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Abstract: There are famous examples of simple (e.g., hemlock, Conium maculatum L.) and complex
(e.g., opium poppy, Papaver somniferum L., Papaveraceae) piperidine-alkaloid-containing plants.
Many of these are highly poisonous, whilst pepper is well-known gastronomically, and several
substituted piperidine alkaloids are therapeutically beneficial as a function of dose and mode of
action. This review covers the taxonomy of the genera Aconitum, Delphinium, and the controversial
Consolida. As part of studying the biodiversity of norditerpenoid alkaloids (NDAS), the majority of
which possess an N-ethyl group, we also quantified the fragment occurrence count in the SciFinder
database for NDA skeletons. The wide range of NDA biodiversity is also captured in a review of over
100 recently reported isolated alkaloids. Ring A substitution at position 1 is important to determine
the NDA skeleton conformation. In this overview of naturally occurring highly oxygenated NDAs
from traditional Aconitum and Delphinium plants, consideration is given to functional effect and to real
functional evidence. Their high potential biological activity makes them useful candidate molecules
for further investigation as lead compounds in the development of selective drugs.
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1. Piperidines: Poisonous, Tasty, and Beneficial

Nature is rich with examples of plants that can be described as medicinal or poisonous.
The controversy in the description spotlights the fact, well known in pharmacy and the
pharmaceutical sciences, that dose and mode of action are critical. Out of thousands of
plants with various types of active principles, many examples can be found of natural
sources of alkaloids containing a substituted piperidine nucleus.

There are well-known examples of simple piperidine-alkaloid-containing plants, such
as the famous poison hemlock (Conium maculatum L.), in the family Apiaceae (formerly
Umbelliferae). It is a lethal poison that was given to criminals in ancient Greece and that the
Greek philosopher, Socrates, was forced to drink (399 B.C.) [1]. The principal component
of poison hemlock is the piperidine alkaloid coniine 1 (Figure 1), which is a nicotinic
acetylcholine receptor (nAChR) agonist [1] where the importance of the positive centre was
highlighted in the Beers–Reich model [2]. Consumption of C. maculatum leads to various
degrees of toxicity in animals, where it has been found that it is more poisonous to cattle
than to other animals. Human toxicity signs were described by Socrates’ pupil as trembling,
staggering, and rapid muscular weakness. Death resulting from hemlock poisoning is
mainly due to respiratory failure [1,3]. Another nAChR agonist is anabasine 2, a natural
nicotine-3-like isomer compound from Nicotiana spp. (tobacco) of the family Solanaceae.
Two important species are N. glauca (wild tree tobacco) and N. tabacum L. Anabasine 2 is the
major component in N. glauca, while nicotine 3 is the main constituent in N. tabacum L. [3–5].
Another source of piperidine alkaloids is Lobelia spp. (Campanulaceae). An important
example is the Indian tobacco, L. inflata L., which is used traditionally in smoking cessation
and in the treatment of respiratory conditions [6]. Lobeline 4 is the major and the most
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biologically active component of L. inflata L. It was found that lobeline 4 can be described
as agonist, antagonist, or mixed agonist/antagonist at nAChR [7].
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Lupinus spp. (Fabaceae) consumption leads to teratogenic crooked calf disease. The
teratogenicity was initially suggested to be due to the quinolizidine alkaloid, anagyrine 5 [5,8].
As similar teratogenicity happens in livestock due to the consumption of C. maculatum and
N. glauca, which contain mainly piperidine alkaloids [4,9,10], it is now suggested that the
main piperidine alkaloid, ammodendrine 6, which is found in many Lupinus spp. such
as L. formosus, is responsible for such deformations. Keeler and Panter [8] showed that
anagyrine 5 exists as a minor component in L. formosus, while ammodendrine 6 is the major
one, supporting that the piperidine alkaloid 6 is responsible for the teratogenicity.

