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Anthropogenic ozone depletion has led to a 2–5% increase in ultraviolet B
radiation (UVBR) levels reaching the earth’s surface. Exposure to UVBR
causes harmful DNA damage in amphibians, but this is minimized by
DNA repair enzymes such as thermally sensitive cyclobutane pyrimidine
dimer (CPD)-photolyase, with cool temperatures slowing repair rates. It is
unknown whether amphibian species differ in the repair response to a
given dose of UVBR across temperatures. We reared larvae of three species
(Limnodynastes peronii, Limnodynastes tasmaniensis and Platyplectrum ornatum)
at 25°C and acutely exposed them to 80 µW cm−2 UVBR for 2 h at either
20°C or 30°C. UVBR-mediated DNA damage was measured as larvae
repaired damage in photoreactive light at their exposure temperatures.
Cool temperatures increased DNA damage in two species and slowed
DNA repair rate in P. ornatum. The magnitude of DNA damage incurred
from UVBR was species-specific. Platyplectrum ornatum had the lowest
CPDs and DNA repair rates, and the depressive effects of low temperature
on photorepair were greater in L. tasmaniensis. Considering the susceptibility
of most aquatic organisms to UVBR, this research highlighted a need to con-
sider the complexity of species-specific physiology when forecasting the
influence of changing UVBR and temperature in aquatic ecosystems.
1. Introduction
Solar ultraviolet (UV) radiation has wide-ranging effects on organisms and
biological processes. Ultraviolet B radiation (UVBR) is largely absorbed by
the stratospheric ozone column; however, significant amounts of UVBR reach
the Earth’s surface and penetrate aquatic ecosystems [1]. Anthropogenic O3

depletion led to a 2–5% increase in UVBR levels in some areas [2,3] and will
likely remain high [4] or even possibly increase as a result of climate change
[5–7]. UVBR can directly damage nucleic acids by forming dimers between
nucleotide bases that disrupt gene expression patterns, cause mutations and
trigger apoptosis [8,9]. To avoid the toxic effects of UV-induced DNA
damage, organisms employ DNA repair mechanisms including nucleotide exci-
sion repair (NER) [10] and photoenzymatic repair (PER) [11]. During PER, the
enzyme photolyase uses energy from photoreactive light to break UVBR-
induced nucleotide bonds [12]. However, if DNA damage occurs at rates
exceeding DNA repair, deleterious photoproducts may accumulate, resulting
in whole-organism fitness consequences [13,14]. Aquatic organisms are suscep-
tible to UVBR damage at the cellular level, leading to population impacts [15].

Globally, amphibians face a high extinction risk [16–18]. Although a signifi-
cant number of recent population declines have been linked to the emergence
and spread of novel pathogenic amphibian chytrid fungi [19–22], global decline
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patterns point to co-occurring environmental changes, such
as increasing UVBR, as proximate and interactive stressors
with the pathogen [23–25]. Increased UVBR is hypothesized
to influence amphibian populations through direct impacts
on eggs and larvae as these life stages are often diurnal and
typically laid during spring and summer when UVBR
levels are highest [26]. UVBR exposure causes a range of
sublethal and lethal effects in amphibian embryos and
larvae [27] which occur primarily through the formation of
cyclobutane pyrimidine dimer (CPD) photoproducts in
DNA, which are repaired largely via PER in amphibians [28].

The negative effects of UVBR on amphibians are signifi-
cantly compounded when UVBR exposure occurs at low
temperatures [29–33], reflecting the thermal sensitivity of
PER [34–39]. Morison et al. [37] proposed that the thermal sen-
sitivity of UVBR-associated DNA repair may partially explain
why a disproportionately high number of amphibian declines
have occurred at higher altitudes [25,40–46]. However, species
from high UV or cool environments may differ in their toler-
ance to UVBR, by compensating for the depressive effect of
temperature on DNA repair or by employing more efficient
or effective DNA repair. In this study, we investigate the ther-
mal sensitivity of UVBR effects on DNA in the larvae of three
closely related amphibian species: Limnodynastes peronii, Limno-
dynastes tasmaniensis and Platyplectrum ornatum. Limnodynastes
peronii larvae are known to be UVBR-sensitive [29,32] while
P. ornatum larvae are considerably more UVBR tolerant and
likely experience higher UVBR doses in nature [47]; the
UVBR sensitivity of L. tasmaniensis larvae is unknown, how-
ever, L. tasmaniensis are found in cooler habitats compared
with L. peronii. It was hypothesized that there would be
species-specific differences in the amount of incurred DNA
damage, in DNA repair rates and in the thermal dependence
of DNA repair rates which reflect the differing thermal and
UV environments inhabited by the three species.
2. Methods
(a) Animal collection and maintenance
Freshly laid L. peronii, L. tasmaniensis and P. ornatum spawn was
collected near Meeanjin (greater Brisbane, QLD, Australia). Spawn
was immediately transported to the University of Queensland,
separated into small pieces and left to hatch in 2 l ice-cream contain-
ers half-filledwith carbon-filtered Brisbane tapwater at 25°C. Partial
water changes were conducted every second day and larvae
were fed thawed spinach ad libitum daily. Larvae were reared
for two to three weeks to Gosner stage 25 [48] under a 12L : 12D
photoperiod generated by standard room fluorescent lights.

