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Abstract
Introduction Lung cancer ranks second in new cancer cases and first in cancer-related deaths worldwide. Precision medicine is
working on altering treatment approaches and improving outcomes in this patient population. Radiological images are a powerful
non-invasive tool in the screening and diagnosis of early-stage lung cancer, treatment strategy support, prognosis assessment, and
follow-up for advanced-stage lung cancer. Recently, radiological features have evolved from solely semantic to include
(handcrafted and deep) radiomic features. Radiomics entails the extraction and analysis of quantitative features from medical
images using mathematical and machine learning methods to explore possible ties with biology and clinical outcomes.
Methods Here, we outline the latest applications of both structural and functional radiomics in detection, diagnosis, and predic-
tion of pathology, gene mutation, treatment strategy, follow-up, treatment response evaluation, and prognosis in the field of lung
cancer.
Conclusion The major drawbacks of radiomics are the lack of large datasets with high-quality data, standardization of method-
ology, the black-box nature of deep learning, and reproducibility. The prerequisite for the clinical implementation of radiomics is
that these limitations are addressed. Future directions include a safer and more efficient model-training mode, merge multi-
modality images, and combined multi-discipline or multi-omics to form “Medomics.”
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Introduction

Lung cancer ranks first in cancer-related deaths and second in the
new cancer cases in both males and females as reported by the
American Cancer Society in 2020 [1]. The 5-year survival rate
ranges from 5% for patients withmetastatic disease to 57%when

lung cancer is diagnosed and treated at an early stage [2].
Unfortunately, most patients with lung cancer only have mild
clinical symptoms at an early stage, but the symptoms appear
when the cancer is at an advanced stage [3].

Both the US-based national lung screening trial (NLST) and
the Dutch-Belgian lung cancer screening trial (NELSON)
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concluded that the use of low-dose computed tomography
(LDCT) for high-risk lung cancer populations decreases lung
cancer mortality up to 60% in certain subpopulations, due to
early detection and management [4, 5]. A substantial number
of early-stage lung cancer patients have been identified using
LDCT lung cancer screening [6]. The main goals of precision
medicine research in lung cancer could be generally categorized
into early-stage detection and/or diagnosis and highly tailored
treatment and care in the advanced stage.

The use of radiologic images in medicine has become crucial
in clinical practice, for both oncologic and non-oncologic cases.
In oncology, medical imaging is used for every aspect of pa-
tients’ management, including screening, diagnosis, treatment,
and prognosis assessment of the disease. Over the past few de-
cades, modern medical imaging has progressed from single
structural imaging to combination of functional imaging [7].
Structural imaging refers to methods used to both visualize and
evaluate anatomical details, and functional imaging is used to
assess the physiology and molecular processes of tissues and
organs [8]. Evidence has shown that the relationship between
the structure and function of the lung is imperfect, which means
that structural and functional images could have some common
biomarkers, but certainly have independent biomarkers [9].
However, the correspondence between structural and functional
images in the field of lung cancer still remains to be elucidated.

Radiomics refers to the extraction and analysis of quantitative
image features frommedical images usingmathematical andma-
chine learning methods to explore possible ties with biology and
clinical outcomes [10].Radiomic features extracted fromstructur-
al and functional images (as summarized by Torigian et al. with
detailed imagingmodalities) can separately reflect the anatomical
and functional information of the lesions [11] (Fig. 1). These fea-
tures, mostly invisible to the unaided eye, have the potential to
reduce the workload of clinicians and to increase the quality of
diagnosis, prognosis, and treatment. The ultimate goal of
radiomics is to build quicker and more reliable clinical decision
support systemstoassistcliniciansrather thanreplacingthem[12].

In this review, we present the development of radiologic
features, from semantic and handcrafted radiomic to deep
radiomic features, from the perspective of clinicians. In addi-
tion, we summarized the latest applications of structural and
functional radiomics on early and advanced-stage lung cancer.
Furthermore, we address the possible limitations of radiomics
and set out future directions with respect to lung cancer.

