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Abstract
Dryland rivers have considerable flow variability, producing complex ecosystems, pro-

cesses, and communities of organisms that vary over space and time. They are also among

the more vulnerable of the world’s ecosystems. A key strategy for conservation of dryland

rivers is identifying and maintaining key sites for biodiversity conservation, particularly pro-

tecting the quantity and quality of flow and flooding regimes. Extreme variability consider-

ably challenges freshwater conservation planning. We systematically prioritised wetlands

for waterbirds (simultaneously for 52 species), across about 13.5% of the Murray-Darling

Basin (1,061,469 km2), using a 30-year record of systematic aerial surveys of waterbird

populations. Nine key wetlands in this area, primarily lakes, floodplains, and swamps, con-

sistently contributed to a representation target (80%) of total abundances of all 52 waterbird

species. The long temporal span of our data included dramatic availability (i.e., booms)

and scarcity (i.e., busts) of water, providing a unique opportunity to test prioritisation at

extremes of variation. These extremes represented periods when waterbirds were breeding

or concentrating on refugia, varying wetland prioritisation. In dry years, important wetlands

for waterbirds were riverine and lacustrine (12 wetlands) but this changed in wet years to

lacustrine and palustrine (8 wetlands). Such variation in ecosystem condition substantially

changes the relative importance of individual wetlands for waterbirds during boom and bust

phases. Incorporating this variability is necessary for effective conservation of Murray-Dar-

ling Basin waterbirds, with considerable generality for other similarly variable systems

around the world.

Introduction
Dryland rivers constitute more than a third of the total length and discharge of the global river
network [1]. In Australia, about 70% of rivers are intermittent, predominantly dryland, systems
[2, 3]. The Australian dryland rivers exhibit the highest flow variability in the world [4], driven
primarily by the El Niño Southern Oscillation (ENSO) phenomenon [5, 6]. ENSO phases tend
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to last 1–2 years and recur every 3–8 years [7]. Flow variability is a key driver of the system,
affecting water quality [2], biogeochemical processes [8] and community composition of
organisms [9–11]. This flow variability drives ‘boom’ and ‘bust’ phases, affecting flooded habi-
tats, processes and abundance, distributions, recruitment and habitat use of aquatic organisms
[12–19].

Dryland rivers are also among the more vulnerable global ecosystems, given burgeoning
human populations and increasing water scarcity [20, 21]. Altered landforms, geomorphologi-
cal processes and natural flow regimes have driven degradation, affecting connectivity and
diminishing the frequency, extent, and quality of available habitats [21–24]. Global freshwater
biomes are possibly degrading faster than terrestrial or marine biomes [25]. To mitigate such
threatening processes, biodiversity conservation strategies have strongly focused on protected
areas [26], with assumed protection of habitats and critical ecosystem processes supporting
biodiversity. Freshwater protected areas have often failed (e.g. [27]) because protection of criti-
cal water resources outside the area boundaries is often not possible. They also often fail to
maintain connectivity for dependent aquatic species [28, 29]. Threats need to be mitigated at
appropriate scales [30, 31]. Conservation efforts can try to maintain the quantity and quality of
flow regimes [32–34] or rehabilitate systems by recovering water as environmental flows, alter-
ing dam operations, managing protected areas, and effective governance and adaptive manage-
ment [35, 36]. For large river basins, prioritisation of wetlands for environmental water and
protected areas remains a critical challenge.

Prioritising areas for conservation is underpinned by quantitative and systematic processes,
attempting to capture biodiversity and landscape complexity [37, 38]. Schemes to prioritise
conservation areas use fine-scale biological and environmental data for comprehensiveness,
adequacy, representation, and efficiency [39], aiming to include the full range of species, pro-
cesses and ecosystems. Systematic conservation planning approaches are increasingly applied
to freshwater ecosystems [40–43], incorporating longitudinal connectivity [44] and condition
[45]. Environmental flow management remains challenging to integrate [31]. The high spatio-
temporal variability of boom and bust ecosystems, characterised by extreme variations in water
availability [46–48], considerably challenges freshwater conservation planning. Capturing such
variable biodiversity responses requires long-term ecological datasets at appropriate scales,
implemented within a systematic conservation planning approach.

