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Abstract

Neuronal pruning is a commonly observed phenomenon for the developing nervous sys-

tems to ensure precise wiring of neural circuits. The function of Ik2 kinase and its down-

stream mediator, Spindle-F (Spn-F), are essential for dendrite pruning of Drosophila

sensory neurons during development. However, little is known about how Ik2/Spn-F signal-

ing is transduced in neurons and ultimately results in dendrite pruning. Our genetic analyses

and rescue experiments demonstrated that the small GTPase Rab11, especially the active

GTP-bound form, is required for dendrite pruning. We also found that Rab11 shows genetic

interactions with spn-F and ik2 on pruning. Live imaging of single neurons and antibody

staining reveal normal Ik2 kinase activation in Rab11 mutant neurons, suggesting that

Rab11 could have a functional connection downstream of and/or parallel to the Ik2 kinase

signaling. Moreover, we provide biochemical evidence that both the Ik2 kinase activity and

the formation of Ik2/Spn-F/Rab11 complexes are central to promote Rab11 activation in

cells. Together, our studies reveal that a critical role of Ik2/Spn-F signaling in neuronal prun-

ing is to promote Rab11 activation, which is crucial for dendrite pruning in neurons.

Author summary

During metamorphosis in Drosophila, both the central and peripheral nervous systems

undergo substantial neuronal remodeling, such as the cell death of most larval neurons

and regeneration of adult neurons, while few larval neurons remain alive and prune their

branches. Pruning is a self-destruction program, and thus requires to be tightly controlled

within single neurons spatially and temporally during development. Recent studies have

shown a strong correlation between pruning and human psychiatric disorders, such as

schizophrenia and autism. Drosophila sensory neurons that undergo dendrite pruning

provide us an opportunity to study the regulatory mechanism of neuronal pruning. Previ-

ously, we identified an IKK-related kinase Ik2 that is essential and sufficient for dendrite

pruning, and a coiled-coil protein Spindle-F that mediates Ik2-dependent pruning activity

in neurons. However, what are the downstream targets of Ik2/Spindle-F signaling in
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dendrite pruning remains unclear. In this study, we found that the small GTPase Rab11,

especially the active GTP-bound form, is required for dendrite pruning in neurons. We

further demonstrated that both the Ik2 kinase activity and Ik2/Spindle-F complexes are

essential to enhance Rab11 activation in neurons during dendrite pruning.

Introduction

During the early development of the nervous systems, neurons often extend exuberant

branches and make excessive connections in the vicinity of their final targets. To ensure the

precise neuronal wiring, further remodeling is required to refine the connections of the ner-

vous systems at later developmental stages. Neuronal pruning, one of the remodeling mecha-

nisms, is a tightly controlled process to eliminate excessive branches and improper

connections without causing any cell death. Pruning is a commonly observed event in the

developing nervous systems of both vertebrates and invertebrates [1,2]. It has been shown that

disrupting developmental pruning in neurons could reduce olfactory plasticity in C. elegans
[3]. Moreover, blocking pruning in Drosophila brain mushroom body (MB) γ neurons has

been shown to display ectopic connections affecting the olfactory circuits [4], and also abolish

short-term courtship memory in adult flies [5]. Thus, any misregulation of pruning activity

could severely affect the functions of nervous systems in animals.

Neuronal remodeling occurs in both the central and peripheral nervous systems of Dro-
sophila during metamorphosis [6–10]. Most larval neurons die during metamorphosis, but

only few survive and undergo neuronal pruning. The peripheral class IV dendritic arborization

(C4da) neurons are one type of such neurons that undergo a large-scale dendrite pruning [7–