Development from semantic to radiomic
features

Semantic and clinical features

Imaging techniques have been widely used in clinical practice
for different purposes in lung cancer. These techniques

include radiography, CT, MRI, and PET/CT. Radiologists
analyze the images to detect lesions, and then use a set of
qualitative (e.g., shape, location, speculation, and lobulation)
and quantitative (e.g., size, volume, density, signal, and stan-
dardized uptake values (SUVs)) features to describe and ana-
lyze lesions (Fig. 2). Radiologists have been seeking to iden-
tify specific signs from images that can be used to determine
the pathological type, degree of malignancy, and prognosis of
cancer.

However, this approach involves a wealth of experience
leading to subjective discrepancies. For this reason, the
Fleischner Society has provided a series of glossaries and
recommendations for describing and measuring thoracic im-
ages [13, 14]. Based on the evidence that semantic CT features
have prognostic value, the Lung Imaging Reporting and Data
System (Lung-RADS) has been developed to improve the
interpretations and understanding of lung cancer screening
CT and promote management [15]. Furthermore, the
Response Evaluation Criteria in Solid Tumors (RECIST
1.1), a special version (iRECIST) for assessing response to
immunotherapy, and a version for PET (PERCIST) have been
successfully validated in clinical trials [16–18].

Clinical features have showed additional prognostic utility
when combined with semantic CT characteristics, which
could be used to construct a clinical model for predicting the
risk of malignancy, invasiveness, and poor prognosis of lung
cancer [19–21]. A generally recognized and validated clinical
model for the malignancy risk of solitary pulmonary nodule is
the Brock/PanCan model, which includes both clinical (age,
sex, and family history of lung cancer) and semantic CT (em-
physema, spiculation, size, type, location, and nodule count)
features [22]. However, the subjective nature of these metrics
can theoretically restrict the consistency of models based on
semantic features [23].

Handcrafted radiomic features

Handcrafted radiomic features are the result of mathemat-
ical formulas that take image pixel values from within a
region of interest (ROI) as an input and output a number,
the so-called feature value, a process that can be automat-
ed. In order to quantitatively and automatically identify
and interpret imaging findings, these handcrafted radiomic
features can be used as a machine learning framework to
correlate them with the underlying biology and clinical
outcomes (Fig. 2) [24, 25]. The classical radiomic
workflow involves image acquisition, lesion segmentation,
pre-processing, feature extraction, feature selection,
modeling, model validation/evaluation, and if the last step
proves successful, clinical implementation.

Strict quality management at each step is necessary to en-
sure applicability and generalization of the developed model,
and the first step is no exception as high-quality images are of
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supreme importance in a radiomics study. In the following
task, experienced radiologists often manually delineate the
images slice by slice to define the ROI. Manual delineation,
however, is time consuming and vulnerable to inter-observer
variability [26]. Advanced semi-automatic or fully automatic

segmentation can enhance the repeatability of radiomic fea-
tures [27].

Pre-processing techniques (e.g., resampling, denoising,
histogram equalization and image normalization) can be used
to minimize the variance among images when various

Fig. 1 Composition of functional
and structural imaging for tumors.
Structural imaging refers to
techniques, which are used to
visualize and analyze the
anatomical information of the
human body. Functional imaging
refers to approaches that are the
study of tumor physiology and
molecular process

Fig. 2 A comparison of semantic, handcrafted radiomic, and deep radiomic features
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scanners or scanning and reconstruction parameters are used
[28, 29]. For feature extraction, McNitt-Gray et al. summa-
rized several software or packages that can automatically per-
form this task, producing first-order statistics, shape, texture,
and filter based features [30]. The input format (file type and
modality) and the type of features should also be taken into
consideration during this processing. Of note, radiomic fea-
tures are sensitive to differing acquisition and reconstruction
parameters employed by the multiple centers, and harmoniza-
tion in the image domains or feature domains are being ex-
plored [31].