We aimed to prioritise wetlands for waterbirds using a systematic conservation planning
approach, using a unique 30-year record of systematic aerial surveys of multispecies waterbird
populations. The surveys systematically sampled 13.7% of the Murray-Darling Basin’s wet-
lands, with intervals of 200km between survey bands and placement based on random choice
of an initial survey band (Kingsford and Porter 2009). Surveys intersected wetland types with
similar proportions to those found across the basin. During this period, the Murray-Darling
Basin experienced several climatic phases of boom and bust (Fig 1). Waterbird surveys [49,
50], tracked changes in populations and communities [27, 51–53], (Fig 1). Waterbirds are
highly dependent on “boom” and “bust” phases of water availability [12, 17], using different
freshwater ecosystems for feeding and breeding. They are a diverse vertebrate group, useful for
monitoring and assessing freshwater ecosystems [17, 50, 54]. Prioritising wetlands that ade-
quately represent the full breath of waterbird diversity may significantly improve conservation
outcomes, over simple assessment of total numbers or diversity. The large temporal span of
our data provided a unique opportunity to test how prioritisation of wetlands varied across
years and how prioritisation of wetlands changed with water availability.
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Methods

Aerial Surveys
We used multispecies waterbird count data from aerial surveys across eastern Australia, a large
and long running wildlife survey in Australia (1983–2012) [50, 52]. This aerial survey has been
shown to provide a cost-effective method for surveying large number of waterbirds across large
areas [52]. An area of 2,697,000 km2 was systematically sampled across 10 survey bands, 30 km
in width, spaced every 2° of latitude (~200 km) from 38°30’S to 20°30’S [55, 56]. Seven of these
survey bands covered the Murray-Darling Basin, about 13.5% (143,365 km2) of its land surface
area (1,061,469 km2, Fig 2). The seven survey bands intersected with 13.7% (8,984 km2) of the
total wetland area (65,585 km2), comprising dams and natural wetlands (i.e., estuarine (8.5%),
lacustrine (10.9%), palustrine (14.2%), and riverine (12.5%)) [57]. The survey was considered
an unbiased sample as proportions of the five natural wetland types were similar within the
survey bands, compared to across all wetlands in the Murray-Darling Basin: estuarine (survey
0.45% cf. total 0.72%), lacustrine (9.6% cf. 12.0%), palustrine (87.9% cf. 85.0%), and riverine
(2.1% cf. 2.3%). Total area of mapped reservoirs in the Murray-Darling Basin was 1,154 km2

(1.76%) of which 238 km2 were surveyed, representing 2.73% of surveyed wetlands.
Fifty two waterbird species or grouped taxa were identified and counted on all wetlands

>1ha and on small wetlands on an ad hoc basis, within survey bands (Fig 2 and S1 Table). On
average, 351±157.7 (range 116–710) wetlands were surveyed each year.

Prioritisation
For prioritising wetlands for waterbird representation, we used the Marxan software [58]. It
uses a simulated annealing algorithm across a set of planning units, capturing defined targets
for a minimum total cost [59]. We solved a minimum-set problem by setting an objective func-
tion that minimised costs for these defined targets. Our costs were number of wetlands while
representations targets were a proportion of total abundance for each of the 52 waterbird spe-
cies over all wetlands. One challenge was the different boundaries of wetlands and floodplains.
We divided the land surface of the Murray-Darling Basin into 0.05x0.05 degree planning units
(PUs) (~5x5km), selecting the 7,202 PU that intersected aerial survey bands (Fig 2). Our deci-
sion on using relatively small and equally-sized PUs was made due to the large temporal varia-
tion in size of wetlands and floodplain. We then assigned each PU to its proximate wetland,
identified using the national 1:250,000 waterbody layer [57] and records made during the aerial

Fig 1. Total annual surveyed waterbird abundance, 1983–2012 (grey bars) and the corresponding z-
values of total annual flows (dashed line indicated 1SD bounds) in the Murray-Darling Basin.

doi:10.1371/journal.pone.0132682.g001
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Fig 2. Average irreplaceability scores (IrSc) of planning units (PUs) (small inset) across increasing prioritisation targets (10–100%) of total
waterbird abundance (1983–2012), for the 52 waterbird species (see Table 2 for wetland acronyms). The six (30km wide) aerial survey bands sampled
13.7% of the wetland surface area of the Murray-Darling Basin (inset, grey shade). Wetlands were mapped from satellite imagery (Kingsford et al. 2004).

