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A deep learning approach 
for successful big‑bubble formation 
prediction in deep anterior lamellar 
keratoplasty
Takahiko Hayashi1,2,3*, Hiroki Masumoto4, Hitoshi Tabuchi2,5, Naofumi Ishitobi5, 
Mao Tanabe5, Michael Grün6, Björn Bachmann6, Claus Cursiefen6 & Sebastian Siebelmann6,7

The efficacy of deep learning in predicting successful big‑bubble (SBB) formation during deep anterior 
lamellar keratoplasty (DALK) was evaluated. Medical records of patients undergoing DALK at the 
University of Cologne, Germany between March 2013 and July 2019 were retrospectively analyzed. 
Patients were divided into two groups: (1) SBB or (2) failed big‑bubble (FBB). Preoperative images 
of anterior segment optical coherence tomography and corneal biometric values (corneal thickness, 
corneal curvature, and densitometry) were evaluated. A deep neural network model, Visual Geometry 
Group‑16, was selected to test the validation data, evaluate the model, create a heat map image, and 
calculate the area under the curve (AUC). This pilot study included 46 patients overall (11 women, 35 
men). SBBs were more common in keratoconus eyes (KC eyes) than in corneal opacifications of other 
etiologies (non KC eyes) (p = 0.006). The AUC was 0.746 (95% confidence interval [CI] 0.603–0.889). 
The determination success rate was 78.3% (18/23 eyes) (95% CI 56.3–92.5%) for SBB and 69.6% 
(16/23 eyes) (95% CI 47.1–86.8%) for FBB. This automated system demonstrates the potential of SBB 
prediction in DALK. Although KC eyes had a higher SBB rate, no other specific findings were found in 
the corneal biometric data.

Deep anterior lamellar keratoplasty (DALK) has been a successful treatment option for corneal stromal diseases 
such as keratoconus or corneal  opacification1,2. In comparison to the former gold standard, penetrating kerato-
plasty (PK), DALK has certain advantages in terms of time to visual recovery, endothelial cell density loss, and 
low immunological graft rejection  rates3.

However, DALK involves a steep learning curve, especially when exposing the Descemet’s membrane (DM). 
Although different techniques such as air injection or viscoelastic devices to expose the DM have been intro-
duced, these techniques are not always reproducible and sometimes lead to separation failure between the cor-
neal stroma and the posterior corneal  complex4–7. Even experienced surgeons could face a risk of failure, which 
could result in incomplete DM exposure or rupture. The big-bubble technique, first introduced by Dr. Anwar 
(Anwar’s big-bubble technique), is the most popular method for exposing Descemet  membranes8. However, 
despite employing this technique, a failure rate of approximately 10% for intraoperative conversion from DALK 
to PK due to DM rupture  remains6. New surgical approaches, such as the microbubble incision technique and 
a pentacam-based approach, have reduced the conversion  rate9,10. Nonetheless, predicting the probability of 
successful big-bubble formation (SBB) before the beginning of the procedure could be extremely helpful. The 
success of the big-bubble technique depends on the morphology of the cornea and the extent of the pathological 
structure, such as the depth or extent of a scar in the corneal  stroma11. Structural changes in the corneal tissue can 
be non-invasively recorded with about histological resolution using optical coherence tomography (OCT). The 
images thus generated are excellently suited for further image data analysis and can be collected preoperatively 
in almost all patients before DALK.
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In recent times, machine learning analysis of clinical images, such as from OCT scans, has gained significant 
attention in ophthalmology and various other medical  fields12,13. Although several previously published studies 
have already described “predictive factors” for successful big-bubble formation, it has not been reported using 
an automatic judgement  system14–16. Therefore, this study aimed to evaluate the predictability of successful 
big-bubble formation in DALK using machine learning and to compare the results to preoperatively assessed 
biometric values.

Results
Patient characteristics. Table  1 summarizes the patients’ characteristics. In this study, 46 eyes (24 left 
eyes) from 46 patients were included (11 women and 35 men; mean age 48.1 ± 17.7 years [mean ± SD]). The 
underlying disease was keratoconus (KC eyes) in 29 patients and corneal opacification due to other etiolo-
gies (non-KC eyes) in 17 eyes. Eyes that had been converted to PK due to intraoperative DM perforation were 
excluded from this study.

Analysis of clinical data. A total of 46 eyes were analyzed. Regarding the underlying disease, SBBs were 
more common in KC eyes than in non-KC eyes (p = 0.006). Although K values (Kmax or Kmean) tended to be 
higher in the SBB group than in the failed big-bubble (FBB) group, this difference was not statistically significant 
(p = 0.097 [Kmax], p = 0.116 [Kmean], respectively). Similarly, corneal thickness values (central corneal thick-
ness and thinnest corneal thickness) were smaller in the SBB group but did not differ significantly (p = 0.932 and 
p = 0.783, respectively). The FBB group tended to have higher densitometry than the SBB group, but this differ-
ence was not significant (p = 0.119). A summary of biometric data is shown in Table 2.

