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Abstract: Brominated flame retardants (BFRs) are environmentally persistent, are detected in humans,
and some have been banned due to their potential toxicity. BFRs are developmental neurotoxicants
and endocrine disruptors; however, few studies have explored their potential nephrotoxicity. We
addressed this gap in the literature by determining the toxicity of three different BFRs (tetrabromo-
bisphenol A (TBBPA), hexabromocyclododecane (HBCD), and tetrabromodiphenyl ether (BDE-47))
in rat (NRK 52E) and human (HK-2 and RPTEC) tubular epithelial cells. All compounds induced
time- and concentration-dependent toxicity based on decreases in MTT staining and changes in cell
and nuclear morphology. The toxicity of BFRs was chemical- and cell-dependent, and human cells
were more susceptible to all three BFRs based on IC50s after 48 h exposure. BFRs also had chemical-
and cell-dependent effects on apoptosis as measured by increases in annexin V and PI staining. The
molecular mechanisms mediating this toxicity were investigated using RNA sequencing. Principal
components analysis supported the hypothesis that BFRs induce different transcriptional changes in
rat and human cells. Furthermore, BFRs only shared nine differentially expressed genes in rat cells
and five in human cells. Gene set enrichment analysis demonstrated chemical- and cell-dependent
effects; however, some commonalities were also observed. Namely, gene sets associated with extra-
cellular matrix turnover, the coagulation cascade, and the SNS-related adrenal cortex response were
enriched across all cell lines and BFR treatments. Taken together, these data support the hypothesis
that BFRs induce differential toxicity in rat and human renal cell lines that is mediated by differential
changes in gene expression.

Keywords: brominated flame retardants; Kidney; RNASeq; tetrabromobisphenol A; hexabromocy-
clododecane; tetrabromodiphenyl ether; nephrotoxicity; gene set enrichment analysis

1. Introduction

Brominated Flame retardants (BFRs) are organohalogen mixtures that are added to
paint, carpets, furniture, electronics, and other household items to reduce their flammability.
Because they are not covalently bound to these products, BFRs leach into the environment
where they accumulate in dust and animal products that we inhale or ingest [1–4]. Primary
sources of BFR exposure range from dust and breastmilk for infants to fish, meat, and dairy
for children and adults [3]. However, several uncertainties remain. For example, although
estimated daily intake values are consistently higher in infants relative to other age groups,
these values vary depending on geographic location and sampling conditions [2]. Further-
more, although BFRs accumulate in human blood and breastmilk, long-term biomonitoring
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data are limited for newer BFRs and for populations outside of the European Union. For ex-
ample, in the US, polybrominated diphenyl ethers (PBDEs) and polybrominated biphenyls
(PBBs) are the only BFRs that are monitored by the CDC’s National Health and Nutrition
Examination Survey (NHANES). Taken together, these limitations in our understanding
of BFR exposure mean that prior BFR risk assessments by the European Union, European
Food Safety Authority (EFSA), Health Canada, and US Environmental Protection Agency
(US EPA) may be inaccurate.

Despite their marketed purpose of protecting the public, BFRs have become famous for
their toxic effects on humans and wildlife [5]. This began in the 1970s when polybrominated
biphenyl (PBB)-contaminated animal feed poisoned livestock and caused neurobehavioral
deficits in Michigan farming communities [6]. That same decade, tris(2,3-dibromopropyl)
phosphate (tris-BP) was banned from childrens’ sleepwear after a mutagenic metabolite
was detected in urine [7]. More recently, in 2004, polybrominated diphenyl ethers (PBDEs)
were banned in the US after levels in breastmilk were found to double over a span of
2–5 years [8,9]. Consequently, the EPA covers BFRs under its Toxic Substance Control Act,
which calls for continued research on the threats that these chemicals pose to public health.

In response to the EPA’s call, a growing body of research links BFRs to toxicity in
several target organs, including the kidney. These studies report nephrotoxicity at doses
ranging between 1.2–600 mg/kg and at time points ranging from 20 days to 2 years in
rats and mice [10–15]. However, these studies lack sensitivity, focusing on markers such
as kidney weight, histopathology, and serum creatinine levels that do not change until
nearly 50% of the nephrons are nonfunctional. Some BFR studies report more sensitive
changes in renal oxidative stress in rat kidneys. These include increases in reduced glu-
tathione and thiobarbituric acid reactive substances (TBARS) and decreased total -SH
groups after 28-day exposure to BDE-209 at 31.25–500 mg/kg; decreased catalase activity
and increased ratio of oxidized: reduced glutathione (GSSG/GSH ratio) after BDE-99
exposure at 1.2 mg/kg; and increased 8-Oxo-2’-deoxyguanosine(8-OHdG) after 30-day
exposure to tetrabromobisphenol A (TBBPA) at 250 and 500 mg/kg [16–18].

While the above studies demonstrate the nephrotoxic potential of BFRs, the molecular
mechanisms that mediate this toxicity are poorly understood. Furthermore, it is unclear
whether BFRs induce chemical-dependent and species-dependent toxicity in any target
organ, let alone the kidney.