doi:10.1371/journal.pone.0132682.g002
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survey. Small wetlands, particularly farm dams do not appear on this mapping, although they
were surveyed. These were assigned to the intersecting planning unit, even though they did not
intersect with a mapped wetland. Only a small proportion of waterbirds are found on these
small wetlands (Kingsford and Porter 2009). Generally the natural wetlands are large and dis-
tinctive. Where several PUs intersected a large wetland\floodplain, we aggregated those PUs
into a single wetland entity (hence a single PU). For each of the final 1,316 PUs, we summa-
rised the total abundance for each waterbird species stratified according to survey year (1983–
2012, n = 30). We set a constant cost for each PU, to identify minimal sets of PUs that achieved
our conservation targets. We examined wetland prioritisation scenarios with an incremental
(10%) increase in representation targets (10–100%) for total abundance of each waterbird spe-
cies, simultaneously across all species (52 species, 1983–2012). We calculated the rate of
increase in number of planning units, with increasing representation targets to identify the
most cost-effective representation target. Based on the identified representation target, we then
prioritised all PUs for each of the 30 years separately, based on annual waterbird counts. For
each scenario (i.e., varying representation targets and 30 years), we ran 1000 solutions identify-
ing PUs frequently selected across all solutions, a measure of irreplaceability for each year [60].
We then estimated the irreplaceability scores (IrSc) for each PU (range 0–1), where scores
close to one represented PUs critical for achieving representation target while scores near zero
represented PUs that did not contribute to required target. For ease of reporting, we catego-
rised IrSc into five classes: very low (IrSc<0.2), low (0.2�IrSc�0.4), moderate (0.4�IrSc�0.6),
high (0.6�IrSc�0.8), and very high (0.8�IrSc�0.99) and completely irreplaceable (IrSc = 1)
[61, 62].

We then examined two aspects of annual variation across the basin: (1) total number of
PUs, required to achieve representation targets, and (2) IrSc of each PU, across the entire basin
over the 30 years. We modelled these variations, using a generalized linear model, against
annual estimates of water availability in the Murray-Darling Basin and in other parts of the
Australian continent. We incorporated estimated flow, rainfall and Southern Oscillation Index
(SOI) which can be directly or indirectly related to wetland and resource availability of water-
birds occurring across the continent [12, 63, 64]. For rainfall, we compiled total annual rainfall
for the Murray-Darling Basin, Lake Eyre Basin, South-Eastern region (Melbourne); Eastern
region (Brisbane); Northern region (Darwin); and Southern region (Adelaide) [65]. We
obtained monthly Southern Oscillation Index [65] and calculated an annual estimate, as phases
are tied to El Nino and La Nina cycles associated with major periods of flooding and drying in
Australia [19, 66]. We used total annual flows in the Murray-Darling Basin (logged trans-
formed) [67].

We scaled all predictor variables to easy comparison. We tested for collinearity among pre-
dictor variables using the variance inflation factor (VIF) of each predictor[68]. We used a con-
servative measure, with a collinearity threshold of VIF�5. Subsequently, we removed total
rainfall from the Southern and Eastern regions from analyses. To deal with the uncertainty
around the direct contribution of water availability in the Murray-Darling Basin, we used a
Bayesian Model Averaging (BMA) approach for generalised linear models, assuming Gaussian
errors for total number of annual PUs and Poisson errors for IrSc of each PU. We used the ‘bic.
glm’ in the ‘BMA’ package [69], within the R statistical environment [70]. The BMA for gener-
alised linear models uses the ‘leaps and bounds’ algorithm (Furnival and Wilson 1974) and a
weighted averaging algorithm, based on Bayes’ theorem, with weights proportional to the
approximate posterior model probability to represent the relative strength of evidence in
favour of each model [71, 72]. As a measure of goodness-of-fit, we calculated Efron’s pseudo
R2 (squared correlation between the predicted values and actual values) [73]. The BMA process
enabled us to estimate the posterior probability of inclusion of water availability as a driver of
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annual variation in: 1) total number of PUs and 2) the IrSc in each PU. For the latter, we lim-
ited analysis and interpretation to PUs with IrSc in at least five years and quantified the rela-
tionship (i.e., negative or positive) by estimating the posterior mean coefficient of annual flows.