ROC curve for eye‑by‑eye determination. The AUC was 0.746 (95% confidence intervals [CI] 0.603–
0.889) (Fig. 1). The determination success rate was 78.3% (18/23 eyes) (95% CI 56.3–92.5%) for SBB and 69.6% 
(16/23 eyes) (95% CI 47.1–86.8%) for FBB.

Discussion
Automated image recognition using deep learning methods is becoming increasingly important in the decision 
making, planning, and execution of ophthalmic surgeries. While there are numerous studies on the retina, there 
are very few studies on the anterior eye segments, especially the  cornea17,18. Nevertheless, it has been shown that 
artificial intelligence and image data obtained by OCT can be used to detect and classify certain corneal diseases, 
and even predict the probability of the need for future  keratoplasty19. Similar findings have been described before 
cataract surgery or for the detection of  KC20,21. The present study confirms that, even in complex situations such as 
predicting the success of a particular surgical maneuver (BB formation in DALK), intelligent algorithms can make 
very good predictions. KC eyes had a better success rate of BB formation than those with corneal opacification, 

Table 1.  Patient characteristics.

Total

Number of eyes 46

Sex: female (%)/male (%) 11 (23.9%)/35 76.1(78.2%)

Age (years) (mean ± SD) 48.1 ± 17.7

Etiology

Keratoconus 29

Corneal opacity 17

Grouping

SBB (successful big bubble) 23

FBB (failed big bubble) 23

Table 2.  Comparison of preoperative biometric values between the SBB and NBB groups. SBB, successful big 
bubble; FBB, failed big bubble; SD, standard deviation. † Pearson’s chi-square test.

All eyes (n = 55) SBB group (n = 28) FBB group (n = 27) p value (FBB vs. NBB)

Etiology; proportion of KC 29/46 19/23 10/23 0.006†

K max (D) (mean ± SD) 67.6 ± 15.0 71.3 ± 14.3 63.9 ± 14.8 0.097

K mean (D) (mean ± SD) 56.1 ± 11.0 58.7 ± 10.9 53.6 ± 10.4 0.116

Central corneal thickness (µm) (mean ± SD) 484 ± 164 482 ± 179 487 ± 148 0.932

Thinnest corneal thickness (µm) (mean ± SD) 416 ± 138 410 ± 126 421 ± 150 0.783

Densitometry 68.1 ± 26.4 61.8 ± 24.6 74.2 ± 26.7 0.119
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although a selection of pre-selected, established parameters did not reveal a statistically significant difference 
between the SBB and FBB groups.

In this study, we aimed only to test if we could develop a relatively precise algorithm to predict the formation 
of a big bubble with few data, without using already known associating factors. Given that the results indicate 
the determination success rate was 78.3% for SBB and 69.6% for FBB, we demonstrated that it was possible to 
develop the automatic judgement algorithm. However, the accuracy could be increased using a larger sample 
size with the same indications. Thus, the limitations of this pilot study are that, due to the small sample size, the 
accuracy of individual and special indications for DALK could not be elucidated, such as herpetic scars, traumatic 
scars, exclusively KC, or corneal dystrophies.

Therefore, in the future, it would be useful to collect OCT data from several centers to develop synergies and 
perform subgroup analyses by using the developed algorithm here. This could be facilitated by cross-country 
and cross-device web platforms. Alternatively, large amounts of available data would overcome this limitation. 
In the present study, the success rate of one type of BB (Anwar’s big-bubble) by only two surgeons was evalu-
ated. Therefore, these data are probably not easily transferable to other surgeons or techniques; nevertheless, 
this pilot study shows the possibilities of such analysis using artificial intelligence. However, one of the main 
points of criticism for the clinical implementation could be that the criteria of the algorithm used to make its 
relatively precise statements are not sufficiently clear. In the future, similar algorithms combined with modern 
intraoperative imaging technologies, such as microscope-integrated optical coherence tomography and real-time 
intraoperative pattern recognition algorithms could help ophthalmic surgeons not only before or after surgery, 
but also during the execution of surgical  maneuvers22.

In conclusion, this pilot study demonstrated the possibility of predicting of SBBs. Future studies should aim 
to integrate larger data sets using various imaging modalities.

Materials and methods
Study design. In this retrospective study, the OCT images of all patients who underwent DALK between 
March 2013 and July 2019 were analyzed. Images were acquired using a Spectral Domain OCT device (SD-OCT, 
Heidelberg Engineering, Heidelberg, Germany). The study complied with the ethical standards of the Declara-
tion of Helsinki and was approved by the institutional review board of the University of Cologne, Cologne, Ger-
many (File Number 15–301). Informed written consent was obtained from all participants before enrollment.

Surgical technique. All surgeries were performed under general anesthesia by two experienced  surgeons23. 
DALK was performed in a standardized fashion using Anwar’s big-bubble technique as previously  described8. 
Briefly, the host cornea was marked using a trephine (Katena, Denville, USA) at 7.5–8.0 mm, the DM exposed, 
and the host stroma carefully removed. The donor graft without DM was prepared using a donor punch (Katena, 

Figure 1.  Receiver operating characteristic (ROC) curve for determination. The AUC was 0.746 (95% 
confidence interval [CI] 0.603–0.889).
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Denville, USA) at 7.75–8.5 mm and then secured with a 10–0 nylon suture by either a running suture or inter-
rupted suture technique. In cases where no big bubbles could be created, the DM was exposed by dissecting the 
stroma in layers using a manual dissection  technique5.