The present study addresses the chemical- and cell -dependence of BFR toxicity in
multiple renal cell lines derived from the proximal tubule cells of the kidney. We compared
the effects of three BFRs with distinct chemical structures (Table 1). These BFRs include
polybrominated diphenyl ether number 47 (BDE-47), which is an older BFR that is banned
in the US but remains persistent in the environment; hexabromocyclododecane (HBCD),
which is a newer BFR that is still used in the US despite a global ban under the Stockholm
Convention on Persistent Organic Pollutants; and tetrabromobisphenol A (TBBPA), which
is currently the world’s most highly produced BFR.

This study also explores the molecular mechanism of action of BFR toxicity by measur-
ing transcriptional changes in these cells using RNA sequencing and Gene Set Enrichment
Analysis at time points prior to changes in cell morphology and MTT staining. Data
from these studies will guide future studies concerning the molecular mechanisms of BFR
nephrotoxicity, as well as the use of rodents for assessing the risk of BFRs to human health.
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Table 1. Name and Structure of Brominated Flame Retardants Used in this Study.

Name Chemical Structure

2,2’,4,4’-Tetrabromodiphenyl ether
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2. Results
2.1. Dose and Cell Line-Dependent Toxicity of BFRs in Rat and Human Renal Epithelial Cells

We assessed the concentration- and cell-dependent toxicity of BFRs in rat and human
renal epithelial cells by measuring MTT staining after 48 h (Figure 1). IC50 values in NRK
cells were 45 µM, 20 µM, and 60 µM for BDE-47, HBCD, and TBBPA, respectively. IC50
values for these respective chemicals were lower in HK-2 cells (7 µM, 5 µM, and 3 µM) and
in RPTECs (5 µM, 12 µM, and 13 µM), suggesting that these chemicals have cell line-specific
and potentially species-specific toxicity in the kidney. Chemical-dependent differences
were also observed in each of these cell lines. Specifically, HBCD exposure resulted in the
lowest IC50 in NRK cells (20 µM), whereas TBBPA and BDE-47 had the lowest IC50 values
in HK-2 cells and RPTECs (3 µM and 5 µM), respectively. Decreases in MTT staining were
confirmed by studying cell and nuclear morphology at 24 and 48 h of exposure to these
IC50 values (Figure 2). As was expected, no overt changes in morphology were observed
at 24 h. By 48 h, cells in all three cell lines demonstrated similar morphological changes
including nuclear condensation, nuclear fragmentation, vacuolization, rounding up, and
detachment.
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Figure 1. Effect of BFRs on MTT staining and resulting IC50 values in rat vs. human cells. (A) NRK, (B) HK-2, and (C)
RPTEC cells were exposed for 48 h to TBBPA, HBCD, and BDE-47 at a range of concentrations (1–100 µM) or an equivalent
volume of DMSO vehicle. (D,E) Mean IC50 values were calculated across dose-response curves for n = 5 passages of cells.

Figure 2. Cont.
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Figure 2. Effect of BFRs on cell and nuclear morphology in (A) NRK (B) HK-2 and (C) RPTECs after
24 and 48 h of exposure to the IC50. Data are representative of at least 3 (n = 3) separate experiments
on separate passages.
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2.2. Effect of BFRs on Apoptosis

To determine if BFR-induced changes in MTT staining and cell morphology were
due to apoptosis, we measured annexin V and propidium iodide (PI) staining in NRK
and RPTEC cells that were treated at the IC50 of each BFR (Figure 3). The percentage of
early apoptotic (annexin V-positive) NRK cells increased by 13% after TBBPA treatment
and by 5% after BDE-47 treatment, whereas HBCD exposure did not cause significant
changes. In RPTECs, the percentage of early apoptotic cells increased by 16% after TBBPA
treatment and by 11% after HBCD treatment, whereas BDE-47 exposure did not cause
significant changes. Interestingly, the chemical with the lowest IC50 in each of these cell
lines (HBCD and BDE-47 in NRK and RPTECs, respectively) did not cause significant
changes in apoptosis. Therefore, we explored the alternative hypothesis that these BFRs
decreased MTT staining and altered cell morphology due to a cytostatic effect and found
that no BFRs caused significant changes in the cell cycle (Figure 4).

2.3. Effect of BFRs on RNA Sequencing and Differential Gene Expression Analysis

To explore the molecular mechanisms that mediate cell- and chemical-specific differ-
ences in BFR toxicity, we performed RNA sequencing and differential gene expression
analysis in NRK and HK-2 cells after 24 h treatment with each BFR at the 48 h IC50
(Tables S1–S6). TBBPA treatment yielded the highest number of differentially expressed
genes in HK-2 cells (214) (Figure 5). HBCD treatment yielded the highest number of
differentially expressed genes in NRK cells (82). Principal components analysis of the
differentially expressed genes suggests that the cell line accounted for 71% of the variability
in gene expression. Accordingly, only five differentially expressed genes were shared
between cell lines due to TBBPA exposure, and no differentially expressed genes were
shared between cell lines exposed to HBCD or BDE-47. Furthermore, only nine genes were
differentially expressed across all three BFRs in human cells, and only five genes were
differentially expressed across all three BFRs in rat cells, suggesting that these chemicals
vary widely in their effects on gene transcription.