The selection of stable, important, and predictive features is
another significant step in the radiomics pipeline. There are
three methods to perform feature selection: (i) filter methods
select features independently from the model, often using sta-
tistical tests and correlations of features with the outcome,
such as Chi-square, Mann-Whitney, and Pearson’s correla-
tion. (ii) wrapper methods generate different subsets of fea-
tures that are used to train multiple models, which are ranked
based on model performance. (iii) embedded methods per-
form feature selection and model training simultaneously,
with the least absolute shrinkage and selection operator
(LASSO) method being the most widely published [32]. The
choice of feature selection method also depends on which
machine learning algorithm is chosen for the next step.

Once the features that will serve as input to the model have
been selected, many machine learning algorithms are avail-
able to train classification or regression models. These algo-
rithms can be broadly classified into supervised (e.g., logistic
regression, support vector machine, random forest, and artifi-
cial neural network) and unsupervised (e.g., clustering and
auto-encoder) solutions. In short, supervised methods opti-
mize performance by updating the inner model configuration
based on the desired outcome, while unsupervised methods
rely on patterns in the predictors, without having access to the
actual outcome. The composition, consistency, and interpret-
ability of data are considerations that need to be weighed
when choosing models. External validation is required to
properly assess efficiency and generalization. Many tools
from data science are used to evaluate the performance of a
trained model, such as the receiver operating characteristic
(ROC) or precision recall curve, area under the ROC curve
(AUC), concordance index (C-index), confusion matrix, cali-
bration, and decision curve analysis [33]. Multivariate Cox
regression and Kaplan-Meier curve are popular tools for sur-
vival analysis [34]. When using these metrics, the balance of
data, i.e., the number of cases in each class, needs to be care-
fully considered [35]. There are a number of methods to arti-
ficially balance datasets as Fotouhi et al. summarized, espe-
cially for classification problems, such as oversampling,
undersampling, synthetic minority over-sampling technique
(SMOTE), and adaptive synthetic (ADASYN) techniques
[36].

Deep radiomic features

Deep learning is a broader family of machine learning
methods inspired by our brain’s own network of neurons
[37]. The convolutional neural network (CNN) is commonly
used in the analysis of images and has found its way to the
field of medical imaging. The term deep comes from the large
number of various types of layers (interconnected “slices” of
the network): convolution, pooling, activation, and full con-
nection (Fig. 2). In convolution layers, convolutional kernels
slide over the image to automatically extract and select fea-
tures that can be named deep radiomic features from a tailored
and well-trained CNN structure (e.g., AlexNet, VGG, ResNet,
Inception, and DenseNet) [38].

Handcrafted and deep radiomic features have many simi-
larities but are also distinct. Deep radiomic features in shallow
layers define intensity, shape, and texture details that are sim-
ilar to handcrafted radiomic features; as the layers get deeper,
more and more abstract features are extracted that are learnt
from exposure to data, making these features difficult to inter-
pret [39]. This makes a model based on deep radiomic features
look like a black box, where the connection between the input
and output is not understood. However, if the interpretability
of the model is not considered to be of critical relevance, deep
radiomic features are an effective supplement for handcrafted
radiomic features, since deep learning networks can take
whole images as the input, making them independent of ROI
segmentation and allowing for added features such as anatom-
ical location. In addition, trained deep learning models and
learned features can be adapted to other imaging tasks using
transfer learning [40].

Of note, the medical machine-learning field, unlike the
conventional clinic or pharmacy, does not have a standardized
research methodology. As the field grows the need for stan-
dardized methodology increases for study comparability.
Methodological recommendations for the prediction or
radiomic analysis are helpful in the creation and evaluation
of clinical performance [10, 41, 42]. However, given that the
field is new and rapidly changing, constant updates and addi-
tions to guides are required.

Applications of structural radiomic features
in lung cancer

Chest radiography is an initial screening technique for lung
cancer due to its low cost and convenience. A deep learning
detection algorithm showed a high sensitivity for pulmonary
nodules and lung cancer in the NLST and private datasets, and
these studies suggested that this technique, as a second reader,
could enable radiologists to better detect pulmonary nodules
and lung cancer. [43–46]. In addition, Lu et al., developed a
model focused on deep learning to classify a population of
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smokers with high-risk of lung cancer and the AUC was
slightly higher than the eligibility requirements for clinical
assessment (0.76 vs. 0.63) [47]. LDCT can detect a small
lesion to provide more information than a radiograph. Using
deep learning with LDCT, a 90.0% sensitivity for pulmonary
nodule detection has been achieved [48].