We used estimates of total annual flows across the Murray-Darling Basin to identify years
experiencing dry and wet conditions respectively: the bottom 25 percentile (2003, 2005–2009)
and the top 75% (1984, 1988–1990, 2010–2012). We then compiled IrSc of PUs, under these
extreme dry or wet years and examined how PU targets varied. Within the space of IrSc under
dry and wet years, we defined wetlands according to their potential ecological function: refugia
(PUs with high IrSc (�0.6) in only dry years), breeding (PUs with high IrSc (�0.6) in only wet
years), and both function (PUs with high IrSc (�0.6) in both dry and wet years). This was
rationalized since waterbird breeding is positively related to flow and rainfall while during
times of low water availability waterbird seek refuge in semi-permanent and permanent water
bodies [74–76]. Cutoffs provided summaries, rather than representing hard boundaries of eco-
logical function.

We also tested for variation in waterbird occupancy of wetland types (measured as IrSc),
between dry and wet years. To do this, we used established classifications of estuarine, lacus-
trine, palustrine, and riverine wetlands [57]. Wetland types represented distinct habitats,
driven by unique hydrological regimes, functionally different in the ecology of waterbirds, pro-
viding opportunities for feeding and breeding [17]. We then calculated the summed IrSc of
each wetland type, corrected by total wetland area, and computed the proportion of irreplace-
ability under dry and wet years. To support any sign for significant differences, we performed a
Pearson's Chi-squared Test using the built-in “chisq.test” function within the R statistical soft-
ware [70].

Results

Prioritising for waterbird communities
The number of wetlands required for different representation targets (10–100%) of total abun-
dance, 1983–2012, increased at varying rates. Representation of 10% of abundance for each
species was achieved with only 4 wetlands (IrSc�0.6): Lowbidgee, Cuttaburra Channels, Lower
Coorong, and the Thallon Waterholes, which also encompassed 54% of Banded lapwing
(Vanellus tricolor) and 13% of Wandering whistling-duck (Dendrocygna arcuata) abundance
(Fig 2 and S2 Table). Respective representation increments of 10% increased the number of
identified wetlands to: 6, 8, 11, 16, 20, 27, 34, 56, and 225. Additional priority wetlands were
consistently identified (average IrSc�0.6) with increasing representation targets: Paroo Over-
flow Lakes, Menindee Lakes, Macquarie Marshes, Waranga Basin (51% of total Silver gull
(Larus novaehollandiae) abundance), and Bracker Creek (71% of total Magpie goose (Ansera-
nas semipalmata) and 19% of total Plumed whistling-duck (Dendrocygna eytoni) abundance),
(Fig 2). Incremental increase in representation targets highlighted two cost-effective targets:
from 80% to 90% and 90% to 100%, requiring respective increases of 65% and 302% in the
number of wetlands.

Temporal variation
Annual estimates of waterbirds across the Murray-Darling Basin (1983–2012) varied consider-
ably from 17,171 to 695,781 waterbirds in the surveyed area (mean = 186,050, 95%CI:
127,398–244,701) (Fig 1). Over the 30-year period, three PUs averaged 0.8�IrSc�1 (Lowbid-
gee, Corop Wetlands, Menindee Lakes) and eight PUs averaged 0.6�IrSc�0.8 (Macquarie
Marshes, Coolmunda Dam, Fivebough Swamp, Paroo Overflow Lakes, Lower Coorong, Upper
Darling River, Cuttaburra Channels, and Waranga Basin) (Fig 3A). The number of PUs
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Fig 3. Average irreplaceability scores, when prioritising for a representation target of 80% of waterbird abundance for each of the 52 waterbird
species, simultaneously across all species and (A) across all years 1983–2012; (B) during wet years; and (C) during dry years.

doi:10.1371/journal.pone.0132682.g003
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required over this 30-year period to achieve a representation target of 80% for all 52 waterbird
species, ranged from 13 PUs (IrSc�0.6) (1986) to 47 PUs (1999), (average PUs 26.3, 95%CI:
23.34–29.25). Total flows in the Murray-Darling basin had largest negative effect the (β =
-1.57, posterior probability of inclusion pp = 0.53) on the number of PUs required to achieve a
representation target of 80%, meaning the number of PUs decreased with increasing flows
(Table 1). There was also some indication of increasing number of PUs with years (β = 0.66,
pp = 0.29).

