 
CAR signalling by including distinct domains, effectively 
augmenting CAR signalling localized within tumour tis-
sues. Additional synthetic co-stimulatory receptors also 
flip key interactions within the TME to deliver add-
itional pro-survival signals to CAR T cells.

CD40 is a receptor expressed on antigen presenting 
cells (APCs) and is central to developing tumour-specific 
T cell responses [35]. When expressed on T cells, CD40 
is able to act in cis and trans by binding to CD40-L 

expressed on T cells, ultimately enhancing the survival 
of CAR T cells in tumours [36] (Fig. 1-5). Solid tumours 
evade the immune system through a number of mech-
anisms including a large degree of antigen heterogeneity, 
as well as their immunosuppressive microenvironment. 
Enhancing co-stimulation of both CAR T and endogenous 
T cells may boost endogenous immune responses to rec-
ognise neoantigens and reduce tumour immune escape. 
CD40L+ CAR T cells are shown to be superior in their 
anti-tumour effect and provide a rational to incorporate 
CD40-CD40-L signal in CAR T design [36].

Cytokine co-stimulation is a crucial compo-
nent of a CAR T cell response

Cytokines are secreted proteins with a range of effects 
on all sets of immune cells. In the context of CAR T 
cells, these proteins constitute the ‘signal 3’ checkpoint 
for activation. γ-chain cytokines such as IL-2 and 

Figure 1.  Strategies enhancing co-stimulation of CAR T cells. 1-1: Co-stimulation and synthetic signalling domains can be inte-
grated directly within the CAR receptor. These domains provide co-stimulatory signals when the CAR is activated. 1-2: Switch 
receptors (e.g. PDL1-CD28) and inverted cytokine receptors (e.g. GM-CSF-IL-18) transduce a co-stimulation signal when ligating 
immunosuppressive cytokines such as PDL1 or GM-CSF. 1-3: Oncolytic viruses target tumor cells and remodel the TME with 
immunostimulatory molecules such as OX40. 1-4: CAR T cell secreting agonist antibodies against CD40 or 4-1BB activate CAR T or 
endogenous immune cells. 1-5: CD40 (represented by the yellow molecule) can act in cis and trans when expressed on CAR T cells. 
1-6: CAR T cells secreting cytokines such as IL-18 or IL-12 license APCs or act on T cells to drive an antitumor response.
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IL-15 have essential non-redundant roles in supporting 
the survival and differentiation of T cells, as well as 
CAR T cells [37]. Ex vivo production of CAR T cells 
using these γ-chain cytokines drives CAR T cell differ-
entiation to effective subtypes for solid cancers, and 
these cytokines have also been used as direct therapies 
in vivo [38]. Cytokines such as IL-2 and IL-12 have 
been used to activate and expand tumour-infiltrating 
lymphocytes (TILs) in solid cancers resulting in some 
curative responses, but are associated with tox-
icity [39]. Therefore, ‘armoured CAR’ T cells have 
been developed to secrete such cytokines specifically 
within the TME to reduce toxicity as well as recruit 
endogenous T cells to overcome tumour heterogen-
eity [40] (Fig. 1-6). CAR T cells transduced to secrete 
IL-12 increased macrophage and innate cell-mediated 
clearance of TAA-negative cells, leading to enhanced 
control of tumours [41]. However, excessive cytokine 
co-stimulation with IL-12 has been documented to 
drive CART cell exhaustion [42]. IL-1 family cytokines 
are a group of proinflammatory cytokines including 
IL-1, IL-18, and IL-36γ [43]. These cytokines are gen-
erally proinflammatory and can act on both T cells 
and dendritic cells (DCs) to drive a Th1 type response 
and increase IFNγ secretion by T cells [43]. IL-18, best 
known for inducing antigen-independent bystander T 
cell activation, can act synergistically with IL-12 to in-
hibit solid cancer progression [44, 45]. CAR T cells ex-
pressing IL-18 were able to mediate effective responses 
in a model of colon cancer while also activating en-
dogenous TILs [46]. Similarly, CAR T cells expressing 
IL-36γ also mediated tumour regression but with dif-
ferent kinetics to previously tested IL-1 family cyto-
kines, demonstrating non-redundant signalling within 
this cytokine family [47]. Chemotactic cytokines, or 
chemokines, can also be used to enhance trafficking 
of CAR T cells to solid tumours. CAR T cells secreting 
IL-7 and CCL19 provide both pro-survival signals to 
CAR T cells in the tumour as well as recruit and license 
intertumoral APCs in a model of lung cancer [48]. 
This resulted in increased immune cell infiltration and 
memory formation as cured mice were resistant to tu-
mour re-challenge, and these results have now been ex-
tended to human xenograft models. Manipulation of 
the cytokine milieu by direct CAR T cell secretion has 
demonstrated effects directly on the function of CAR T 
cells and endogenous cells, remodelling the TME to a 
more permissive immune environment. Understanding 
the role of cytokines in sustaining, improving or 
hampering intra-tumoral immune response will fa-
cilitate their optimal incorporation into CAR T cell 
therapy regimes.