2.4. Effect of BFRs on Gene Set Enrichment

Gene set enrichment analysis (GSEA) was performed to predict how BFR effects
on gene expression translate to effects on cell function (Tables S7–S12). The coagulation
cascade, extracellular matrix turnover, and SNS-related adrenal cortex response were
significantly enriched across all cell lines and BFR treatments. The most enriched gene set
was eicosanoids in inflammation for all three BFRs in HK-2 cells (Tables S7–S9). The most
enriched gene set was estrogen deficiency in female obesity for all three BFRs in NRK cells
(Tables S10–S12). The coagulation cascade also appeared in the top 10 enriched pathways
for all conditions except TBBPA-treated human cells, although it was still significantly
enriched in this treatment group. Furthermore, extracellular matrix turnover appeared in
the top 10 enriched pathways for all treatments in NRK cells and was significantly enriched
in all treatment groups.

The comparison of enriched gene sets between rat and human cells for each BFR
revealed little overlap between cell lines, with the most occurring in HBCD-treated rat
and human cells (Figure 6). Specifically, HK-2 and NRK cells shared 6, 20, and 8 enriched
gene sets resulting from BDE-47, HBCD, and TBBPA exposure, respectively. Notably,
several of these shared gene sets ranked in the top 10 enriched gene sets. For BDE-47, these
included extracellular matrix turnover, vitamin A metabolism, and the coagulation cascade.
For HBCD, these included CCR1 expression targets, the coagulation cascade, estrogen
deficiency in female obesity, extracellular matrix turnover, find me signal: apoptotic cell
attracts phagocyte, gastric and pancreatic lipase function, and glycolysis. For TBBPA, these
include the coagulation cascade and extracellular matrix turnover.
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Figure 3. Effect of BFRs on annexin V and propidium iodide staining in (A) NRK cells and (B) RPTECs after 24 hours of
exposure to the IC50. Each bar represents the mean ± SD percentage of cells undergoing each phase of apoptosis or necrosis
across n = 3 passages of cells. Scatterplots show the percentage of cells in each phase of apoptosis for one representative
passage and were used to generate the corresponding bar graphs. * Indicates significant difference (p < 0.05) compared to
DMSO control.
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Figure 4. Effect of BFRs on the cell cycle in (A) NRK cells and (B) RPTECs after 24 h of exposure to the IC50. Each bar
represents the mean ± SD percentage of cells undergoing each phase of the cell cycle across n = 3 passages of cells.
Histograms show the number of cells in each phase of the cell cycle for one representative passage and were used to generate
the corresponding bar graphs.
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Figure 5. Differential gene expression analysis of RNASeq data in BFR-treated rat (NRK) and human (HK-2) cells. Cells
were exposed for 24 h to each BFR at the 48-h IC50s shown in Figure 1. This was repeated across n = 5 passages for each cell
line. (A) Volcano plots depict the number of differentially expressed genes for each treatment group. Significantly up-and
down-regulated genes are shown in pink and were selected based on the following criteria: (1) the fold change was >2
and (2) the false discovery rate (FDR) was <0.05. (B,C) Principal components analysis (PCA) of the significantly differently
expressed genes (DEGs) from (B) all treatment groups combined and (C) within each cell line. Each color represents a
specific cell line that was treated with a specific BFR according to the color legend above each PCA plot. (D) Venn diagrams
showing the overlap in DEGs between rat and human cells for each BFR. (E) Venn diagrams showing the overlap in DEGs
between BFRs for rat and human cells, respectively.
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Figure 6. Gene set enrichment analysis of RNASeq data: Comparison between rat (NRK) and human (HK-2) cells. (A) Venn
diagrams showing the overlap in enriched gene sets between rat vs. human cells. (B) Heat maps depict the absolute value
of the median log FC for enriched gene sets that were shared between both cell lines for each chemical.
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Enriched gene sets that were shared between TBBPA, HBCD, and BDE-47 were also
identified in each cell line (Figure 7). Specifically, 10 and 12 gene sets were enriched by
all three BFRs in NRK and HK-2 cells, respectively. In addition to being enriched by all
three BFRs, the coagulation cascade, eicosanoids in inflammation, and keep out signal:
LTF inhibits neutrophil recruitment and inflammation were ranked in the top 10 enriched
gene sets for multiple BFRs in human cells. In fact, eicosanoids in inflammation was the
top enriched gene set for all three BFRs. For rat cells, the coagulation cascade, estrogen
deficiency in female obesity, extracellular matrix turnover, protein nuclear import and
export, and single-strand mismatch were enriched by all three BFRs and ranked in the top
10 enriched gene sets for multiple BFRs. In fact, estrogen deficiency in female obesity was
the top enriched gene set for all three BFRs in NRK cells.

Figure 7. Gene set enrichment analysis of RNASeq data: Comparison between BFRs. (A) Venn diagrams showing the
overlap in enriched gene sets between BFRs in each cell line. (B) Heat maps depict the absolute value of the median log FC
for enriched gene sets that were shared between all 3 BFRs in rat and human cell lines, respectively.