There was also spatial variation in which PUs were included each year, reflecting the size of
annual river flows across the basin, 1983–2012. Forty PUs had annual flows in the Murray Dar-
ling Basin with a posterior probability (pp)�0.6 (Pseudo R2 = 0.25±0.12sd). Of these, 17 had a
positive relationship with annual flows while 32 were negatively related to annual flows (Fig 4).
Noteworthy wetlands with strong positive relationship included: Macquarie Marshes (mean
posterior coefficient = 0.28), Tallywalka system (0.23), Lower Coorong (0.23), Paroo overflow
lakes (0.15), Menindee Lakes (0.15), Cuttaburra Channels (0.14), and Corop Wetlands (0.10)
(Fig 4). Noteworthy wetlands with negative relationship included: Fivebough Swamp (-0.27),
Split Rock Reservoir (-0.24), Burrendong Dam (-0.19), Murray River and Euston Lakes (-0.15),
Waranga Basin (-0.11), and Upper Darling River (-0.10) (Fig 4).

Significant differences were apparent between wetland types (estuarine, lacustrine, palus-
trine, and riverine) and their prioritisation (IrSc), varying across wet and dry years (χ2 = 201.3,
df = 3, p<0.001), (Fig 5). In dry years, PUs in riverine and lacustrine systems had high IrSc,
while in wet years, lacustrine and palustrine were important. In wet years (i.e.,�75% percentile
Murray Darling Basin annual flows), number of PUs for species-level representation ranged
between 14 (2012) to 21 (1989), (average 17.57, 95%CI: 15.71–19.43), (Fig 3B). Two PUs had
an average IrSc = 1 (Lowbidgee, Cuttaburra Channels); three PUs averaged 0.8�IrSc�1 (Mac-
quarie Marshes, Corop Wetlands, Menindee Lakes) and; three PUs averaged 0.6�IrSc�0.8
(Lower Coorong, Paroo Overflow Lakes, Waranga Basin (62% of Silver Gull and 9% Chestnut
Teal (Anas castanea) abundances). In dry years (i.e.,<25% percentile Murray-Darling Basin
annual flows), the number of PUs ranged between 16 (2008) and 42 (2007) for 80% representa-
tion (average 27.33, 95%CI: 19.97–34.70), (Fig 3C). Two PUs had an average IrSc = 1 (Cool-
munda Dam, Fivebough Swamp), four PUs with average 0.8�IrSc�0.99 (Lowbidgee, Upper
Darling River, Corop Wetlands, Waranga Basin (16% of Chestnut Teal and 12% Silver Gull
abundances)), and six PUs averaged 0.6�IrSc�0.8 (Murray River and Euston Lakes, Split Rock
Reservoir, Lake Mokoan, Lindsay-Walpolla-Chowilla Wetland Complex, Burrendong Dam,
Great Cumbung Swamp). Wetlands that were important only in wet years and not dry years

Table 1. Results of generalized linear model analysis, using Bayesian model averaging, showing the
posterior probability (pp) and posterior mean coefficient estimates (β±sd) for explanatory variables
(scaled), (Pseudo R2 = 0.23). Analyses focused on numbers of planning units (PUs) required, each year
(1983–2012), to achieve an 80% representation target of abundance for each of the 52 waterbird species,
simultaneously across all species, across the surveyed Murray-Darling Basin.