10]. Dendrite pruning of dorsal C4da neurons begins with dendrite severing at the proximal

parts of dendrites around 4–6 hours after puparium formation (APF) [11]. Subsequently, the

disconnected dendrites become fragmented and removed via phagocytosis by the underlying

epidermal cells by 16–18 hours APF [12]. Dendrite pruning is initiated by the steroid hormone

ecdysone signaling and its target gene sox14 in C4da neurons at early pupal stages [7,8,13]. A

few other molecules involved in specific cellular activities, such as the ubiquitin-proteasome

system [8,14], caspases [15,16], matrix metalloproteases [8], microtubule severing and break-

down proteins [11,17,18], and mediators of dendritic calcium transients [19], were reported to

participate in dendrite pruning of C4da neurons. It has also been shown that endocytic path-

ways play an important role in neuronal pruning in both the central and peripheral nervous

systems of Drosophila [20,21]. The small GTPase Rab5 is required not only for global endocy-

tosis mediating the degradation of cell adhesion molecule Neuroglian (Nrg) [21], but also for

local endocytosis contributing to compartmentalized calcium transients in the dendrite prun-

ing of C4da neurons [22], underlining the crucial roles of Rab GTPases in neuronal pruning.

The Rab GTPase proteins alternate between GTP- and GDP-bound states in cells. The binding

of GTP or GDP affects the conformations of Rab proteins, and that conformations would

determine the interactions of Rab proteins with their downstream effectors. The Rab GTPases

family proteins are key players in regulating membrane identity and coordinating vesicular

transport between different organelles in cells. The small GTPase Rab11 specifically regulates

vesicle trafficking through the recycling endosomes back to the plasma membrane, exocytosis

from the trans-Golgi networks and post-Golgi vesicles, and cytokinesis [23].

Previously, we have demonstrated that an IKK-related kinase Ik2 is essential for dendrite

pruning of Drosophila sensory neurons [11]. We further identified a coiled-coil protein Spin-

dle-F (Spn-F) that acts downstream of Ik2 kinase and mediates Ik2-dependent pruning activity
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in pupal neurons [24]. To our knowledge, Ik2 kinase is the only known molecule sufficient to

induce precocious dendrite severing in larval neurons [11], highlighting the central role of

Ik2/Spn-F signaling activity in dendrite pruning. However, the mechanism by which Ik2/Spn-

F signaling is transduced and eventually leads to dendrite pruning in C4da neurons remains

elusive. To further study the molecular mechanisms of dendrite pruning in C4da neurons, we

identified a small GTPase Rab11 as a candidate regulator for dendrite pruning.

In this study, we provide evidence to show that Rab11 plays a critical role in dendrite prun-

ing of Drosophila sensory neurons. Our genetic experiments demonstrate that Rab11, the

active GTP-bound form in particular, is essential for dendrite pruning in C4da neurons. We

further show that Rab11 displays genetic interactions with spn-F and ik2 on dendrite pruning.

Given the normal Ik2 kinase activation in neurons with impaired Rab11 function and the

functional connection between Rab11 and Ik2/Spn-F, Rab11 could act downstream of and/or

parallel to the Ik2 kinase signaling. Moreover, we found that the formation of Ik2/Spn-F/

Rab11 complexes and the kinase activity of Ik2 are both essential to promote Rab11 activation

in cells. Taken together, the results from our studies reveal that a critical role of Ik2/Spn-F sig-

naling in neuronal pruning is to promote Rab11 activation, which is crucial for dendrite prun-

ing in C4da neurons.

Results

The small GTPase Rab11 is required for dendrite pruning

Our previous observation that Spn-F proteins exhibited a punctate pattern in the cytosol of lar-

val C4da neurons [24] (Fig 1B) raised the possibility that these punctate Spn-F proteins might

associate with unidentified cellular compartments in cells. To examine this possibility, we co-

expressed various GFP/YFP-labeled organelle markers, such as Cnn-GFP, Mito-GFP, Golgi-

GFP, Grasp65-GFP, KDEL-GFP and Rab(s)-YFP with Spn-F-mCherry in larval C4da neurons,

and examined which markers might co-localize with Spn-F-mCherry (Fig 1A–1C and S1 Fig).