2.5. Validation of RNASeq by Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

RNASeq data were validated by selecting one differentially expressed gene per treat-
ment group and measuring the expression of that gene using qRT-PCR. This was done in
both the original samples used for RNA sequencing (Figure 8), as well as in fresh BFR-
treated NRK and HK-2 cells (Figure 9A,B). The direction of change for each gene matched
between RNASeq and qRT-PCR data, although significant changes were not observed in
some cases. Specifically, in NRK cells, mmp13 expression increased after TBBPA and HBCD
exposure and srebf1 expression decreased after BDE-47 exposure. In HK-2 cells, alox5ap
increased after TBBPA exposure, plat decreased after BDE-47 exposure, and txnip decreased
after HBCD exposure. To further validate the RNASeq data and to test their translatability
across different cell lines for the same species, alox5ap, plat, and txnip expression were
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also measured in an additional human tubular epithelial cell line, RPTEC (Figure 9C). The
direction of change in expression of these genes also matched the changes observed in
HK-2 cells, although they did not reach significance.

Figure 8. Validation of RNAseq data using qRT-PCR for select differentially expressed genes in the original samples from
RNA sequencing. (A) Comparison between delta-delta ct values from qRT-PCR and fold-change in CPM values from
RNASeq in NRK cells for mmp 13 in TBBPA and HBCD-treated cells and for srebf1 in BDE-47-treated cells. (B) Comparison
between delta-delta ct values from qRT-PCR and fold-change in CPM values from RNAseq in HK-2 cells for alox5ap
in TBBPA-treated cells, for plat in BDE-47-treated cells, and for txnip in HBCD-treated cells. GAPDH was used as a
housekeeping gene for all qRT-PCR experiments. Each bar represents the mean ± SD across n = 3–5 passages of cells.
* Indicates significant difference (p < 0.05) compared to DMSO control.
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Figure 9. Validation of RNAseq data using qRT-PCR for select differentially expressed genes in freshly treated cells after 24
h exposure to BFRs. (A) Comparison between delta-delta ct values from qRT-PCR and fold-change in CPM values from
RNAseq in NRK cells for mmp 13 in TBBPA and HBCD-treated cells and for srebf1 in BDE-47-treated cells. (B) Comparison
between delta-delta ct values from qRT-PCR and fold-change in CPM values from RNAseq in HK-2 cells for alox5ap in
TBBPA-treated cells, for plat in BDE-47-treated cells, and for txnip in HBCD-treated cells. (C) qRT-PCR data in RPTECs for
the same genes as in (B). GAPDH was used as a housekeeping gene for all qRT-PCR experiments. Each bar represents the
mean ± SD across n = 3–5 passages of cells. * Indicates significant difference (p < 0.05) compared to DMSO control.

3. Discussion

This study presents evidence that the molecular mechanisms of BFR nephrotoxicity
in renal cells are species- and chemical-dependent. This conclusion is supported by IC50s,
effects on apoptosis, effects on cell and nuclear morphology, changes in gene expression,
and changes in gene set enrichment that differed between BFRs and between rat and
human cells. Furthermore, the lower IC50s and changes in gene expression that occurred in
HK-2 cells repeated in an additional human renal cell line (RPTECs), suggesting that these
effects are species-dependent rather than simply cell line-dependent.

This study advances our knowledge of the transcriptional changes that mediate BFR
nephrotoxicity. While this study is the first to perform RNA sequencing in BFR-exposed
renal cells, prior studies have used RNA sequencing to characterize BFR effects in other
target organs. For example, RNA sequencing has been performed in BFR-exposed rats,
mice, and zebrafish and in cell lines derived from the brain, liver, lung, and adipose
tissue [19–23]. Although these studies did not conduct gene set enrichment analysis
(GSEA), there were still several similarities between our GSEA results and the pathways
that were altered in these other tissues. Specifically, the enrichment of genes associated with
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the coagulation cascade, complement cascade, and cytokine-related pathways was reported
in BDE-47-treated mouse adipose tissue and in TBBPA-treated human bronchial epithelial
cells [19,20]. Additionally, genes involved in the extracellular matrix organization and
biological processes related to the cytoskeleton were enriched in TBBPA-treated zebrafish
embryos [21]. HBCD exposure also altered glucose and lipid metabolism, as well as fibrotic
pathways, in rats [22]. Finally, in mouse neural cells, HBCD altered pathways related to
Ca2+ and Zn2+ signaling, glutamatergic neuron activity, apoptosis, and oxidative stress
in vitro and in vivo [23]. Taken together, these similarities highlight common mechanisms
that potentially translate across tissues and experimental models.

Despite the similarities described above, differential gene expression analysis of the
RNA sequencing data in this study suggested that the transcriptional mechanisms of BFR
toxicity differ between chemicals and across human and rat cells. This highlights several
important considerations for future mechanistic studies on BFRs and other chemicals. First,
because BFR-induced changes in gene expression and gene set enrichment were largely
cell-dependent, care should be taken when extrapolating data derived from rats to humans
with regards to the ability of BFRs to induce renal dysfunction in humans. This supports the
need for studies that compare human and rodent cell lines to identify shared mechanisms
that are potentially translatable between the two. Second, because BFR-induced changes in
gene expression and gene set enrichment were chemical-dependent, this supports the need
for future studies that explore how differences in BFR chemical structure produce specific
mechanisms of toxicity.