Explanatory Variable pp β±sd

Intercept 1.000 26.33±1.33

Flow–Murray-Darling Basin 0.532 -1.574±1.864

Year 0.294 0.655±1.382

Rainfall–South-eastern Australia 0.277 -0.585±1.286

Rainfall–Northern Australia 0.246 0.549±1.434

Rainfall—Lake Eyre Basin 0.218 -0.453±1.404

Southern Oscillation Index 0.111 0.068±0.566

doi:10.1371/journal.pone.0132682.t001
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Fig 4. Posterior mean coefficient (estimated using Bayesian Model Averaging) of total annual flows in the Murray-Darling Basin, against
irreplaceability scores (IrSc) of each planning unit (PU), 1983–2012.

doi:10.1371/journal.pone.0132682.g004
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included the Cuttaburra Channels (1 wet/0.47 dry), Menindee Lakes (0.96 wet/0.44 dry), Mac-
quarie Marshes (0.95 wet/0.42 dry), Lower Coorong (0.71 wet/0.5 dry), and Paroo Overflow
Lakes (0.6 wet/0.22 dry). Contrastingly, refugia were represented by wetlands important in dry
and not wet years (Fig 6). These included Coolmunda Dam (0.47 wet/1 dry), Fivebough
Swamp (0.27 wet/1 dry), Upper Darling River (0.58 wet/0.89 dry), Murray River and Euston
Lakes (0.14 wet/0.79 dry), Split Rock Reservoir (0.37 wet/0.72 dry), Lake Mokoan (0.47 wet/
0.71 dry), Lindsay-Walpolla-Chowilla Wetland Complex (0.40 wet/0.70 dry), Burrendong
Dam (0.24 wet/0.62 dry). Three wetlands were important in both wet and dry conditions (Fig
6): the Lowbidgee (1 wet/0.94 dry), Corop Wetlands (0.86 wet/0.85 dry), and Waranga Basin
(0.76 wet/0.81 dry).

Fig 5. Proportion of irreplaceability scores by system type (estuarine, lacustrine, palustrine, riverine),
during wet and dry years.

doi:10.1371/journal.pone.0132682.g005

Fig 6. Irreplaceability scores of PUs under wet and dry phases, showing arrows that indicate functional role of wetlands as solely as refugia or,
breeding sites and wetlands supporting both functions.

doi:10.1371/journal.pone.0132682.g006
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Discussion
Clear differences emerged in the analysis of wetlands identified for waterbird conservation
across the Murray-Darling Basin, based on 30-years of aerial surveys. Several key wetlands con-
sistently represented the full breadth of waterbird diversity (S2 Table). These were generally
large natural wetlands, usually lakes, floodplains and swamps (Table 2). Importance of wet-
lands varied between years and in response to water availability (Figs 1 and 3–5). Such spatio-
temporal variation in wetland importance exemplifies the considerable challenges in
developing a conservation planning framework for the protection of wetland ecosystems,
across large scales, when there are few data. This problem is particularly acute for dryland river
systems which experience the highest levels of temporal flow variation in the world [77]. Cap-
turing the spatiotemporal dimensions in a boom and the bust system is essential for effective
conservation of biodiversity dependent on such rivers and wetlands, because long-term viabil-
ity of the many organisms are highly reliant on such dynamics (Figs 3 and 6). Important habi-
tats need to be protected for boom and bust phases. Despite this challenge, there were still
relatively few key wetlands of importance during boom and bust phases.

Boom phases—breeding
Breeding habitats are important to identify because successful recruitment underpins long-
term maintenance of populations (Fig 6). Breeding of waterbirds is triggered by large flooding
events [36, 50, 75], potentially phased for different species [17]. These events substantially
increase the viability of colonially breeding waterbirds and may catalyse successive breeding
attempts [56, 76, 78, 79]. These floods, triggered by high flows produced high widespread
aquatic productivity and considerable reproduction and recruitment of aquatic organisms [80–
83]. Many of these provide resources for waterbirds. These large flows also maintain

Table 2. Wetland complexes in the Murray-Darling Basin identified as priorities when setting an 80% representation targets for each of the 52
waterbird species, simultaneously across all species, across all years (overall), during dry and wet years, along with total and average (±95%CI)
waterbird abundances estimated during the aerial surveys of waterbirds in eastern Australia.