After investigation, we found some Rab11-YFP signals co-localized with Spn-F-mCherry

puncta in larval neurons (Fig 1A–1C), suggesting that Spn-F might coincide with Rab11 in cer-

tain cellular sites. Since spn-F is required for dendrite pruning of C4da neurons [24], we then

asked whether Rab11 also plays a role in dendrite pruning of Drosophila sensory neurons. To

test this possibility, we expressed Rab11 double-stranded RNAs (dsRNAs) under the control of

C4da-specific ppk-GAL4 to knockdown the endogenous Rab11 protein expression in cells by

RNA interference (RNAi). We observed pruning defects in Rab11 RNAi neurons, whose pri-

mary dendrites were found connected to the soma, at 16 h APF (S2B–S2D Fig) [25], while the

wild-type neurons had pruned their dendrites (S2A, S2C and S2D Fig). To rule out the non-

specific effects of UAS-Rab11-dsRNAs line in dendrite pruning, we examined the pruning phe-

notypes in C4da neurons of UAS-Rab11-dsRNAs line alone, without the driver ppk-GAL4, and

did not observe pruning defects (S2C and S2D Fig). It suggests that the impaired dendrite

pruning is indeed caused by Rab11-dsRNAs expression driven by ppk-GAL4 in C4da neurons.

Moreover, we assayed the knockdown efficiency of UAS-Rab11-dsRNAs line by expressing it

with Rab11-GFP as a reporter in larval C4da neurons and measuring the fluorescent intensity

of GFP proteins in the cell bodies. While comparing to the control cells expressing Luciferase-
dsRNAs (S2E Fig), we found that the knockdown efficiency of Rab11-GFP proteins could

reach to 85% in the soma of neurons expressing Rab11-dsRNAs (S2F and S2G Fig).

To further verify the requirement of Rab11 in C4da neurons during dendrite pruning, a

null allele of Rab11, Rab11ΔFRT [26], was used in mosaic analysis with a repressive cell marker

(MARCM) technique to generate homozygous Rab11 mutant clones in otherwise heterozy-

gous background by mitotic recombination [27]. The primary dendrites of C4da neurons were

Rab11 activation by Ik2/Spn-F in dendrite pruning
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Fig 1. Rab11 and its GTP-bound form are required for dendrite pruning. (A-C) The expression of Rab11-YFP (A)

and Spn-F-mCherry (B) were under the control of ppk-GAL4 in larval ddaC neurons. The merged image is shown in

(C). (D-H) Confocal images of MARCM (Mosaic analysis with a repressible cell marker) clones of ddaC neurons at 16

h APF (after puparium formation). The dendrite pruning occurred normally in the control clones (D), but was

defective in the Rab11ΔFRT clones (E). The expression of wt (wild-type) Rab11 (F) or of Rab11-CA (constitutively

Rab11 activation by Ik2/Spn-F in dendrite pruning
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found still attached to the cell bodies of Rab11ΔFRT MARCM clones (Fig 1E) [25], but not to

the ones of control clones (Fig 1D), at 16 h APF. Furthermore, these pruning defects could be

successfully rescued by expressing the wild-type (wt) Rab11 in the C4da neurons of Rab11ΔFRT

MARCM clones (Fig 1F, 1I and 1J), indicating that the impaired pruning is indeed caused by a

loss-of-function mutation in Rab11. Like other small GTPases, Rab11 alternates between active

GTP- and inactive GDP-bound states, which enables Rab11 to interact with different effectors

in cells. To determine which form of Rab11 is required for dendrite pruning of C4da neurons

in pupae, we generated transgenic fly lines expressing either the constitutively active (CA)

Rab11 (Q70L) proteins that have defective GTPase activity, or the dominant negative (DN)

Rab11 (S25N) proteins that have defects in GTP binding [28]. Overexpression of Rab11-wt or

-CA proteins in C4da neurons did not result in pruning defects (Fig 1L, 1M, 1O and 1P),

which was similar to the control cells (Fig 1K, 1O and 1P); however, overexpression of

Rab11-DN did cause defective pruning (Fig 1N–1P). Moreover, the expression of Rab11-CA,

not Rab11-DN, could successfully rescue dendrite pruning defects in the C4da neurons of

Rab11ΔFRT MARCM clones (Fig 1G–1J), indicating that the active GTP-bound Rab11 proteins

are essential for dendrite pruning. Taken together, these results demonstrate that Rab11 and

its active GTP-bound form are required for dendrite pruning of Drosophila C4da neurons.