Despite the cell- and chemical-dependent effects on toxicity and gene expression noted
above, BFRs shared some enriched gene sets. For example, TBBPA, HBCD, and BDE-47
shared the same top enriched gene set in each cell line. Specifically, estrogen deficiency
in female obesity was the top enriched gene set for all three BFRs in rat kidney cells, and
eicosanoids in inflammation was the top enriched gene set for all three BFRs in HK-2
cells. Furthermore, eicosanoids in inflammation was enriched exclusively in HK-2 cells,
suggesting that this is an important mechanism behind the species-specific effects of BFRs
in human cells. Future research should explore whether these shared effects are tied to
any subtle similarities in the chemical structures of these BFRs. Such studies could aid the
development of safer alternative flame retardants.

These findings support prior research on the effects of BFRs in other target organs.
Both TBBPA and BDE-47 have been shown to increase prostaglandin synthesis in human
trophoblasts [24,25]. Because eicosanoids including prostaglandins regulate trophoblast
processes that are essential for placentation and pregnancy, this is an important mechanism
to consider for studies on the developmental and reproductive toxicity of BFRs.

TBBPA, HBCD, and BDE-47 have been shown to enhance diet-induced weight gain
in vivo and to alter adipogenesis, adipocyte differentiation, and lipid metabolism in mouse
preadipocytes [26–33]. However, no study has explored the potential involvement of estro-
gen signaling in the obesogenic effects of these BFRs. Interestingly, all three of these BFRs
have been shown to have anti-estrogenic activity, either directly through ER antagonism
(as is the case for HBCD and OH-BDE-47) or indirectly through receptor-independent
mechanisms (as is the case for TBBPA) [34–36]. Furthermore, prior studies implicate a
role for certain genes within the “estrogen deficiency and female obesity” GSEA gene set,
including PPARγ, in the mechanism of adipocyte differentiation for all three of these chemi-
cals [30,32,33,37]. Because the estrogen receptor impacts adipogenesis via effects on PPARγ,
the endocrine disrupting effects of BFRs on these receptors are important mechanisms to
consider for studies on the obesogenic effects of these BFRs [38].

This study is the first to identify GSEA functional gene sets that were enriched across
both rat and human cell lines for BFRs. Notably, several of these shared gene sets ranked in
the top 10 enriched gene sets for a given BFR, making them both mechanistically relevant
and potentially translatable across human and rodent models.

Interestingly, some of these species-independent GSEA functional sets were shared
across all three BFRs studied. These include extracellular matrix turnover, the coagulation
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cascade, and the SNS-related adrenal cortex response. No studies have explored the effects
of TBBPA, HBCD, or BDE-47 on blood coagulation or on coagulation factors. Future studies
should explore these effects in vivo.

TBBPA and BDE-47 have been previously shown to alter matrix metalloproteinases
(MMPs), which function in the “extracellular matrix turnover” GSEA pathway. Specifically,
TBBPA-induced alterations in MMP expression accompanied developmental effects in
zebrafish embryos and breast cancer cell metastasis [39,40]. BDE-47-induced alterations
in MMP expression were linked to impaired human trophoblast migration and invasion
(which is a potential mechanism of pregnancy disorders) and to neuroblastoma metas-
tasis [41,42]. Because MMPs mediate tissue morphogenesis, wound healing, and cell
migration, more studies are warranted that explore how disrupted extracellular matrix
turnover contributes mechanistically to BFR effects on development, pregnancy, and cancer.

Regarding the enrichment of genes related to the SNS-related adrenal cortex response,
a few studies have explored the potential of BFRs to interfere with hormones released by
the adrenal gland, such as cortisol. Specifically, TBBPA has antagonistic effects on glucocor-
ticoid receptor signaling, and this has been linked to its obesogenic effects [32,33,43]. Our
data suggest that a similar response may occur in the kidney. They also support the need
for more research on this mechanism and whether it also plays a role in HBCD and BDE-47
induced obesity and metabolic dysfunction.

Several of the enriched gene sets in this study have been suggested to mediate renal
dysfunction. Eicosanoids and arachidonic metabolism play major roles in kidney inflamma-
tion and have been shown to predict chronic kidney disease progression in patients [44–46].
Extracellular matrix turnover plays a role in aberrant wound healing and fibrosis, which is
a hallmark of kidney disease. Accordingly, matrix metalloproteinases and their tissue in-
hibitors (TIMPs) have also been associated with chronic kidney disease progression [47–52].
Finally, hypercoagulability is a major complication during the advanced stages of kidney
disease, and coagulation proteases have been shown to predict chronic kidney disease
progression in patients [53–56]. Several of these putative biomarkers of kidney injury were
differentially expressed by BFRs according to our RNASeq data and have never previously
been associated with BFR toxicity. Specifically, arachidonate 5-lipoxygenase activating
protein (alox5ap) and tissue plasminogen activator (plat) have not been studied in relation
to any BFR. Matrix metalloproteinases (MMPs) were altered by both TBBPA and BDE-47
exposure in trophoblasts; however, they have never been related to BFR toxicity to the
kidney.