Black pepper, Piper nigrum L. (Piperaceae), is known as the king of spices, and it is the
natural source of piperine 7 which shows anti-inflammatory, antioxidant, anticancer, and
antimicrobial activities [11–13]. 1-Deoxynojirimycin 8 is another example of a piperidine
alkaloid which acts as one of the most potent α-glycosidase inhibitors and has relevant
biological activity in the treatment of hyperglycaemia and obesity. It is naturally occurring
in the leaves of white mulberry, Morus alba L. (Moraceae) [14,15].

In addition to simple piperidines, there are many famous examples of piperidine-
containing plants where the piperidine ring is part of a complex skeleton. Papaver som-
niferum L. (Papaveraceae), also known as opium poppy, is a natural source of the opioids
morphine 9 and codeine 10. These piperidine-containing alkaloids are used as strong
analgesics, but are also abused in addiction [16,17]. The potency of morphine 9 is much
higher than codeine 10, and the fact that codeine 10 exerts its analgesic effect after being
metabolized into morphine 9 highlights the importance of the phenolic alcohol in the
activity at µ opioid receptors [18]. Another example is cytisine 11, which is derived from
Laburnum anagyroides Medik. (Fabaceae), and it acts as an nAChR agonist. The skeleton of
cytisine 11 shows that the piperidine coexists with a quinolizidine ring [3,19] and fits the
Beers–Reich model, as cytisine 11 contains a cationic centre and heteroatoms, where the
model showed that the distance between them in nAChR ligands is 5.9 Å [2].

There are piperidine-containing alkaloids, which are C-18 and C-19 norditerpenoid
alkaloids (NDAs) from Aconitum and Delphinium (Ranunculaceae), and especially aconitine
12, lappaconitine 13, lycoctonine 14, lycaconitine 15, and methyllycaconitine (MLA) 16. The
C-19 NDA aconitine 12 was first discovered in 1833 by P. L. Geiger from A. napellus [20,21].
It is considered a potent lethal cardiotoxin that acts on voltage-gated sodium channels
(VGSC) and keeps them in an open conformation. In contrast, lappaconitine 13, which was
the first C-18 NDA to be discovered, is a VGSC blocker [22]. The hydrogen bromide (HBr)
salt of lappaconitine 13 (allapinine) is used clinically in Russia as an anti-arrhythmic drug.
Lappaconitine 13 was first discovered from A. septentrionale Koelle by H. V. Rosendahl in
1895 [23,24]. Lycoctonine 14 was first reported in 1865 from A. lycoctonum L. [25]. Lycaconi-
tine 15 was first reported in 1884 from A. lycoctonum L. [26]. MLA 16, a C-19 NDA, was first
discovered by Manske in 1938 in D. brownii Rydb [27]. Goodson (1943) later determined
its exact formula [28]. MLA 16 acts as a potent competitive antagonist on α7-nAChR [29].
The importance of the piperidine nitrogen of NDAs in the interaction with nAChR was
proven, as semi-synthetic analogues with quaternary nitrogen showed higher activity, and
that suggests that the nitrogen is a main site of receptor interaction [30]. All the previous
examples show alkaloids which contain piperidine alone or they coexist with other het-
erocycles. Scopolamine (hyoscine) 17, L-hyoscyamine 18, and atropine (dl-hyoscyamine)
19 (Figure 1) are examples of alkaloids that contain a piperidine ring fused with pyrroli-
dine (tropane alkaloids). These alkaloids are antagonists at the muscarinic acetylcholine
receptors (mAChR) and are derived from many plants of the nightshades (Solanaceae).
These compounds meet the Beers–Reich pharmacophore criteria, as they contain a cationic
centre and a Van der Waals surface (heteroatoms). A member of the nightshades is Datura
stramonium L., which is also known as thornapple and jimsonweed [31,32].

2. Taxonomy of Aconitum, Delphinium, and Consolida

Diterpenoid alkaloids are found mainly in Aconitum, Delphinium, and Consolida within
the family Ranunculaceae, and Garrya (silk tassel) from the family Garryaceae. Apart from
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these genera, three diterpenoid alkaloids, lycoctonine 14, MLA 16, and inuline (which is
the 2-aminobenzoate ester of lycoctonine 14) have been reported from Inula royleana (Aster-
aceae) [33]. The three families (Ranunculaceae, Garryaceae, and Asteraceae) are classified
under the Angiospermae class (flowering plants) [34–36]. C-18 and C-19 NDAs are derived
from only three genera within Ranunculaceae: Aconitum, Delphinium, and Consolida. The
Ranunculaceae family contains around 43 genera and more than 2000 species [37]. Aconitum
L. with around 330 species and Delphinium L. with around 450 species are considered the
major genera in this family [38,39].