Antibody-based approaches utilizing 
co-stimulation in CAR T cell therapies

Checkpoint blockade therapies are an indirect method of 
modulating T cell co-stimulation by utilising antibodies 
to inhibit negative regulators of co-stimulatory mol-
ecules. These therapies have demonstrated to enhance 
CAR T cell efficacy and have been reviewed elsewhere 
[49, 50]. Antibodies directly targeting co-stimulatory 
molecules can also boost the immune response to cancer. 
CD40 antibodies are approved therapeutics for cancer 
and have both T cell intrinsic and pleiotropic effects [51]. 
When used in combination with IL-15, CD40 agonists 
were able to increase CD8 T cell and NK cell infiltration 
into pancreatic cancers, leading to establishment of im-
mune memory response [52]. In a novel approach, CAR T 
cells were engineered to secrete CD40 agonist antibodies. 
Compared with traditional CAR T cells, these anti-CD40 
secreting CAR T cells demonstrated elevated cytotoxic 
effect on cancer cells and increased proportion of central 
memory phenotype [53]. 4-1BB agonist antibodies have 
also been investigated in the context of solid cancers and 
were able to increase the cytokine secretion of CAR T 
cells as well as remodelling of endogenous T cells in a 
model of breast cancer [54] (Fig. 1-4). However, these 
agonist antibodies have not progressed beyond clinical 
trials due to systemic toxicity and requirement of FcγRIII 
to facilitate hyper clustering of 4-1BB [55].

Co-stimulatory bispecific antibodies have been 
developed which combine two antibody or ligand 
specificities [56]. This strategy allows for agonist anti-
bodies being targeted to the TME by coupling with an 
antibody specific for a TAA [57, 58]. For example, a 
bispecific composed of 4-1BBL (CD137L) and fibroblast 
activator protein was able to provide co-stimulation to 
T cells [59]. Similarly, coupling antibodies to collagen 
factors in tumour-associated vasculature has been used 
to deliver checkpoint antibodies, IL-2 or chemokine 
factors to the TME, leading to APC recruitment [60, 
61]. A  CD27-PD-L1 bispecific was able to simultan-
eously deliver co-stimulation and checkpoint blockade, 
leading to increased T cell function [62]. These bispecific 
antibodies have great potential to be used together with 
CAR T cells to boost CAR T cell anti-tumour effect. For 
example, bispecific engager antibodies targeting CD40 
and the c-Myc tag expressed within CAR was able to 
eliminate tumours in mouse models of breast cancer 
[63]. The eradication of tumour was due to enhanced 
co-stimulation of CAR T cells by APCs mediated by this 
bispecific antibody. Currently CD27, CD28, CD40, and 
4-1BB co-stimulation have been tested in the form of a 
bispecific engagers.
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Antibody-based therapies offer precise dose control 
and targeting to the TME to limit toxicity. Additionally, 
antibody therapies offer a high degree of flexibility for 
combination with many CAR T formats already in use 
and have pleiotropic effects to enhance both CAR T cell 
and endogenous immune responses.