Wetland complex Dry Wet Overall Average, 95%CI

Lowbidgee X X X 52728, 32628–72828

Cuttaburra Channels X X 20399, 6439–34359

Menindee Lakes X X 15551, 4735–26367

Macquarie Marshes X X 11426, 3626–19225

Paroo Overflow Lakes X X 10425, 4691–16159

Darling River X X 6836, -2402-16073

Corop Wetlands X X X 5932, 3619–8246

Coorong, Lower Lakes and Murray Mouth X X 4011, 1109–6913

Fivebough Swamp X X 3940, 2512–5368

Coolmunda Dam X X 3814, 2498–5130

Great Cumbung Swamp X 3730, 1524–5936

Burrendong Dam X 2222, 50–4393

Murray River and Euston Lakes X 2117, -175-4409

Waranga Basin† X X X 1807, 424–3190

Lindsay-Walpolla-Chowilla Wetland Complex X 1544, 639–2449

Lake Mokoan X 1294, 808–1780

Split Rock Reservoir X 970, 551–1389

† Likely driven by high occurrence of Silver gull

doi:10.1371/journal.pone.0132682.t002
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longitudinal (in-stream) and lateral (floodplain) connectivity [48, 84, 85], allowing for
exchange of abiotic and biotic components between channel and floodplain environments
[86].

Lacustrine and palustrine habitats were consistently important for waterbirds during boom
years of high flows (Fig 5). These included eight wetland complexes, critical for supporting
waterbirds during wet years (Table 2 and Fig 6). Of these, five were important during wet but
not during dry years. These were: Cuttaburra Channels, Menindee Lakes, the Macquarie
Marshes, Paroo Overflow Lakes, and Lower Coorong. The Macquarie Marshes are a well-
known and critically important site for breeding waterbirds of high conservation importance
[36, 87] and similarly, the Paroo wetlands regularly support large numbers of waterbirds [50],
often in large breeding concentrations [51, 88, 89]. Combined, these wetlands provided habitat
for almost 22,000 per year (Table 2). They are clearly wetlands of considerable importance,
reflected in their gazettal as protected areas and Ramsar sites. However, only about 10% of the
Macquarie Marshes is included in the protected areas system while only some of the Paroo
overflow lakes are part of Paroo-Darling National Park. Further accentuating the importance
of the Macquarie Marshes, our surveys only cover about one third of the Macquarie Marshes
in the north (30km survey band), meaning their value for waterbirds is significantly higher
than we measured during our surveys, possibly three times higher [90]. The maintenance of
flow and flooding regimes to these wetlands remains of paramount importance for their long-
term viability. For the Macquarie Marshes, given its considerable reduction in size and area as
a result of diversions upstream [90], increasing environmental flows and their effective man-
agement remains critically important for waterbird populations [36].

Bust phases—refugia
There are potential bottlenecks of habitat during bust phases, defined by the magnitude, fre-
quency, and duration of drying [14, 91], when there are relatively few large wetland habitats
with water available, at large spatial scales [18]. During these bust phases, there is large-scale
desiccation and fragmentation of freshwater habitats, reducing freshwater habitat availability
[92, 93]. Dry phases can also drastically reduce populations, affecting community structure,
and driving extinctions in local populations [94, 95]. They represent periods of considerable
concern for organisms such as waterbirds which are highly dependent on availability of wet-
land habitat [75]. Drying is an important process for wetland ecosystems, maintaining habitat
heterogeneity and controlling complementary biochemical processes [96] but also ultimately
contributing to wetland productivity for waterbirds [97]. Waterbirds can access these refuges
given their capabilities for long distance dispersal [17, 98, 99]; such refugia (i.e., waterholes,
lakes, rivers) can provide resources to survive during dry years [18, 100]. The spatial distribu-
tion and size of refuge sites is vital for waterbirds to survive over such bust phases when mortal-
ity is high [12, 17].

Refugia sustain the capacity of organisms to increase population sizes when inevitable boom
phases follow [93]. We identified a relatively small number of refugia (Fig 6), identified as
lacustrine and riverine habitats with high irreplaceability scores (Fig 5). During dry times and
after the boom phases, waterbirds often concentrate in large numbers on such available wet-
lands [56]. Most prominently, these included the Upper Darling River, Fivebough Swamp,
Coolmunda Dam (Table 2). Identifying and ensuring such refugia habitats are maintained dur-
ing dry phases is critical for conservation. Similarly, there is opportunity to provide environ-
mental water to such sites to ensure longevity of wetland habitat for waterbirds in an otherwise
dry matrix of wetlands. Large dams (e.g., Coolmunda, Burrendong, and Waranga Basin) pro-
vide some opportunities for waterbirds to survive although it is not clear whether such habitats
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provide sufficient food for long periods. Coolmunda Dam is a large shallow during dry periods,
providing considerable edge habitats for waterbirds. These dams may become increasingly
important as some large lakes and swamps on regulated rivers likely retain water less frequently
than before river regulation, as drying periods have increased [101, 102]. Also as the dams
become shallower, they may also become functionally more like natural wetlands.