All three of these genera are classified within the tribe Delphinieae of the subfamily
Ranunculoideae. [40]. A scientific classification of Aconitum, Delphinium, and Consolida is
shown in Scheme 1 [36,40–42].
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Scheme 1. Scientific classification of Aconitum, Delphinium, and Consolida from the Plantae kingdom.

Aconitum L. has been divided into three subgenera (Aconitum, Lycoctonum (DC.) Pe-
term., and Gymnaconitum (Stapf) Rapes). The Aconitum subgenus Aconitum produces
biennial tuberous roots, while subgenus Lycoctonum (DC.) Peterm. species have perennial
rhizomes. The only annual species of the Aconitum genus can be found in subgenus Gymna-
conitum (Stapf) Rapes. [43]. The Delphinium L. genus is also divided into two subgenera
(Delphinastnim (DC.) Wang and Delphinium) [44], and the species within this genus are
usually perennial (occasionally annual) [45]. Due to the shape of flowers of the Delphinium
species which resemble dolphins, the Delphinium genus takes its name from the Greek word
delphis [45].
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The genus Consolida has proved to be more controversial. A. P. De Candolle separated a
group of annual species from the genus Delphinium L. to form an independent section (Con-
solida DC.). S.F. Gray changed the section Consolida to the rank of a genus in 1821 (Consolida
(DC.) S.F. Gray). Boisser gave the rank of genus to the Consolida section of Delphinium L. in
1867 and Huth gave it the rank subgenus in 1895 [46]. Huth was the last worker to include
Consolida within Delphinium. Much more recently, Jabbour and Renner (2011) suggested
using a DNA phylogenetic study that Consolida should be embedded in Delphinium [47].
Commonly, Delphinium and Consolida species are called larkspur, which is also a name
derived from the shape of the flowers [45]. The colourful flowers of the Delphinium species
gave rise to many cultivated species (cultivars) that are used as ornamental plants in the
garden. These hybrid species come from crossing different parent plants and mainly from
the tetraploid D. elatum L. [48,49]. Examples of the hybrid Delphinium varieties are the giant
pacific court hybrids which originate from D. elatum and other species such as D. exaltatum
and D. formosum [50].

3. NDA Chemical Toxicity

North Americans have divided the Delphinium (larkspur) plants into three categories
depending on habit of growth and environment. First are the tall larkspurs (such as D.
barbeyi, D. occidentale), which are 1–2 m tall and generally exist at altitudes above 2400 m in
moist habitats. Second are the intermediate larkspurs (such as D. geyeri, plains larkspur),
which are 0.6–1 m tall and grow on the short grass prairies of Nebraska, Wyoming, and
Colorado. The third category is low larkspurs (such as D. andersonii), which are less
than 0.6 m tall and generally grow in the desert/semidesert, foothills, or low mountain
ranges [51,52]. Delphinium (larkspur) alkaloids cause economically important livestock
toxicity across North American ranges [51,53]. Tall larkspurs contain higher amounts of
toxic NDAs and are therefore considered a greater threat [54]. Intoxication happens due to
the action of NDAs at the α1-nAChR expressed at neuromuscular junctions (NMJ) [55].

It was found that the livestock intoxication by larkspurs is controlled by different
factors, for example, cattle breed and genetics affect the susceptibility to the intoxication.
Age is another factor, where young heifers are more susceptible than mature cows. The
cattle sex was reported to be an effective factor, where heifers are more prone to the toxicity
than steers and bulls. Lastly, the plant factor plays an important role, where the alkaloid
concentration and composition of methylsuccinimidoanthranoyl-lycoctonine (MSAL) and
non-MSAL (Figure 2), which depend on the population, species, climate, and the year,
affect the toxicity in cattle and the amount needed to develop clinical signs [56,57].