With the large numbers of small nodules found on LDCT
lung cancer screening, an instrument for the classification of
malignant nodules would boost clinical management. The per-
formance of a CNN (AUC = 0.90) outperformed the Brock
(AUC= 0.87) model for estimating the likelihood of malig-
nant nodules [49]. Garau et al. found that the handcrafted
radiomics features model had a higher AUC than the Lung-
RADS clinical model (0.86 vs. 0.76) in the external validation
[50]. In the case of solitary noncalcified nodules, the radiomic
model incorporating perinodular and intranodular features
demonstrated improved performance (intranodular radiomic
features: AUC of 0.75; combination: AUC of 0.80) in
distinguishing adenocarcinomas from granulomas in the
non-contrast chest CT [51]. Some investigators, on the other
hand, observed that the accuracy of the radiomics model was
close to radiologists when contrast CT was used [52]. In ad-
dition, MRI radiomics also demonstrated strong success
(AUC= 0.88) in the differentiation of lung malignancies and
benign lesions [53]. A follow-up scan is a recommended
method for the management of accidental pulmonary nodules.
The changes of features (delta-radiomic) on the baseline and
follow-up scans were able to be used to predict malignancy of
nodules, and the dynamic details (e.g., tumor doubling time
and growth) can be predicted by baseline scan [54–56].

In regard to the classification of histological subtypes, the
combination of handcrafted radiomic and clinical features of a
logistic regression nomogram was used to categorize small
cell lung cancer (SCLC) and non-small-cell lung cancer
(NSCLC) with an AUC of 0.94 and an accuracy of 86.2%
[57]. In addition, the study selected five handcrafted radiomic
features as a signature for differentiating lung squamous cell
carcinoma (SCC) from adenocarcinoma with an AUC of 0.89
[58]. Research involving 920 patients showed that both hand-
craft (AUC of 0.79) and deep (AUC of 0.84) radiomics could
attain high performance in distinguishing adenocarcinoma,
SCC, and SCLC [59]. Recent studies have documented that
a radiomic signature can provide information on the level of
Ki-67 expression [60].

The majority type of early lung cancer is adenocarcinoma,
in which adenocarcinoma is in situ (AIS) or minimally inva-
sive adenocarcinoma (MIA) has a near 100% 5-year survival
probability after resection [61]. Recently, several studies have
documented that CT-based handcrafted and deep radiomics
have been able to determine the invasiveness of lung adeno-
carcinoma manifesting as sub-solid and solid nodules with
AUC of 0.77 to 0.90 [62–64]. The combination of other var-
iables such as clinical-, semantic-, and intraoperatively

pathological features can boost the accuracy of final pathology
[65, 66]. In addition, a fusion of intranodular (solid and
ground-glass) and perinodular radiomic features can be more
predictive than the full gross tumor alone [67, 68]. In response
to the specific types of invasive adenocarcinoma, both
handcrafted and deep radiomics have shown efficacy in
predicting higher invasive levels of solid/micropapillary ade-
nocarcinoma [69–71].

Early-stage lung cancer, adenocarcinoma in particular,
spreads through intrusive neighboring lymphovassel, pleura,
and air space, which impairs the surgical result and affects the
surgical approach. Two-dimensional texture features can indi-
vidually predict lymphovascular invasion with an AUC of
0.86 [72]. Some researchers proposed that radiomic signature
could potentially help to identify the pleural invasion of stage I
pulmonary adenocarcinoma [73]. In addition, Zhuo et al. com-
bined radiomic and semantic features (the size of the solid
component and mediastinal lymphadenectasis) with an AUC
of 0.99 for the prediction of the existence of spread through air
space [74]. Intraoperative lymph node status is critical to
choose a systematic or selective lymph node dissection.
Several studies have shown that handcrafted and deep
radiomic features of the intra/peri-tumor can be used as bio-
markers to predict lymph node metastases [75–77].
Furthermore, in the case of pleural metastases, radiomic fea-
tures may have a diagnostic power with AUC of 0.93 [78].