Management implications
Increased drying phases may push organisms, including waterbirds, beyond their limits of nat-
ural resilience, given compounding impact of river regulation and water abstractions [103,
104]. In the heavily regulated Murray-Darling Basin, identifying a subset of wetlands that can
be managed with environmental water during dry periods may also be particularly important.
This is particularly challenging for the basin which supports over 30,000 wetlands, including
16 of international importance [105]. Many of these wetlands have undergone significant deg-
radation due to river regulation and modified hydrological regimes [101]. Recent acquisition of
environmental flow allocations provides opportunities for recovery of some functions and
increasing their functions as refugia [106, 107]. Watering actions commonly target specific
wetlands, using available environmental water for key objectives (e.g. waterbird breeding) in a
particular year. Developing a prioritisation framework, at large spatial and temporal scales, for
wetlands could significantly improve allocation of environmental water at large spatial scale
where particular refugia might be critical for waterbirds. For highly mobile waterbirds, this
needs to be coordinated across wetlands, across river catchments, managed through boom and
bust phases. This is also particularly important for waterbird breeding which may be critically
important [76, 108]. Our analyses were limited by the coverage of only 13.7% of all wetlands in
the Murray-Darling Basin [56], given long-term data availability. There is future opportunity
to extend such analyses to all wetlands across this basin, identifying all key wetlands for water-
birds [109], with appropriate long-term data. We considered our sample of wetlands in the sur-
vey bands reasonably unbiased as survey bands were randomised and systematically placed
across the Murray-Darling Basin (Fig 1). These survey bands covered the major rivers and dif-
ferent climatic zones. Further, there was similarity in the proportions of each wetland types
surveyed, compared all wetlands across the Murray-Darling Basin. This provides some confi-
dence that our wetland prioritisation can represent the full breath of waterbird diversity as well
as the functions of different types of wetland in the Murray-Darling Basin, albeit requiring the
data for other wetlands to show this.

Challenges
Considerable challenges remain for developing a conservation approach that prioritises not
only wetlands but also management strategies for waterbirds at the scale of an entire basin.
Shortlisting which waterbird species are of conservation concern will narrow the number of
wetlands. For example, Waranga Basin was identified as important because it held large con-
centrations of Silver gull, an acknowledged pest species [110], but would clearly be omitted.
This could focus management on species at risk of extinction (e.g., Australasian bittern (threat-
ened), painted snipe (threatened), Cape Barren goose (vulnerable)). Also, there is a need to
incorporate understanding of population dynamics to assess the long-term viability of individ-
ual species [111]. This could identify vital requirements and support targeted environmental
flow allocations. These would require compiling waterbird life histories, along with more fine-
scale studies of behaviour and habitat requirements. Lower trophic levels would also require
attention, such identifying the importance of food resources to different species (e.g. fish for
piscivorous waterbirds [29, 31]. Dealing with migratory birds will also require protecting
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habitats and resources beyond the Murray-Darling Basin during the non-breeding season
[112]. Large scale climatic events can also confound observed variation in waterbird abundance
and composition, although recent work indicates water availability within the basin is the larg-
est driver of waterbird abundances [113].

Conclusions
Prioritising areas using long-term waterbird aerial surveys provided us with unique insights
into the spatial and temporal variability of wetlands of importance for waterbirds during wet
and dry extremes. Only a relatively small subset of wetlands provided habitat for a large pro-
portion of recorded waterbirds (1983–2012), (Fig 6, Table 2). The long-term viability of water-
bird species in highly regulated systems will ultimately depend on strategies that target key
wetlands for conservation protection during natural boom and bust phases and reinstating
these phases with environmental flows. In particular, it is important to ensure that sufficient
refugia exist during dry periods to sustain waterbird populations and key breeding sites are a
focus for environmental flow management.
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