Non-antibody-based approaches utilizing 
co-stimulation in CAR T cell therapies

Nanotechnology and biotechnology are increasingly util-
ized in health and medicine. In the context of CAR T 
cell therapies, these fields offer alternative methods of 
delivering co-stimulation to antibody-based methods. 
Nanoparticle vaccines have been demonstrated to en-
gage the host APCs to activate T cells and can be used in 
cancer immunotherapy [64]. For example, a nanoparticle 
targeting CLEC-9A was able to effectively deliver antigen 
to host cross presenting DCs promoting the activation 
of CAR-TCR dual-specific cells [65]. Additionally, a 
nanoparticle RNA vaccine enabled claudin-presentation 
by APCs to claudin-specific CAR T cells, and enhanced 
CAR T cell trafficking to tumour tissues, leading to eradi-
cation of disease [66]. A similar technology utilised APC 
targeting ‘amph ligands’ to direct CAR T cell interactions 
with endogenous DCs. This platform utilises the CAR-
specific ligand attached to a DC targeting phospholipid 
polymer, resulting in CAR T cell and DCs interactions 
[67]. The co-stimulatory signals delivered by DCs to 
CAR T cells leads to increased proliferation and tumour 
control [68].

Viruses can alter the TME to enhance CAR T cell in-
filtration, activation, and anti-tumour effects. Oncolytic 
viruses (OV) naturally infect malignant cells and are 
therefore good theoretical candidates for synergy with 
CAR T cell therapy. OV can remodel the TME, as well 
as cause tumour cell death and release of neoantigens 
[69, 70]. Some studies armed OVs with molecules such 
as cytokines or co-stimulatory ligands, which are ex-
pressed by tumours after OV infection. The expression 
of these immune modulatory molecules subsequently 
drives CAR T cell activation (Fig. 1-3). OV-mediated ex-
pression of a bispecific engager worked synergistically 
with CAR T cell activity in two tumour models [71]. 
In a tumour model of B16 melanoma, modified OV ex-
pressing IL-21 enhanced the survival of mice compared 
to a panel of co-stimulatory molecules including CD86 
and 4-1BB [72]. Other therapies utilising OVs to express 
molecules such as OX40, IL-2, and CD40 have also been 
studied [73, 74]. OV therapies can be further refined to 
enhance tropism for tumour cells through the inclusion 
of tumour-specific promoters such as survivin or hTERT, 

or modification of OV capsid proteins [75]. For example, 
a chimeric OV created from vesicular stomatitis virus 
(VSV) and Newcastle disease virus generated potent anti-
tumour effect with greatly reduced hepatotoxicity and 
neurotoxicity compared to wild-type VSV OV. [69].

Platforms for delivering co-stimulation specifically to 
the TME or specific subsets of APC within the immune 
system can be used to drive CAR T cell proliferation and 
persistence in vivo. These methods offer several advan-
tages over antibody-based methods, including delivering 
flexible payloads or antigens. Therefore, these tech-
nologies should be developed further to deliver specific 
co-stimulatory payloads for each tumour type.

Conclusions and future directions

The understanding of the role of co-stimulation for the 
design of immunotherapies including CAR T cell ther-
apies has expanded rapidly. Co-stimulatory pathways 
are demonstrating potential to overcome barriers spe-
cifically associated with the TME such as impeded cell 
trafficking, persistence and exhaustion. The identification 
and thorough characterisation of novel co-stimulatory 
pathways and their potential role in improving CAR T 
cell persistence and avoiding exhaustion in the solid tu-
mour TME is one of the most pressing areas to develop 
for CAR T cell research. To date, the majority of CARs 
have incorporated CD28 or 4-1BB domains, but T cells 
are known to utilize a multitude of co-stimulatory signals 
to develop a potent immune response. Novel platforms 
such as OV, nano-emulsion vaccines and combination 
therapies with antibody therapeutics offer bespoke strat-
egies for delivering such broad co-stimulatory signals 
to allow CAR T cells to overcome these barriers. Solid 
tumours continue to be a major human and economic 
toll in our society. Understanding and refining the use of 
co-stimulation in CAR T cell design is critical for the fu-
ture application of CAR T cell therapy enabling all of us 
to live longer, healthier lives.
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