It is important to note that this study is limited because the acute exposure time and
relatively high doses used may not reflect typical human exposure to BFRs. There is a
great deal of uncertainty regarding the levels of BFRs in humans. Few studies report
levels outside of the United States, European Union, and China. Furthermore, within
the US, BDE-47 is the only BFR that has been measured via the NHANES survey. While
this limitation was addressed by conducting RNASeq analysis at 24 h (in the presence
of minimal toxicity), further studies are needed that validate these findings after chronic
exposure. Additionally, for the purpose of interpreting the GSEA results, the “top 10” gene
sets could be ranked according to the strength of their p values rather than according to
effect size (median log FC in expression). However, this did not impact which GSEA results
appear in the top 10 pathways. Furthermore, given that the GSEA results already have a
threshold p-value of <0.05, we chose to rank them according to effect size. Finally, these data
need to be validated in vivo. Our future studies will address these limitations by exploring
the potentially shared mechanisms identified by GSEA in vivo after long-term exposure
to lower doses that approximate human exposure. Such studies will have limitations
given that our data suggest that BFR-induced transcriptional changes are largely species-
dependent. Regardless, the data reported in this study set a solid foundation for future
in vivo studies investigating the molecular mechanisms of BFR nephrotoxicity. These
studies will substantially increase our knowledge about the risks that these persistent
organic pollutants pose to human health.
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4. Materials and Methods
4.1. Chemicals and Reagents

3,3′,5,5′-Tetrabromobisphenol-A (TBBPA), 1,2,5,6,9,10-Hexabromocyclododecane (HBCD),
and 2,2′,4,4′-Tetrabromodiphenyl ether (BDE-47) were purchased as powder from Sigma
(St. Louis, MO, USA). Stock solutions of each BFR were dissolved in DMSO (Fisher Sci-
entific, Fair Lawn, NJ, USA). MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium
bromide] was purchased from Sigma (St. Louis, MO, USA) and dissolved in PBS (Fisher
Scientific, Fair Lawn, NJ, USA). DMEM, DMEM F-12, Keratinocyte Serum-Free media,
human recombinant epidermal growth factor, bovine pituitary extract, hTERT RPTEC
Growth Kit, and penicillin/streptomycin were purchased from American Type Culture
Collection (ATCC, Manassas, VA, USA). Fetal bovine serum was purchased from VWR
(Radnor, PA, USA). G418 solution was purchased from Fisher Scientific (Fair Lawn, NJ,
USA). 4% Paraformaldehyde solution was purchased from Sigma (St. Louis, MO, USA).
Hoechst 33342 was purchased from Sigma (St. Louis, MO, USA) and dissolved in water.
Primers were purchased from Integrated DNA Technologies (Newark, NJ, USA). All-in-
One ™ qPCR Mix was purchased from GeneCopoeia (Rockville, MD, USA). SsoAdvanced™
Universal SYBR Green Supermix was purchased from Bio-Rad (Hercules, CA, USA). Su-
perscript™ IV VILO™ Master Mix was purchased from Thermo Fisher Scientific (Waltham,
MA, USA). The NEBNext Ultra II RNA Library Prep Kit with Sample Purification Beads,
NEBNext Library Quantification Kit, NEBNext Multiplex Oligos for Illumina, and NEB-
Next Poly(A) mRNA Magnetic Isolation Module were purchased from New England
Biolabs (Ipswich, MA, USA).

4.2. Cell Culture and Treatment with BFRs

Rat (NRK 52-E) and human (HK-2, RPTEC) kidney cells were purchased from ATCC
(Manassas, VA, USA) and maintained according to the vendor’s recommendations. NRK
52-E cells were maintained in DMEM supplemented with 10% fetal bovine serum and 1%
penicillin/streptomycin. HK-2 cells were maintained in Keratinocyte Serum-Free media
supplemented with 2.5 µg human recombinant epidermal growth factor, 25 mg bovine
pituitary extract, and 1% penicillin/streptomycin. RPTECs were maintained in DMEM
F-12 and supplemented with hTERT RPTEC Growth Kit and 0.1 mg/mL G418 solution.
All cell lines were kept in an incubator at 37 ◦C in 5% CO2 and were given media changes
every 2–3 days. When cells were plated for experiments, they reached 80% confluence
prior to treatment with TBBPA, HBCD, BDE-47, or an equivalent volume of DMSO vehicle.
The volume of DMSO did not exceed 0.5% of the total volume in each well.

4.3. MTT Assay and Calculation of IC50 Values

NRK, HK-2, and RPTEC cells were seeded in 48-well tissue culture plates at 5 × 104 cells
per well and were treated for 48 h with 1 µM, 3 µM, 10 µM, 30 µM, and 100 µM of TBBPA,
HBCD, BDE-47, or an equivalent volume of DMSO. After BFR exposure, cells were incu-
bated for 2 h with MTT dye at a final concentration of 0.25 mg/mL. Nonreduced MTT
and media were then aspirated and replaced with DMSO to dissolve the MTT formazan
crystals. Plates were shaken for an additional 15 min and absorbance was read at 570 nm
using a Spectra Max M2 plate reader (BMG Lab Technologies, Cary, NC, USA). Absorbance
values were averaged across triplicate wells for each dose of each BFR and were normalized
to the average absorbance from DMSO-treated wells. The IC50 for each BFR in each cell
line was calculated in Graphpad Prism 8 (San Diego, CA, USA) using the [Inhibitor] vs.
response–Variable slope model.