With the development of personalized treatment for lung
cancer, the identification of therapeutically actionable muta-
tions ((e.g., Epidermal growth factor receptor (EGFR), ana-
plastic lymphoma kinase (ALK), programmed cell death 1
ligand, (PD-L1), and v-Raf murine sarcoma viral oncogene
homolog B1 (BRAF)) has been a significant premises for an
optimal treatment strategy. Thanks to the existence of non-
invasive, simple, and low cost of radiomics compared to gene
detection, which has demonstrated strong predictive efficacy
for the mutation type and can used as an alternative method
[79–82]. In addition to predicting the status of gene mutations,
some studies aimed to directly predict the treatment response,
such as Immunotherapy, chemotherapy, and radiotherapy
[83–86]. Another study has been able to predict biological
substrates, such as tumor hypoxia with radiomics [87].
Dercle et al. conducted prospective and retrospective experi-
ments in multicenter clinical trials specifically to predict the
susceptibility of lung cancer to nivolumab, docetaxel, and
gefitinib with an AUC of 0.77, 0.67, and 0.82, respectively
[83]. Radiomics has been proven to be a valuable method in
radiotherapy preparation, radiotherapy response, pathologic
response to neoadjuvant chemoradiotherapy, and side effects
of radiation pneumonitis [84–86].

Long-term prognostic outcomes (e.g., overall survival,
disease-free survival, distant metastasis, and local recurrence)
after therapy are chronically tracked and are expected to be
primarily dependent on therapeutic, pathological, and
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histological details. Radiomics can extract useful and un-
known image features for predicting prognosis prior to treat-
ment. Choe et al. observed that handcrafted radiomic features
provided additional prognostic benefit outside the clinical-
pathologic model alone (AUC: 0.78 vs. 0.73) [88]. In addi-
tion, radiomics has demonstrated a certain capacity to predict
recurrence (AUC of 0.74–0.76) and distant metastasis (AUC
of 0.89) [89, 90]. However, most studies have reportedmild or
even negative prognostic [91–93].

Applications of functional radiomic features
in lung cancer

The most common functional imaging for lung cancer is 18F-
FDG PET, which can reflect tumor glucose metabolism and
capture bothmetabolic and structural information when paired
with CT (PET/CT). Functional imaging has been widely used
in clinical practice for diagnosis, staging, genetic mutation
estimation, treatment response evaluation, and prognostic
assessment.

Some studies have used PET-based radiomics alone to
forecast clinical outcomes [94–97]. A research with 210 ade-
nocarcinoma and 186 SCC patients showed that a PET-based
radiomics signature could distinguish lung adenocarcinoma
from SCC, albeit without external validation [94]. In 264
NSCLC patients, Tau et al. used PET images to train a CNN
to predict lymph node metastases (accuracy of 80%) or distant
metastases (accuracy of 63%) with moderate performance
[95]. Some studies indicated that both PET-based radiomic
features provided the prediction of prognostic outcome for
lung cancer patients with radiotherapy or chemo-radiotherapy,
whereas semiquantitative PET factors were not available [96].
Both PET-based handcrafted and deep features can predict the
response of immunotherapy in lung adenocarcinoma [97, 98].

PET/CT provides more precise location information and
more detailed surrounding structures than PET alone, mean-
ing that radiomics based on PET/CT is able to extract both
functional and structural feature and has a wider application
prospect than PET or CT alone. One of the applications of
diagnosis is using radiomics to distinguish pulmonary tuber-
culosis, lymphoma, and other benign lesions from lung cancer
[99–101]. Another application of diagnosis based on PET/CT
radiomics is to distinguish lung adenocarcinoma from SCC as
well as primary from metastatic lung cancer [102, 103]. A
recent study with a small sample size (with 91 patients)
attempted to use 2 PET and 2 CT features for the identification
of growth patterns in early lung invasive adenocarcinoma
[104].