Rab11 GTPases play roles in both the dendrite morphogenesis of larval

neurons and the dendrite pruning of pupal neurons

While performing Rab11 RNAi in neurons, we noticed that Rab11 RNAi also caused abnormal

dendritic morphology with reduced dendritic branches in larval C4da neurons (Fig 2B) [25],

compared to the control ones with Luciferase RNAi (Fig 2A). The similar phenotypes with

decreasing dendritic branches were observed not only in the larval neurons with Rab11-DN
expression (Fig 2C), but also in the ones of Rab11ΔFRT MARCM clones (S3B Fig). Notably,

these abnormal dendrite phenotypes observed in the larval neurons of Rab11ΔFRT MARCM

clones could be completely rescued by expressing either Rab11-wt (S3C Fig) or Rab11-CA

(S3D Fig), but not Rab11-DN proteins (S3E Fig). These findings indicate that Rab11 GTPase is

crucial for the dendrite morphogenesis in C4da neuron at larval stages.

Since Rab11 has a role in dendrite development, it is possible that the pruning defects we

observed in pupal Rab11 mutant neurons are indirectly due to the abnormal dendrite morpho-

genesis in larval neurons, not due to the lack of Rab11 function in pupal neurons during prun-

ing. To examine this possibility, we applied the GeneSwitch GAL4 system [29] in C4da

neurons to disrupt Rab11 function by inducing Rab11-DN expression only at late larval stages,

active) (G), but not Rab11-DN (dominant negative) (H), could rescue the pruning defects in Rab11ΔFRT clones. (I)

Quantification of pruning phenotypes in MARCM clones of ddaC cells at 16 h APF. The percentage of cells was

determined by dividing the number of neurons with defective pruning by the total number of cells examined for each

genotype; for control clones, n = 21; for Rab11ΔFRT clones, n = 29; for Rab11ΔFRT clones rescued with Rab11-wt, n = 19;

for Rab11ΔFRT clones rescued with Rab11-CA, n = 16; for Rab11ΔFRT clones rescued with Rab11-DN, n = 17. (J)

Quantification of the total length of unpruned dendrites in MARCM clones of ddaC cells at 16 h APF. For control

clones, n = 21; for Rab11ΔFRT clones, n = 26; for Rab11ΔFRT clones rescued with Rab11-wt, n = 19; for Rab11ΔFRT clones

rescued with Rab11-CA, n = 16; for Rab11ΔFRT clones rescued with Rab11-DN, n = 11. (K-N) The ddaC neurons were

marked with ppk-GAL4 and UAS-mCD8GFP. At 16 h APF, the dendrites of ddaC neurons were pruned normally in

the control cells (K), the ones with Rab11-wt overexpression (L), and the ones with Rab11-CA over-expression (M),

but not in the ones with Rab11-DN overexpression (N). (O) Quantification of pruning phenotypes in neurons

expressing Rab11-wt, Rab11-CA and Rab11-DN. For wild-type control, n = 80; for Rab11-wt overexpression, n = 100;

for Rab11-CA over-expression, n = 90; for Rab11-DN overexpression, n = 119. (P) Quantification of the total length of

unpruned dendrites in neurons expressing Rab11-wt, Rab11-CA and Rab11-DN. For wild-type control, n = 40; for

Rab11-wt overexpression, n = 40; for Rab11-CA over-expression, n = 20; for Rab11-DN overexpression, n = 49. Data

are mean±SEM in (J, P). Scale bars, 5 μm in (C); 20 μm in (H, N).

https://doi.org/10.1371/journal.pgen.1008626.g001
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Fig 2. Rab11 plays roles in the larval dendrite morphogenesis and the pupal dendrite pruning. (A-G) The larval ddaC neurons were visualized with ppk-
CD4-tdTomato expression. The abnormal dendrite morphology with reduced branches was observed in ddaC cells with Rab11-dsRNAs (B) and Rab11-DN (C)