(b) UVR lighting and heating
UVR was generated using 40W, full spectrum fluorescent light
sources which emit visible light, UVAR and UVBR (Repti-Glo
10.0, 1200 mm, Exo Terra, Montreal, Canada). Light heights were
adjusted to achieve an absolute UVBR irradiance of approximately
80 µW cm−2 (UVBR irradiance:mean ± s.d. = 79.8 ± 4.9;UVAR irradi-
ance: mean ± s.d. = 81.3 ± 54.5 µW cm−2) at the water surface. Light
intensities for UVAR and UVBR were measured using a calibrated
radiometer (IL1400BL, International Light Inc., Newburyport, USA).

(c) Experimental design
Upon reaching Gosner stage 25, larvae were placed into individual
wells of a six-well plate (34 plates per species) containing 10 ml of
filtered water. The plates were evenly allocated across four water
baths at 20°C or 30°C test temperatures (two per temperature).
The temperature of experimental water baths was controlled using
300 W heaters (AquaOne, Kongs Pty Ltd, Ingleburn, NSW, Austra-
lia) and water was circulated by small pumps. Larvae were left
for 1 h at the experimental temperature. Larvae (n = 72 in total,
n = 24 per species) were randomly removed from water baths
(n = 12 per temperature treatment) rapidly euthanizedwith buffered
MS222 (0.25 mg l−1) and then snap frozen at −80°C. UVR lights
were switched on and all remaining larvae were exposed to
80 µW cm−2 of UVBR for 2 h. Water baths were then covered with
UVBR blocking film (Melinex 516, 100 µm, Archival Survival, Don-
caster, Victoria, Australia) and larvae were allowed to photorepair
for up to 24 h. Larvae (n = 72) were removed at the following time
points post-UVBR exposure: 0, 0.25, 0.5, 0.75, 1, 1.5, 3, 6, 12 and
24 h), then euthanized and snap frozen. Larval wet mass was
recorded (L. peronii mean± s.d. = 5.7 ± 2; L. tasmaniensis mean ±
s.d. = 9.5 ± 7.5; P. ornatum mean± s.d. = 6.2 ± 3.1).

(d) DNA damage
Genomic DNA was extracted and purified from whole-animal
homogenates using PureLink Genomic DNA Minikits (Thermo-
Fisher Scientific Inc., Waltham, MA, USA) and quantified using
a Qubit dsDNA High-Range Assay Kit (ThermoFisher Scientific
Inc.). CPD concentrations were determined using an anti-CPD
ELISA assay following the primary antibody manufacturers pro-
tocol [49]. Briefly, DNA (0.4 ng µl−1) was loaded into triplicate
wells of a protamine sulfate-coated 96-well plate and detected
using an anti-CPD monoclonal primary antibody (NM-ND-
D001, clone TDM-2, Cosmo Bio Co., Ltd). The primary antibody
was detected using a biotinylated goat anti-mouse IgG
(QD209886, Life Technologies, USA), then an HRP-conjugated
streptavidin (ab7403, Abcam, Cambridge, UK). Colour develop-
ment was achieved with TMB substrate (416 mM; Sigma-
Aldrich, Saint Louis, MO, USA) following the manufacturers
guidelines. Colour development was stopped with H2SO4, and
absorbance determined at 450 nm (Beckman Coulter DTX880
multimode detector, MN, USA) using the SoftMax Pro program
(v.7.1.0, Molecular Devices LLC, CA, USA). CPD concentrations
were calculated from a standard dose–response curve of UVC-
irradiated calf thymus (NM-MA-R010, Cosmo Bio Co., Ltd,
Tokyo, Japan) on each plate. CPD concentration is reported as
units of UVCR-dose equivalent per 20 ng of DNA.