Furthermore, the prediction of EGFR mutations is a repre-
sentative example of application of radiomics based on PET/
CT. In a study with 248 lung cancer patients without treat-
ment, researchers found that their model for prediction of

EGFRmutations could reach an AUC of 0.87 when combined
clinical and radiomic signature [105]. Similar performance
has also been reported in another retrospective study [106].
In addition, for patients with EGFR mutation, a deep radiomic
score was a non-invasive tool to identify NSCLC patients
susceptible to tyrosine kinase or immune checkpoint inhibi-
tors [107].

Yang et al. concluded that a radiomic nomogram based on
PET/CT rad-core and clinicopathological features was able to
predict the overall survival of NSCLC patients [108]. A study
focused on prediction of prognosis after immunotherapy sug-
gested that PET/CT-based radiomics signature could be used
before the start of treatment to identify those most likely to
benefit from immunotherapy for advanced NSCLC patients
[109]. In addition, a multicenter study with 87 early stage
NSCLC patients underwent radiotherapy selected one PET
and one CT feature to predict local recurrence and reached
good performance (100% sensitivity and 96% specificity)
[110]. Compared to handcrafted radiomic features, deep
radiomic features had a significantly better prognostic value
[111].

Dual-energy CT (DECT) provides additional perfusion in-
formation of tumor using quantification of iodine enhance-
ment at different phases. In 93 lung cancer patients with ex-
amination of DECT, entropy from iodine overlay maps en-
hanced prediction of overall survival to pathological stage
alone (C-index, 0.72 vs. 0.67) [112]. Table 1 summarized
the radiomic studies using both structural and functional
images.

Limitations and challenges

While radiomics has been successfully applied in the quanti-
tative analysis of structural and functional images of lung
cancer, certain limitations and obstacles must be faced and
resolved before it is implemented in clinical practice. The first
is that radiomics is a data-hungry approach. Large, diverse,
multicenter, and high-quality data is needed to generalize the
results and conclusions of radiomics studies. The creation of
vast databases of medical images is currently problematic,
mostly because sharing or exchange of data between hospitals
and institutes is insufficient and the processing of data collec-
tion is time consuming. However, data sharing could pose
possible ethical and legal dangers. Furthermore, the imaging
data needs to be labeled with correct outcomes in order to be
used for training, a process that adds to the cost burden. As the
golden standard, the labels are also strongly contingent on the
experience of physicians, subjective and complex [113].
Histopathological observations, for example, can be
constrained by sampling errors and observer heterogeneity.
Unsupervised and self-supervised methods are independent
of particular labels, though accuracy and interpretability are
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sacrificed [114]. Precise segmentation is essential for
handcrafted radiomics to select areas of interest for tumors.
Manual segmentation is susceptible to inconsistency from

multiple readers and time consuming. While automatic and
semi-automatic segmentation has been used to increase objec-
tivity and minimize time costs, there is no norm for guiding or

Fig. 3 The pipeline of federated
learning, which includes the main
four steps: data registration
among local databases, sending
initial parameters to each local
center from federated server,
sending trained parameters to
federated server from local
centers, and federated server
aggregates the received
parameters to update local model
and to give a feedback to local
database

Fig. 4 A scope of fusion of multi-
discipline or multi-omics to form
a “Medomics.” Other omics can
be included in the Medomics,
such as pathomics and lipidomics
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assessing segmentation efficiency. Deep radiomics do not
need explicit segmentation, although a rough ROI selection
is required to conserve computing resources and reduce the
effect of noise.