4.4. Cell and Nuclear Morphology

NRK, HK-2, and RPTEC cells were seeded in 12-well tissue culture plates at 150,000 cells
per well. Cells were treated for 24 h and 48 h with each BFR at the IC50 calculated from the
MTT assay or with an equivalent volume of DMSO. Cell morphology was assessed using a
Nikon Eclipse Ti-U inverted microscope (Melville, NY, USA). Cells were then fixed in 4%
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paraformaldehyde and stained with 1 µg/mL Hoechst 3,3342 for 15 min in the dark at room
temperature. Pictures were taken using the same microscope with a DAPI fluorescence
filter.

4.5. Measurement of Cell Death via Annexin V and PI Staining

Cells were seeded in 12-well tissue culture plates at 150,000 cells per well. Cells were
treated for 24 h with each BFR at the IC50 calculated from the MTT assay or with an equiva-
lent volume of DMSO. Cells were harvested via trypsinization and stained with Annexin
V-Alexa Fluor® 488 and PI using the Tali Apoptosis kit (Life Technologies, Carlsbad, CA,
USA) according to the manufacturer’s protocol. Annexin V and PI fluorescence were
measured using a NovoCyte Quanteon flow cytometer (Agilent, Santa Clara, CA, USA) at
the University of Georgia’s Cytometry Shared Resource Laboratory. Cells were run at a
flow rate of <500 events/second. The resulting scatterplots were analyzed using FlowJo
version 10.6.2 (BD Biosciences, San Jose, CA, USA). Events above 100,000 scatter units on an
FSC vs. SSC plot were considered debris and eliminated from the analysis. The percentage
of cells in early apoptosis (Annexin V-positive), late apoptosis (Annexin V and PI-positive),
and necrosis (PI-positive) was averaged across duplicate wells for each BFR and across
n = 3 passages of each cell line.

4.6. Cell Cycle Analysis via Propidium Iodide Staining

Cells were seeded in 12-well tissue culture plates at 150,000 cells per well. Cells
were treated for 24 h with each BFR at the IC50 calculated from the MTT assay or with an
equivalent volume of DMSO. Cells were harvested via trypsinization and fixed for 2 h at
4 ◦C in 70% ethanol. Cells were washed twice with PBS and incubated at room temperature
for 5 min with 100 µg/mL DNAse-free ribonuclease (Sigma, St. Louis, MO, USA). This
solution was diluted 1:5 in a 50 µg/mL PI staining solution (Sigma, St. Louis, MO, USA) and
incubated in the dark overnight at 4 degrees. PI fluorescence was measured at 605 nm using
a NovoCyte Quanteon flow cytometer (Agilent, Santa Clara, CA, USA) at UGA’s Cytometry
Shared Resource Laboratory. Cells were run at a flow rate of <500 events/second. Cell
cycle analysis was performed using FlowJo version 10.6.2 (BD Biosciences, San Jose, CA,
USA). Events above 100,000 scatter units on an FSC vs. SSC plot were considered debris
and eliminated from the analysis. Doublets were also discriminated from analysis using a
height vs. area plot. The percentage of cells in the G0/M, S, and G2 phases was averaged
across duplicate wells for each BFR and across n = 3 passages of each cell line.

4.7. RNA Isolation, Sequencing, and Bioinformatic Analysis

For RNA sequencing experiments, cells were treated for 24 h with each BFR at the
48 h IC50 calculated from the MTT assay or with an equivalent volume of DMSO. Total
RNA was isolated from five different passages for each cell line. Cells were homogenized
in TRIzolTM Reagent (Fisher Scientific, Waltham, MA, USA). Total RNA was extracted with
chloroform and purified with the RNeasy Mini Kit (Qiagen, Hilden, Germany) using the
manufacturer’s protocol. The quantity and quality of RNA was examined using a Thermo
ScientificTM NanoDropTM 8000 Spectrophotometer (Waltham, MA, USA). The integrity of
RNA was examined using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara,
CA, USA). Only RNA with OD 260/280 ≥ 1.8 and RNA integrity number ≥ 7 was used for
subsequent experiments. Samples were quantified again using the Qubit 3.0 fluorometer
(ThermoFisher Scientific, Waltham, MA, USA). Libraries were prepared using the NEBNext
Ultra II RNA Library Prep Kit for Illumina (New England BioLabs, Ipswich, MA, USA)
in combination with the NEBNext Poly(A) magnetic isolation module according to the
manufacturer’s directions. Sample libraries were pooled and quantified before sequencing
using the NEBNext Library Quant Kit for Illumina (New England Biolabs, Ipswich, MA,
USA). Sequencing was conducted at the University of Florida Interdisciplinary Center for
Biotechnology Research using the Illumina Nova Seq 6000 system (Illumina, San Diego,
CA, USA). Raw reads were demultiplexed, QCed- and trimmed using FastQC. Low-quality
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reads were removed using Trimmomatic [57]. Reads from HK-2 cells were mapped to
the Homo sapiens genome (GRCm38) and reads from NRK cells were mapped to Rattus
norvegicus genome (Rnor_6.0) using Star Aligner [58]. Reads were normalized as counts per
millon (CPM), gene expression was calculated using RSEM and analyzed for differential
gene expression using EdgeR [59,60]. Significant up-and down-regulated genes were
selected based on the following criteria: (1) the fold change was greater than 2 and (2) the
false discovery rate (FDR) adjusted q-value was less than 0.05. To further understand the
mechanistic functions of the differentially expressed genes, gene set enrichment analysis
(GSEA) was conducted in PathwayStudioTM (Elsevier, Amsterdam, the Netherlands) using
gene sets involved in Biological Processes, Cell Processes, and Toxicity Pathways. Gene
sets with p < 0.05 were significantly enriched. The top 10 significantly enriched gene sets
were ranked according to the absolute value of the median log FC in expression for each
gene set (reported as “mean change” in the GSEA output.).