(e) Statistical analyses
All analyses were conducted in the R statistical environment [50]
from the resulting dataset [51]. CPD levels and wet body masses
were log transformed to meet the assumptions of statistical tests.
The decline in CPD abundance over time was interpreted as the
repair rate of DNA damage. CPD abundance values >10 J m2 in a
small number of larvae (n = 11) were changed to 10 J m2 to ensure
that these data fit within the dynamic range of the standard
curve (0–10 J m2). ELISA Plate ID was recorded as a random
effect. CPDs were fitted in a linear mixed effects model with
the lme4 package [52] as

log10 ([CPD]þ 1) � log10 (mass)

þ log10 (time)� temperature� speciesþ ð1jplateÞ:

Where [CPD] was the UVCR-dose equivalent at three levels
of species across 14 experimental ELISA 96-well plates, mass
was the wet body mass of the tadpole in milligrams, and time
was the hours post-UVBR exposure. The fitted model was ana-
lysed using omnibus Type II χ2 tests from the car package [53].
Specific contrasts between groups were generated from the
lme4 package. Mean larval masses were compared between
species using two-sample Wilcoxon rank sum tests with



10.0

(a) (b) (c)

7.5

5.0

2.5

[C
PD

] 
U

V
C

R
-d

os
e 

eq
ui

va
le

nt

0

0

1 2 3 0 1 2
log hours

3 0 1 2 3

20

temperature

30

Figure 1. The effect of water temperature on CPD repair rates (measured as [CPD] UVCR-dose equivalent (J m2)) following 2 h of acute UVBR exposure (80 µw cm−2) and
24 h of blue light-assisted photorepair in (a) L. peronii; (b) L. tasmaniensis and (c) P. ornatum larvae. Points represent individual values. Curves represent the fitted
parameters extracted from the linear mixed effects model, predicted for an average-sized tadpole of all species (6.08 mg). Ribbons show the upper and lower s.d.
for the fitted line.
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continuity correction. One-sample t-tests were used to confirm
that pre-UVBR exposure (i.e. baseline) levels of CPDs were not
significantly different from zero and whether CPD levels in the
24 h post-exposure groups had returned to baseline levels in
each species.
3. Results
Larvae that received no UVBR exposure had no CPDs
(L. peronii: t11 = 1.48, p = 0.17; L. tasmaniensis: t13 = 1.89, p =
0.08; P. ornatum: t14 = 1.84, p = 0.09). For all species and temp-
eratures, acute exposure to UVBR resulted in the formation of
CPDs (figure 1; electronic supplementary material, tables S1
and S2) which decreased over the 24 h recovery period but
did not return to baseline (electronic supplementary material,
figure S1; L. peronii: t13 = 4.68, p < 0.001; L. tasmaniensis: t10 =
3.51, p < 0.01; P. ornatum: t15 = 4.35, p < 0.001). Specific con-
trasts between regression coefficients were compared across
the three reference species in the full model (electronic sup-
plementary material, table S2). There was no overall effect
of temperature on DNA repair rates, but L. tasmaniensis at
20°C had higher rates of repair than P. ornatum at 20°C
(figure 1). There was a species-specific effect of temperature
on CPD abundance (figure 1). Larvae held at 20°C accumu-
lated more CPDs than larvae held at 30°C in both
L. tasmaniensis and P. ornatum, but not L. peronii (max CPD
abundance measured as [CPD] UVCR-dose equivalent
(J m2): L. peronii: 20°C = 10, 30°C = 10; L. tasmaniensis:
20°C = 10, 30°C = 4.57; P. ornatum: 20°C = 8.11, 30°C = 4.97).
There were significant interspecific differences between
CPD levels, dependent on the exposure temperature. At
20°C, L. tasmaniensis had higher CPDs than P. ornatum. At
30°C, L. tasmaniensis had lower CPDs than L. peronii, and
L. peronii had higher CPDs than P. ornatum. Mean larval
masses were significantly higher in L. tasmaniensis compared
with L. peronii (W = 20 537, p < 0.001) and P. ornatum (W =
14 012, p < 0.001). Platyplectrum ornatum larval mass was not
significantly different to L. peronii (W = 20 263, p = 0.78).
4. Discussion
This study demonstrated a complex interplay between temp-
erature and time on the amount of UV-induced DNA damage
among three species of amphibian larvae. UVBR exposure
caused significant DNA damage in all larvae, but there
were considerable interspecific differences in the magnitude
and thermal sensitivity of the damage incurred. At cool
temperatures, P. ornatum accumulated less damage during
UVBR exposure but had a lower rate of repair compared to
L. tasmaniensis. Considering P. ornatum larvae likely experi-
ence greater natural UVBR levels than L. peronii and
L. tasmaniensis, our data suggest that this species may use
alternate strategies to prevent DNA damage from occurring;
however, any that does occur is repaired more slowly than
in the other two species. P. ornatum larvae can maintain per-
formance over a relatively large range of environmental
temperatures and in the presence of elevated UVBR [47].
Preventing DNA damage may reduce metabolic costs associ-
ated with repair mechanisms [54–58]. Metabolism underlies
important fitness traits by providing energy for growth,
development and performance [59–61]. A lower DNA
repair rate and lower amount of initial DNA damage follow-
ing UVR exposure in P. ornatum may mean that more energy
is available for other metabolic activities such as performance
traits. However, the lower initial CPDs in P. ornatum does not
necessarily mean the species is UV tolerant. Slower rates of
DNA photorepair in P. ornatum may be problematic if
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larvae were to incur significant CPD concentrations in nature
unless it also stimulated an increase in DNA repair rates.