Rab11 activation by Ik2/Spn-F in dendrite pruning
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without affecting dendrite morphogenesis at early stages. In the GeneSwitch system, the

GAL4-progesterone-receptor fusion proteins could be activated by binding to mifepristone,

which can be administered by feeding. To avoid abnormal dendrite development by interrupt-

ing Rab11 function at early larval stages, we transferred the late third instar larvae from regular

food to mifepristone-containing food at 96 hours after egg laying (AEL), and fed them for

about 24 hours prior to pupation. After nearly 24-hour feeding with mifepristone to induce

Rab11-DN expression, we did not observe abnormal dendritic morphology of C4da neurons

in the induced larvae (Fig 2F), which is comparable to the ones in non-induced control group

(Fig 2D). However, we did observe dendrite pruning defects in C4da neurons with Rab11-DN

expression of induced larvae at 16 h APF (Fig 2G–2I), as compared to the control neurons of

non-induced animals (Fig 2E, 2H and 2I). It reveals that Rab11 GTPase is indeed required for

the dendrite pruning in C4da neurons at pupal stages. To examine whether mifepristone

might have non-specific effects in pruning, we used GeneSwitch system to express Rab11-wt

proteins in C4da neurons as a control, since the C4da neurons with Rab11-wt overexpression

pruned their dendrites normally (Fig 1L, 1O and 1P). After inducing Rab11-wt expression by

mifepristone, we observed normal dendrite pruning in C4da neurons at 16 h APF (Fig 2H and

2I), suggesting that feeding larvae with mifepristone does not affect dendrite pruning of C4da

neurons in pupae, and further confirming that the function of Rab11 is required for dendrite

pruning. Together, our findings demonstrate that Rab11 GTPase not only has a role in the

dendrite morphogenesis of C4da neurons at larval stages, but also plays a crucial role in the

dendrite pruning of neurons at pupal stages.

Rab11 shows genetic interactions with spn-F and ik2 on dendrite pruning

Given that both Rab11 and spn-F mutant neurons showed similar pruning phenotypes, we

sought to explore a potential genetic interaction between these two genes on dendrite pruning

of C4da neurons. To test this possibility, we performed genetic studies by analyzing the prun-

ing phenotypes of C4da neurons in the heterozygotes of either Rab11 null mutant (Rab11ΔFRT/

+) or spn-F null mutant (spn-F2/+) [30], as well as in the mutants with Rab11 and spn-F hetero-

zygous combination (Rab11ΔFRT/spn-F2). We did not observe pruning defects in the pupal

C4da cells of either Rab11 or spn-F heterozygous mutants (Fig 3A). However, we detected a

few number of C4da neurons showing pruning defects in the mutants with heterozygous com-

bination of Rab11 and spn-F (Fig 3A). To confirm this result, we repeated this experiment

three times, and consistently observed a few but significant number of C4da neurons exhibit-

ing pruning defects at 16 h APF (the percentage of non-severed neurons for three experiments:

8%, n = 100; 12%, n = 100; 8.2%, n = 110). These results suggest a genetic interaction between

Rab11 and spn-F genes on dendrite pruning of C4da neurons. To further investigate the

genetic interaction between Rab11 and spn-F, we analyzed the pruning phenotypes of C4da

neurons in Rab11 and spn-F single and double mutants. Comparing to the pruning phenotypes

in single mutant neurons of either spn-F homozygotes or Rab11 mutants with Rab11-DN or

-dsRNAs expression, we found more C4da neurons in spn-F and Rab11 double mutants

expression under the control of ppk-GAL4, compared to the control cells with Luciferase-dsRNAs expression (A). (D-G) The Rab11-DN expression is driven by