4.8. Validation via qRT-PCR

Five representative genes (one per treatment for each cell line) were selected from
the RNASeq data for validation via quantitative reverse-transcriptase PCR (qRT-PCR).
All gene specific primers used in this study were designed using Primer 3 software and
were validated for specificity via gel electrophoresis (Table 2). qRT-PCR was conducted in
the original samples from RNA sequencing, as well as in RNA from freshly treated cells.
Freshly treated cells were exposed to BFRs for 24 h at the same concentrations that were
used for RNASeq. RNA was extracted from freshly treated cells as previously described
above and converted to cDNA using the Superscript™ IV VILO™ Master Mix according to
the manufacturer’s protocol. qRT PCR was performed on a QuantStudio 5 system (Applied
Biosystems, Foster City, CA, USA) with All-in-One ™ qPCR mix for fresh RNA samples.
The CFX Connect system (Bio-Rad, Hercules, CA, USA) and SsoAdvanced™ Universal
SYBR Green Supermix were used for qRT PCR original RNASeq samples. All qRT-PCR
experiments were carried out using the kit-recommended cycling parameters and a Ta
of 57 ◦C for all primers. Also, 50 ng cDNA and 0.2 µM primers were included in each
qRT-PCR reaction (10 µL total). Gene expression was calculated as a fold change relative to
DMSO-treated cells using the 2−∆∆Ct method. GAPDH and β-actin were used as internal
controls for normalization.

Table 2. Primer Sequences Used in this Study.

Gene Name Species Forward Sequence Reverse Sequence

Alox5ap Mouse TCACCCTCATCAGCGTGGTC CATCTACGCAGTTCTGGTTGGC

Human CCGGAACACTTGCCTTTGAGC CAAACGCAGCAGGAACTTGGC

β-actin Rat ACAACCTTCTTGCAGCTCCTCC TGACCCATACCCACCATCACAC

Mouse TATAAAACCCGGCGGCGCAA TCGTCATCCATGGCGAACTGG

Human AGCTCACCATGGATGATGATATCGC ATAGGAATCCTTCTGACCCATGCC

Gapdh Rat CAGTGCCAGCCTCGTCTCATA ACTGTGCCGTTGAACTTGCC

Human CTCCTGTTCGACAGTCAGCC GCCCAATACGACCAAATCCGT

Mmp 13 Rat GCATACGAGCATCCATCCCG AAGAGGGTCTTCCCCGTGTC

Mouse TCCCTAGGTCTGGATCACTCC TTAGGGTTGGGGTCTTCATCG

Plat Mouse TGCAGGAACTCAAGAGCTCAG TTTCTTCTGTGTCCCGAGAGTG

Human GTCTTCGTTTCGCCCAGCCA CGGTTGCTTCTGAGCACAGGG

Srebf1 Rat GCTGCAGGAAACTGAGAGACC TGGGCTGGATTCCACCTTTC

Txnip Human GCAGTGCAAACAGACTTCGG CATCTCATTCTCACCTGTTGGC
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4.9. Statistical Analysis

Statistical analyses were performed using the GraphPad Prism software Version 9 (San
Diego, CA, USA). Data were analyzed for normality and subsequently, either a parametric
or non-parametric test was used to determine statistical significance. In cases where
multiple BFRs were compared simultaneously to vehicle control, one-way ANOVA was
used with Dunnett’s post hoc test. In cases where only one BFR was compared to vehicle
control, an unpaired t-test was used.

5. Conclusions

This study compares the molecular mechanisms of BFR toxicity in rat and human
kidney cells after acute exposure to three BFRs for the first time. RNA sequencing and
differential gene expression analysis suggested that BFRs have chemical- and species-
dependent effects on gene expression. However, the GSEA results highlighted several
functional changes that are potentially shared between rats and humans for all three BFRs,
including the coagulation cascade, extracellular matrix turnover, and the SNS-related
adrenal response. Several of the top enriched gene sets are involved in kidney disease
progression and provide insight into the mechanisms of BFR-induced kidney injury. Others,
while not relevant to kidney disease, still identify potential mechanisms of BFR-induced
developmental toxicity, reproductive toxicity, and obesity. Future studies will explore these
potential mechanisms in vivo at environmentally relevant exposures to BFRs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms221810044/s1.
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