The toxicity of NDAs found in three tall larkspur species (D. barbeyi, D. occidentale, D.
glaucescens) was tested in mice. The assay revealed that the 7,8-methylenedioxy-lycoctonine
(MDL) alkaloids are the least toxic NDAs. The lycoctonine-type is twice as toxic as MDL,
but it is considered to be a low toxic group, where the least toxic alkaloid of this category,
brownine 20, has a toxicity which is comparable to the MDL NDA. The MSAL alkaloids
MLA 16 and 14-deacetylnudicauline 21 were 10-times more toxic than any other tested
NDAs (Figure 2) [54].

MSAL is much more toxic than MDL, and the MSAL level in the tall larkspurs mainly
contributes to livestock poisoning. A report investigated the importance of the MDL
alkaloids and found that MDL alkaloids exacerbate the toxicity of the MSAL alkaloids;
as the ratio of MDL to MSAL increases, the amount of MSAL that is needed to develop
clinical signs decreases. The exact mechanism of this MDL action is not known, but it was
suggested that MDL may act as a co-agonist in an allosteric manner or at the orthosteric
ligand binding site of the receptor to exacerbate the toxicity of MSAL-type alkaloids on
nAChR and therefore increase their toxicity [58]. The observed action could also be due to
an effect of MDL alkaloids on metabolic enzymes which results in prolonged exposure to
the MSAL alkaloids, but further investigation is needed.
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4. Norditerpenoid Alkaloid (NDA) Biodiversity

NDAs have complex highly oxygenated hexacyclic systems, and as many of them are
of pharmacological importance, their structures and 3D configuration are significant factors
in their actions at various biological targets [59]. The majority of NDAs possess an N-Et
group, as shown in Table 1, which shows various NDA skeletons and their abundance in the
SciFinder database. Substitution at position 1 is important to determine the NDA skeleton
conformation, as ring A in 1-OMe NDA free bases exists in a twisted-chair conformation,
and in 1-OH NDA ring A adopts a twisted-boat conformation [60,61]. Table 1 shows that 1-
OMe NDA abundancy is 10-times higher than 1-OH NDA. The biological activity of NDAs
attracts natural product chemists to investigate their sources, and that has resulted in the
discovery of interesting NDA skeletons, some of them with pharmacological importance.

Table 1. NDA skeleton occurrence count in the SciFinder database.
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Recent phytochemical investigations reported on Aconitum and Delphinium species
show the wide variety of structural motifs in such NDAs. Chen et al. reported the
extraction of a new aconitine-type NDA with a 1-OH substitution, pubescensine 22 from
A. soongaricum var. pubescens, and this showed a potent insect antifeedant activity (EC50
< 1 mg/cm2) [62]. Ding and co-workers discovered four new NDAs, vilmorines A–D
23–26 from A. vilmorinianum (Figure 3) [63]. Vilmorine D 26 exhibited moderate to weak
antioxidant activity (Fe2+ chelation activity) with IC50 = 33.6 ± 0.2 µg/mL, and it showed
antibacterial activity against Staphylococcus aureus and Bacillus subtilis with MICs of 64
and 32 µg/mL, respectively. Vilmorine A 23 has an unusual spiro junction. Only three
such compounds were isolated with that characteristic skeleton (Table 1). Vilmorine A 23
also has the really unusual 1-β-OMe group, whereas the vast majority of the position 1
substituents have an α-configuration. Vilmorines B–C 24–25 have an unusual cyclopropyl
moiety, and they are rare examples containing an imine (piperideine) (Table 1).
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Qin et al. isolated five new NDAs from A. carmichaelii, carmichaenine A–E 27–31 [64],
with characteristic 1-OH substitutions. Majusine D 32 from D. majus W. T. Wang and
stapfianine A 33 from A. stapfianu were discovered as new C-19 NDAs [65,66] with 1-OH
substitutions. Sharwuphinine B 34 was discovered from D. shawurense as one of the few
quaternary C-19 NDAs (Figure 4) [67].
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Chen et al. isolated two imine (piperideine)-type NDAs, vilmorrianines F–G 35–36, in
addition to new N-desethyl-N-formyl-8-O-methyltalatisamine 37 from A. vilmorinianum
Komarov [68]. Six new NDAs, 6-dehydroeladine 38, elapacidine 39, iminopaciline 40,
iminoisodelpheline 41, iminodelpheline 42 (piperideines), and N-formyl-4,19-secopacinine
43, were extracted from D. elatum seeds (Figure 4) [69]. Shan et al. reported two new
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C-18 NDAs, anthriscifoltine A–B 44–45 from D. anthriscifolium var. majus [70]. Ding and
co-workers also isolated three new NDAs, vilmotenitines A–C 46–48 from A. vilmorinianum
var. patentipilum, (Figure 5) where vilmotenitines A and B 46–47 had an unusual (spiro)
rearranged six-membered B ring [71], as they had found in vilmorine A 23 with the inverted
substituent stereochemistry at position 1 [63].