Grouping by intraoperative procedures. Patients who underwent DALK were divided into two groups: 
(1) successful big-bubble group or (2) failed big-bubble group.

Collection of preoperative biometric data. To obtain preoperative biometrical data, the eyes were 
examined preoperatively using the Scheimpflug tomography system (Pentacam HR, Oculus GmbH, Wetzlar, 
Germany), preoperative corneal thickness values (central corneal thickness, thinnest corneal thickness), ker-
atometric values (Kmax, Kmin), and the corneal densitometry was thereon compared between the two groups 
(SBB and FBB).

Dataset and grouping for deep learning. For constructing the artificial intelligence-based image analy-
sis system, the following two categories were defined: SBB vs. FBB. The preoperative corneal cross-sectional 
OCT images captured from SD-OCT volume scans or manual single scans were analyzed.

In this study, the K-fold cross-validation (K = 5) method was  applied24,25. Image data were divided into K 
groups. The K-1 group was used as training data and the remaining group as evaluation data. The process was 
repeated K times until all groups were used as evaluation data. During training, the following data expansion 
was performed for each epoch: rotation, displacement, shear, enlargement, vertical inversion, horizontal inver-
sion, two types of brightness adjustment, two types of gamma correction, blurring, histogram flattening, and 
two types of noise load. Training was performed for a deep convolutional neural network.

Model construction. For the original image, the image consisting of 1024 × 242 pixels was read as the RGB 
channel. First, the image was resized to 224 × 224 pixels. The pixel value consisting of 8 bits (range of 0–255) was 
divided by 255 and normalized to the range of 0–1.

In this study, we tested various deep neural network (DNN) models of DenseNet121, EfficientNetB0, and 
Visual geometry group-16 (VGG-16) and finally selected VGG-16 because of its balanced values (data not 
shown). This type of DNN is known to automatically learn the local features of an image to generate a classifica-
tion  model26–30. VGG-16 consists of five blocks and three fully connected layers. Each block consists of several 
convolutional layers that automatically extract features and max-pooling layers that reduce position sensitivity 
and improve generalization  performance31.

The convolution layer stride was equal to one and the layer padding was set to be the same. As a result, the 
convolutional layer only grasped the image features and did not downsize. The activation function was set as 
rectified linear unit (ReLU) to avoid the problem of gradient  disappearance32. The stride of the max-pooling layer 
was set to two. After Block 5, there were flatten layers and two fully connected layers. Spatial information was 
removed from the feature vector extracted by the flatten layer. The fully connected layer compressed the informa-
tion. Finally, the probability of each class was evaluated by passing a function called softmax, and target images 
classified. Fine-tuning (or full retraining) was performed to increase the learning speed so that high performance 
could be achieved with a small amount of  data33. The parameters of blocks 1–4 used ImageNet as initial values.

The parameters of each layer were updated using the momentum stochastic gradient descent algorithm 
(updated using learning rate = 0.0005, initial term = 0.9)34,35. In addition, training and verification were performed 
using Keras, a Python TensorFlow Application Programming Interface (API) (https:// www. tenso rflow. org/).

Deep learning. Using the Score-CAM  method36, we created a heat map image showing where the DNN was 
concentrated. The target layer was set as the maximum pooling layer of block 5, and the ReLU function was used 
to correct the loss function during backpropagation.

The performance evaluation indices were the area under the curve (AUC) and the correct answer rate in the 
successful and unsuccessful eye. The calculation method was as follows. First, since the probability of successful 
DM separation can be discerned by the neural network output, in each image, an image output with a value > 0.5 
was regarded as successful, whereas images with a low value were unsuccessful. When the ratio of the number 
of successfully determined images in each eye exceeded a certain threshold, it was determined that the eye will 
succeed, and the AUC was calculated by adjusting the threshold.

The ROC curve used to determine the AUC was created by defining the point at which the value used to 
indicate SBB positively exceeded the threshold cutoff value output from the softmax function. We created 100 
ROC curves from 100 patterns with 10% thinned out; thus, this model was applied to only 90% of the test data. 
A total of 100 AUCs were calculated from each ROC curve, and a 95% CI was obtained by assuming a normal 
distribution and average standard deviation. In addition, we set the threshold value that maximized the perfor-
mance using the Youden index and then calculated the correct answer rate in the successful and unsuccessful 
 eyes37. The CIs of sensitivity and specificity were calculated assuming a binomial distribution.

Statistical analysis. Statistical analyses were performed using JMP Pro software version 14.0.0 (SAS Insti-
tute, Cary, NC, USA). To compare the continuous variables in each group, we used either one-way analysis of 
variance (ANOVA) or Mann–Whitney U test, while nominal variables such as patient sex and operated eye were 
compared using Pearson’s chi-square test.

https://www.tensorflow.org/
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Data availability
The data that support the findings of this study are available from the corresponding author [T.H], upon reason-
able request.
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