GeneSwitch-GAL4 (GSG2295-GAL4), which can be activated by mifepristone. The dendritic morphology was normal in ddaC neurons of late third instar larvae

without induction (D) and with induction (F) at 96 h AEL. At 16 h APF, the dendrites were pruned normally in non-induced neurons (E), but remained attached to

the induced neurons (G). (H) Quantification of pruning phenotypes in neurons for GeneSwitch experiments at 16 h APF. The percentage of cells was determined by

dividing the number of neurons with defective pruning by the total number of cells examined for each genotype; for GeneSwitch expression of Rab11-wt, non-

induction: n = 80, induction: n = 90; for GeneSwitch expression of Rab11-DN, non-induction: n = 110, induction: n = 110. (I) Quantification of the total length of

unpruned dendrites in neurons for GeneSwitch experiments at 16 h APF. For GeneSwitch expression of Rab11-wt, non-induction: n = 80, induction: n = 50; for

GeneSwitch expression of Rab11-DN, non-induction: n = 17, induction: n = 32. RNAi, RNA interference. Data are mean±SEM. Scale bars, 50 μm.

https://doi.org/10.1371/journal.pgen.1008626.g002
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showing dendrite pruning defects (Fig 3B and 3C). Since both Ik2 kinase and Spn-F are in the

same pathway for dendrite pruning of C4da neurons [24], we also examined the pruning

Fig 3. Rab11 shows genetic interactions with spn-F and ik2 on dendrite pruning. (A) Quantification of dendrite pruning phenotypes in ddaC neurons at 16

h APF showed a genetic interaction between Rab11 and spn-F. The percentage of cells was determined by dividing the number of neurons with defective

pruning by the total number of cells examined for each genotype; for the control, n = 90; for Rab11ΔFRT/+, n = 100; for spn-F2/+, n = 100; for Rab11ΔFRT/spn-F2,

n = 120. Statistical analysis was performed with Fisher’s exact test. ��, p = 0.0055. (B) Quantification of pruning phenotypes in ddaC neurons at 16 h APF. For

the control, n = 60; for spn-F2 mutants, n = 100; for Rab11-DN overexpression in wild type (wt), n = 50; for Rab11 RNAi in wt, n = 110; for Rab11-DN
overexpression in spn-F2 mutants, n = 99; for Rab11 RNAi in spn-F2 mutants, n = 100. (C) Quantification of the total length of unpruned dendrites in ddaC

neurons at 16 h APF. For the control, n = 20; for spn-F2 mutants, n = 21; for Rab11-DN overexpression in wild type (wt), n = 45; for Rab11-RNAi in wt, n = 23;

for Rab11-DN overexpression in spn-F2 mutants, n = 17; for Rab11-RNAi in spn-F2 mutants, n = 26. (D) Quantification of pruning phenotypes in ddaC

neurons at 16 h APF. For the control, n = 70; for ik2-G250D overexpression in wt, n = 90; for Rab11-DN overexpression in wt, n = 100; for Rab11-RNAi in wt,

n = 90; for Rab11-DN and ik2-G250D overexpression, n = 80; for Rab11-RNAi with ik2-G250D overexpression, n = 100. (E) Quantification of the total length of

unpruned dendrites in ddaC neurons at 16 h APF. For the control, n = 20; for ik2-G250D overexpression in wt, n = 10; for Rab11-DN overexpression in wt,

n = 20; for Rab11-RNAi in wt, n = 18; for Rab11-DN and ik2-G250D overexpression, n = 30; for Rab11-RNAi with ik2-G250D overexpression, n = 25.

https://doi.org/10.1371/journal.pgen.1008626.g003
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phenotypes in Rab11 and ik2 single and double mutants. We observed more C4da neurons

exhibiting pruning defects in ik2 and Rab11 double mutants than in single ik2 mutants with

kinase-dead ik2-G250D expression [31] and single Rab11 mutants with Rab11-DN or -dsRNAs
expression (Fig 3D and 3E). It confirmed a genetic interaction between Rab11 and ik2/spn-F,

and a functional connection between Rab11 proteins and Ik2/Spn-F signaling on dendrite

pruning of C4da neurons.