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 12 of 25 
 

 

Chen et al. isolated two imine (piperideine)-type NDAs, vilmorrianines F–G 35–36, 
in addition to new N-desethyl-N-formyl-8-O-methyltalatisamine 37 from A. vilmorinianum 
Komarov [68]. Six new NDAs, 6-dehydroeladine 38, elapacidine 39, iminopaciline 40, imi-
noisodelpheline 41, iminodelpheline 42 (piperideines), and N-formyl-4,19-secopacinine 
43, were extracted from D. elatum seeds (Figure 4) [69]. Shan et al. reported two new C-18 
NDAs, anthriscifoltine A–B 44–45 from D. anthriscifolium var. majus [70]. Ding and co-
workers also isolated three new NDAs, vilmotenitines A–C 46–48 from A. vilmorinianum 
var. patentipilum, (Figure 5) where vilmotenitines A and B 46–47 had an unusual (spiro) 
rearranged six-membered B ring [71], as they had found in vilmorine A 23 with the in-
verted substituent stereochemistry at position 1 [63]. 

 
Figure 5. NDAs 44–48. 

Two new C19 NDAs, iliensine A and B 49–50, were isolated from D. iliense, where 
iliensine A 49 had a characteristic glycosidic linkage [72]. Wada et al. isolated four new 
C19 NDAs with a 7,8-methylenedioxy moiety from D. elatum [73], 19-oxoisodelpheline 51, N-
deethyl-19-oxoisodelpheline 52, N-deethyl-19-oxodelpheline 53, and melpheline 54 (Figure 6). 

Figure 5. NDAs 44–48.

Two new C19 NDAs, iliensine A and B 49–50, were isolated from D. iliense, where
iliensine A 49 had a characteristic glycosidic linkage [72]. Wada et al. isolated four new
C19 NDAs with a 7,8-methylenedioxy moiety from D. elatum [73], 19-oxoisodelpheline
51, N-deethyl-19-oxoisodelpheline 52, N-deethyl-19-oxodelpheline 53, and melpheline 54
(Figure 6).

Wang and co-workers discovered three new C19 NDAs, szechenyianine A, B, and
C 55–57, from A. szechenyianum [74]. All three compounds were tested against nitric
oxide (NO) release inhibition, as they were considered potential anti-inflammatory agents.
Szechenyianine A 55 showed activity with IC50 36.6 ± 7 µM, while szechenyianine B 56 had
IC50 3.3 ± 0.1 µM, and that highlights the importance of the N-O moiety. Szechenyianine C
57 (Figure 6) which is a 7,17-secoaconitine-type NDA, also showed potent activity, with
IC50 7.5 ± 0.9 µM.