AI algorithms have made great strides in recent years, but
the road is long and tortuous. There are plenty of methods to
choose from during the process of preprocessing, feature ex-
traction, feature selection, and modeling, though standard and
appropriate workflow or guidelines for methodology and eval-
uation system are still uncommon. Currently, the most effec-
tive algorithm is deep learning based on artificial neural net-
work that produce a huge number of computational parame-
ters and requires high-performance computers to provide pro-
cessing power and hardware support. More powerful and in-
telligent algorithms will certainly appear in the future, but the
timing of the emergence may depend greatly on development
of neuroscience and computer science. Data-driven radiomics
especially deep radiomic features and models are basically a
set of data that transforms into black boxes without intuitive
interpretability. These models may have an even higher per-
formance than humans, but they are unacceptable to clinicians
who do not grasp how the machine makes decisions and
works.

Furthermore, reproducibility is a basic requirement for clin-
ical use. The variation in image acquisition and reconstruction
as well as in the radiomics process can influence the reliability
of the features, which is why many models do not perform
well on independent external validation datasets. Although
some harmonization approaches can reduce the batch effects
in multicentric studies, the need for a “reference batch” to
calibrate the harmonization hampers its use in prospective
studies and real-time clinical practice [31]. A phantom study
reported many (94%) handcrafted radiomic features were not
reproducible and were redundant [115]. In addition, some
studies concluded that the reproducibility of handcrafted
radiomic features are easily affected by different acquisition
and reconstruction parameters [116, 117]. Recently, the Image
Biomarker Standardization Initiative (IBSI) assessed the re-
producibility of handcrafted radiomic features and found a
set of standardized 169 features that are deemed highly repro-
ducible [118].

Most of the published studies were retrospective cohort
studies with a limited sample size, and it can only provide
low-level clinical evidence to prove the efficacy of
radiomics. In order to assess the efficiency of additional
prognostic and predictive benefit, radiomic features and
models must be compared to typical clinical variables, so
that radiomics must match precision and ease of use [119].
Finally, in actual clinical practice, patient conditions and
the results of diagnostic imaging are very complex with
numerous lesions and comorbidities present, and a predic-
tion model based on a single lesion might not be able to
fulfill clinical needs.

Future direction

Federated learning, as a distributed machine-learning frame-
work, can easily solve the dilemma of data silos and make it
possible to integrate a model from a local database without
sharing data (Fig. 3) [120, 121] . In addition, the knowledge-
driven and data-driven approaches will effectively minimize
reliance on big data and achieve human-machine cooperation
[122].

The implementation of standardized acquisition and recon-
struction protocols as well as harmonizing radiomic features
will greatly improve repeatability of radiomic features and
generalization of radiomic signatures. Standardization and
quality evaluation of radiomics methods are crucial in the
reproducibility interpretability, generalization, and long-term
clinical application for any studies and trials. Elaborate pro-
spective clinical trials with a broad sample size with high-level
evidence would be required to validate the utility of radiomics.
Automation, ease-of-use, and multitasking can be a one-stop
solution to help physicians to accelerate clinical practice and
management.

Once existing limitations as mentioned above are over-
come, investigators can use more resources to work on
multi-modality fusion images and multi-discipline conver-
gence (Fig. 4). More advanced imaging modalities and
methods for lung cancer will reflect detailed structural and
functional information, and will provide comprehensive and
robust radiomic features and increase prospects beyond PET
and CT. In addition, at a time when radiomics is taking off, AI
technology is also developing rapidly in other disciplines
(e.g., genomics, proteomics, and metabolomics). How to in-
tegrate radiomics with other omics to form a “Medomics”will
be a fascinating avenue of further research and worth pursuing
in the future.

Conclusion

In this review, we discussed some of the latest and most im-
pactful radiomics studies for lung cancer in the context of
semantic to deep radiomic features, summarized the applica-
tion of structural and functional radiomics studies, and sug-
gested current limitations and future directions quantitative
image analysis in lung cancer. Overall, radiomic approaches
focused on both structural and functional images continue to
evolve rapidly and are expected to bridge the gap between
conventional and precision medicine. In addition, comparing
and combining multi-modality functional imaging with struc-
tural imaging for lung cancer radiomics should be addressed
in the future. While current challenges in data and methodol-
ogy obstruct the immediate adoption of this approach in clin-
ical practice, radiomics still holds the promise to overcome
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these hurdles and to be integrated in the “Medomics”
workflows of the future.
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