To gain more mechanistic insight into the genetic interaction between Rab11 and spn-F
genes, we next asked whether Rab11 mutation could affect Ik2 kinase activation, as Ik2 kinase

is essential for dendrite pruning in C4da neurons and acts upstream of Spn-F [24]. Since Spn-

F punctum redistribution in early pupal neurons depends on Ik2 kinase activity [24], the dis-

persion of Spn-F puncta could be an indicator of Ik2 kinase activation. To detect Ik2 kinase

activation in C4da neurons, we performed live-cell imaging to monitor Spn-F-mCherry distri-

bution in the same cells of the wild type and Rab11 mutants from larvae to early pupae. Spn-F-

mCherry formed puncta normally in the larval C4da neurons of both the wild type and Rab11
mutants (Fig 4A and 4C). While tracking Spn-F-mCherry puncta in the same neurons from

larvae (Fig 4A and 4C) to pupae (Fig 4B and 4D), we noticed that the number and sizes of Spn-

F puncta decreased in the pupal cells of both the wild type (Fig 4B) and Rab11 mutants (Fig

4D) at 4 h APF, suggesting that Rab11 mutation does not affect the Ik2 kinase activation in

C4da neurons. To further examine Ik2 kinase activity in Rab11 mutant neurons, we measured

the averaged fluorescent intensity of dispersed cytosolic Spn-F-mCherry signals in the soma,

and quantified the fold changes of these signals in the same cells from larvae to early pupae at

various time points. Consistent with our previous study using Spn-F-GFP [24], we observed

an increase of dispersed cytosolic mCherry signals shortly after pupation in wild-type C4da

neurons, but not in ik2 RNAi cells (Fig 4E). It validated that the prompt increase of dispersed

Spn-F-mCherry signals in early pupal neurons depends on Ik2 kinase. Similar to the wild-type

C4da neurons, we detected a timely increase of dispersed mCherry signals in the cytosol of

Rab11 RNAi cells soon after pupation (Fig 4E), indicating that Ik2 kinase could be activated

normally in Rab11 mutant neurons. Finally, to detect the activated Ik2 kinase in C4da neurons,

we performed staining with antibodies against Ik2 phosphorylation on serine 175 (P-Ik2),

which is essential for its activation [32]. Consistent with our previous study [24], the P-Ik2 sig-

nals are weak in wild-type larval neurons (Fig 4F and 4I), but strong in pupal neurons (Fig 4G

and 4I). Moreover, in the pupal C4da neurons with Rab11-dsRNAs expression, we could detect

P-Ik2 signals (Fig 4H and 4I), which are comparable to the ones in wild-type pupal neurons

(Fig 4G and 4I), confirming the normal Ik2 kinase activation in Rab11 mutant neurons. Taken

together, given the normal Ik2 kinase activation in Rab11 mutant neurons, the functional con-

nection between Rab11 and Ik2/Spn-F could be downstream of and/or parallel to Ik2 kinase/

Spn-F signaling in C4da neurons during dendrite pruning.

Rab11 forms complexes with Ik2/Spn-F proteins in cells

Considering the co-localization of Rab11-YFP signals and Spn-F-mCherry puncta in larval

neurons (Fig 1A–1C), we hypothesized that Rab11 proteins might have a physical interaction

with Spn-F proteins in cells. To test this hypothesis, we first performed co-immunoprecipita-

tion (co-IP) with anti-Rab11 antibodies in Drosophila S2 cells expressing Spn-F-myc or control

GFP-myc. In S2 cell lysates, we could detect the signals of Spn-F-myc, but not the control

GFP-myc, in complexes with endogenous Rab11 proteins (Fig 5A), suggesting that Spn-F

could associate with endogenous Rab11 proteins in cells. Additionally, we noticed that only

some of the Rab11-YFP signals showed co-localization with Spn-F-mCherry (Fig 1A–1C),

implying that Spn-F might prefer to interact with certain forms of Rab11 proteins. The small
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Fig 4. Normal Ik2 activation in Rab11 mutant pupal neurons. (A-D) The expression of Spn-F-mCherry driven by ppk-GAL4 in the same wild-type (wt) ddaC cells

was shown in larvae (A) and in pupae (B), and in the same Rab11-RNAi (RNA interference) neurons was shown in larvae (C) and in pupae (D). The Spn-F-mCherry
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GTPase Rab11 exists in two forms, the active GTP-bound and the inactive GDP-bound forms.