Chao Zhan et al. reported caerudelphinine A 58, a new 1-OH C-19 lycoctonine-type
NDA from D. caeruleum Jacq. ex Camp [75]. Grandiflorine B 59 was also reported as
a new C-19 lycoctonine-type NDA from D. grandiflorum [76]. The unusual skeleton of
grandiflorine B 59 shows cleavage of the 7–17 bond and N-C19 bond and the formation
of an unusual N-C7 bond. Zhao et al. reported three new NDAs, nagaconitine A–C 60–62
from A. nagarum var. heterotrichum [77]. Nagaconitine A 60 has a unique acyl group which
was reported in only three NDAs. 8,14-Diacetate diester 62 showed antitumor activity
against cancer cell line SK-OV-3. Two more new C-19 NDAs, 14-benzoylliljestrandisine 63
and 14-anisoylliljestrandisine 64, were isolated from A. tsaii (Figure 7) [78].
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Extensive phytochemical studies on D. anthriscifolium var. majus led to the isolation 
of six new C-19 NDAs with the 7,8-methylenedioxy moiety, which were named anthrisci-
florine A–F 65–70 (Figure 8) [79]. 
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Extensive phytochemical studies on D. anthriscifolium var. majus led to the isolation of
six new C-19 NDAs with the 7,8-methylenedioxy moiety, which were named anthrisciflorine
A–F 65–70 (Figure 8) [79].
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Guo et al. isolated two new NDAs, 7,8-epoxy-franchetine 71 and N-(19)-en-austroconitine
72, from A. iochanicum [80]. Tested against NO production in macrophages (mouse cell line), they
showed a weak anti-inflammatory effect. Liang et al. isolated sinchiangensine A 73 as a new
NDA from A. sinchiangense W.T. Wang (Figure 9), and it showed significant antitumour activity



Int. J. Mol. Sci. 2022, 23, 12128 15 of 24

against cancer cell lines A-549, SMCC-7721, MCF-7, and SW-480 [81]. The IC50 (µM) values
of 73 against these cell lines were 12.8, 9.6, 11.8, and 18.8, respectively, and these values were
comparable with cisplatin, the positive control, the IC50 (µM) values of which were 22.3, 18.6, 28.8,
and 18.2. Sinchiangensine A 73 also showed potent antibacterial activity against Gram-positive S.
aureus ATCC-25923, with an MIC value (µmol/mL) of 0.15 which is comparable to 0.67, the MIC
of the positive control berberine HCl.
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Figure 9. NDAs 71–73.