Our study shows that cool temperatures did not lower
UVBR-associated repair rates in any species, which con-
trasted with earlier work showing a thermal dependence of
DNA repair rates in L. peronii [37]. While photolyase activity
decreases at low temperatures, it also increases with substrate
concentration [62], possibly explaining why we observed no
net changes in DNA repair rates at low temperatures. In the
current experiment, larvae were subject to 80 µW cm−2

UVBR for 2 h which resulted in substantially greater DNA
damage levels compared to the 100 µW cm−2 for 1 h exposure
used by Morison et al. [37]. The additional hour of exposure
time in the present study may be where differential rates
of repair are occurring, rather than during the period of
photorepair where larvae were sampled. This could also
explain why CPD levels were higher in L. peronii and
L. tasmaniensis larvae held at cool temperatures compared
with warm temperatures, even though no difference in
DNA repair rate were reported between temperatures. Com-
paring DNA damage abundance and repair across UV dose,
duration and intensity treatments may help to elucidate these
different responses [63].

The finding that L. tasmaniensis accumulated a greater
abundance of CPDs than P. ornatum at 20°C suggests that
L. tasmaniensis larvae are more susceptible to UVR exposure
at cool temperatures. This result was surprising given that
L. tasmaniensis can occur in cooler habitats than P. ornatum
and L. peronii and might be expected to be more resilient
against the depressive effects of temperature on physiological
rate processes. However, the L. tasmaniensis populations
sampled in this study were not from particularly cool cli-
mates and may possess a thermal phenotype that more
closely resembles that of L. peronii and P. ornatum. Popu-
lation-level differences in thermal sensitivity can be
underpinned by genotypic differences that may moderate
the effects of temperature on the DNA photorepair response
[64]. Alternatively, species-specific variations in cutaneous
melanin concentration may explain differences in the degree
of DNA damage experienced by larvae. Melanin pigments
can migrate rapidly to the outer epithelium with UV insult
to guard against DNA damage [65–67], and in response to
low temperatures [68,69]. Although no obvious differences
in melanization were observed between species or treatments
in the current study, small differences in melanization could
have reduced DNA damage in exposed animals. Differences
in inherent melanin levels, or the capacity to rapidly mobilize
melanin stores to minimize DNA damage could vary across
species and with temperature. Similarly, sampling across a
larger range of species would elucidate the contribution
of phylogeny to the DNA damage response. While the
genotoxic impacts of UVR on amphibian larvae are directly
linked to the DNA photorepair response, caution must be
taken in interpreting greater DNA damage as worse for
larval fitness. For example, some species may have greater
‘DNA damage tolerance’ [70].

Amphibians are among the world’s most threatened taxa,
with global declines linked with co-occurring and interacting
stressors such as disease and climate. Therefore, knowledge
of how amphibians respond to environmental change is
vital to their conservation. Our results show that UVR toler-
ance in amphibian larvae may depend upon the thermal
context of their environment, but this influence depends on
the species. Species and populations in which larvae can be
more at risk of the interplay between harmful UVR exposure
and cool temperatures may possess physiological adaptations
enabling them to persist. However, these physiological differ-
ences could contribute to the differential susceptibility of
species to decline, which may explain why a disproportio-
nately high number of amphibian declines have occurred at
high altitude. We argue that when attempting to predict
how changing UVR and temperature levels in aquatic ecosys-
tems has and will continue to influence amphibian larvae, it
is critical to consider species-specific physiological responses.
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