Ajacisines A–E 74–78 (Figure 10) were isolated as new NDAs from D. ajacis [82].
Testing the in vitro antiviral activity against respiratory syncytial virus (RSV), compounds
76–78 showed moderate to weak effects. The IC50 (µM) values of 76–78 against RSV were
75.2 ± 1.1, 35.1 ± 0.6, and 10.1 ± 0.3, respectively, while the IC50 (µM) of ribavirin (the
positive control) was 3.1 ± 0.8 [82].
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Meng et al. reported the isolation of four new C-19 NDAs, aconicarmichoside A–D
79–82 (Figure 11), from the aqueous extract of fuzi and the lateral roots of A. carmichaeli [83].
These four alkaloids are the first examples of glycosidic NDAs where the glycosides are
directly attached to the alkaloid skeleton.
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Fukuyama and co-workers [84] achieved the synthesis of cardiopetaline 83 through
Wagner–Meerwein rearrangement of the denudatine skeleton into an aconitine skeleton
without the need of pre-activation of the hydroxy group. This means that there is no
need to differentiate the hydroxy groups in the poly-oxygenated system as was needed
before. Sarpong and co-workers [85] developed a unifying strategy to synthesize C-18 NDA
(weisaconitine D 84) and C-19 NDA (liljestrandinine 85) from a common intermediate. Liu
and Qin [86] highlighted the importance of dearomatization of aromatic compounds that
yield o-benzoquinones coupled with Diels–Alder cycloaddition in the synthesis of complex
structures such as 83, 84, 85, and many others. Yang et al. constructed a unique tricyclo
[6.2.1.0] BCD-system 86 of the NDA skeleton (Figure 12) [87].
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Lian et al. reported five new C-18 NDAs, anthriscifoltines C–G 87–91 from D. an-
thriscifolium var. majus (Figure 12) [88]. Song et al. reported three new C-19 NDAs,
szechenyianine D–F 92–94 from A. szechenyianum (Figure 13) [89].
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Another four new C-19 NDAs, elapacigine 95, N-deethyl-N-formylpaciline 96, N-
deethyl-N-formylpacinine 97, and N-formyl-4,19-secoyunnadelphinine 98 (Figure 14), were
isolated from D. elatum cv. Pacific giant [90].
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Li et al. isolated four new C-19 NDAs, carmichasines A–D 103–106 from A. carmichaelii
Debeaux (Figure 15) [92]. Extraction of the roots of A. taronense Fletcher et Lauener, which
has been used in traditional Chinese medicine (TCM) to treat rheumatism and arthritis,
yielded four new C-19 NDAs, taronenines A–D 107–110 (Figure 16) [93]; NDAs 107, 108,
and 110 exhibited anti-inflammatory activity when tested in mice cells.
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Ahmad and co-workers reported the isolation of two new C-19 NDAs, jadwarine
A–B 119–120 from D. denudatum [95]. They also reported a new lycoctonine-type C-19
NDA, swatinine C 121 (Figure 18) which showed competitive inhibitory activity on acetyl-
cholinesterase (AChE) and butyrylcholinesterase (BChE) [96].
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Extraction of the roots of A. brevicalcaratum led to the isolation of three new C-19
NDAs, brochyponines A–C 122–124 (Figure 18) [97]. Abjalan et al. discovered a new
lycoctonine-type C-19 NDA, aemulansine 125 from D. aemulans Navaski, which showed
in vitro cytotoxicity [98]. Two novel 8,15-seco C-19 NDAs, nagarine A 126 and B 127
(Figure 19), were isolated from A. nagarum [99].
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The variation in pharmacological activities of the NDAs, despite their structural
similarities, is an attractive aspect for synthetic chemists to work on to obtain a better
understanding of the structure–activity relationships (SAR). Liu et al. reported a total
synthesis of the ABCDE system of the C-19 NDAs [100]. Another study reported the
construction of the AEF ring system attached to a phenyl group as an analogue to ring
D [101]. The construction of the fused CD-bicycle of aconitine was also achieved [102].
Lv et al. built the hexacyclic ring system of franchetine 128, a 7,17-seco NDA [103]. The
importance of such NDAs continues to attract chemists to attempt to make a total synthesis
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of them. Progress has been made in the total synthesis of aconitine 12, but the construction
of a pentacyclic system of the aconitine skeleton failed [104]. On the other hand, a total
synthesis of talatisamine 129 (Figure 20) has been completed in 33 steps [105]. In addition,
the synthesis of a [6-6-6] ABE-tricyclic analogue of MLA 16 has been achieved [106]. A
synthetic approach has also been established for the BCD-tricyclic system [107].
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5. Conclusions

It is clear that nature is rich with many examples of plants that can be described as
medicinal or poisonous. The poisonous piperidine plants show that dose and mode of
pharmacological action are critical. The biodiversity of natural sources of NDAs, based
upon a substituted piperidine nucleus, are important for continuing to provide leads in
drug discovery. NDAs from Aconitum and Delphinium have complex, highly oxygenated
hexacyclic systems, and as many of them are of pharmacological importance, their struc-
tures and 3D configuration are significant factors in their actions at various protein targets
with respect to medicine and toxicology.

The majority of NDAs possess an N-Et group. We investigated the occurrence count
in the SciFinder database for NDA skeletons, including many new NDAs. Substitution at
position 1 is important to determine the NDA skeleton conformation, as ring A in 1-OMe
NDA free bases exists in a twisted-chair conformation. In 1-OH NDA, ring A adopts a
twisted-boat conformation. In conclusion, screening NDAs for their biological activity has
resulted in the discovery of new sets of ligands. These are promising natural compounds
that are pharmacologically active. These hits potentially eventually will become selective
leads for the treatment of a wide variety of disease states. These NDAs are new natural
products, and if they can be isolated from easy-to-grow Aconitum or Delphinium plants,
then the future is bright for further NDA development based on experimental aspects,
including phytochemistry leading to SAR studies and hopefully to new, selective, if not
specific, drugs.
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