To identify which form of Rab11 proteins might have a stronger interaction with Spn-F, we

utilized Rab11-CA and Rab11-DN to imitate the active and inactive forms of Rab11, respec-

tively, in co-IP experiments. We found that Spn-F proteins have a stronger interaction with

Rab11-DN than with Rab11-wt and -CA proteins in S2 cells (Fig 5B), indicating that Spn-F

proteins prefer to associate with the inactive GDP-bound form of Rab11. To further verify

whether this is also true in neurons, we examined the co-localization of Spn-F-mCherry with

either eGFP-labeled Rab11-DN or -CA in larval C4da cells. Although the signals of eGFP–

Rab11-DN tend to be more diffusive than that of eGFP-Rab11-CA in larval C4da neurons, we

still observed more Spn-F puncta of small size (its diameter< 0.6 μm) colocalized with

Rab11-DN (S4A, S4B and S4E Fig) than with Rab11-CA (S4C–S4E Fig). It confirmed that

Spn-F proteins prefer to associate with the inactive GDP-bound Rab11 in C4da neurons. In

that case, we decided to use Rab11-DN, instead of Rab11-wt, to study the interaction between

Rab11 and Spn-F in the experiments afterwards.

It is known that Spn-F becomes phosphorylated by Ik2 kinase in C4da neurons during den-

drite pruning [24]. To examine whether Spn-F phosphorylation by Ik2 kinase may affect the

interaction between Spn-F and Rab11, we employed two Spn-F mutants, Spn-F-8A and Spn-

F-8D [24]. Spn-F-8A, a phospho-deficient mutant, whose eight serines were replaced by ala-

nines, is used to disrupt Ik2 kinase phosphorylation on Spn-F. Spn-F-8D, a phospho-mimetic

mutant with the substitution of aspartic acids for serines, is used to simulate the effects of Ik2

kinase phosphorylation on Spn-F. Our results showed that Rab11-DN displays similar interac-

tions with both Spn-F-8A and Spn-F-8D, as with the wild-type Spn-F in cells (Fig 5C), suggest-

ing that the phosphorylation of Spn-F by Ik2 kinase does not affect the interaction between

Spn-F and Rab11 proteins.

Since Spn-F could interact with Ik2 [24] and Rab11 (Fig 5A), we next asked whether Ik2,

Spn-F and Rab11 might form complexes in cells. To test this possibility, we performed co-IP

experiments in S2 cells. Interestingly, we did not detect interaction between Rab11-DN and

Ik2 kinase in the lysates of S2 cells with Rab11-DN and Ik2 co-expression (Fig 5D). However,

we indeed detected the formation of Ik2/Spn-F/Rab11-DN ternary complexes in the cells with

Spn-F co-expression, but not in the control cells with GFP co-expression (Fig 5D). It implies

that Spn-F plays a central role to bring Ik2 and Rab11 together to form Ik2/Spn-F/Rab11 ter-

nary complexes in cells. Without Spn-F proteins, there is no interaction between Ik2 kinase

and Rab11 proteins.

Next, we set out to map the Rab11-interacting domains of Spn-F, and determined the role

of Spn-F/Rab11 interaction in neurons for dendrite pruning. To identify the Rab11-interacting

domains of Spn-F, we used several Spn-F deletion mutants (Fig 5E) [24] and examined their

interactions with Rab11 in S2 cells. We found that both SpnF-ΔCC3 and -ΔC proteins retained

normal interactions with Rab11-DN (Fig 5E), indicating that removal of the Ik2-interacting

CC3 domain [24] and the C-terminus of Spn-F proteins did not affect the Spn-F/Rab11

displayed punctate patterns in the cytosol of both wild-type (A) and Rab11-RNAi (C) neurons in larvae. At 4 h APF (after puparium formation), the number and the

size of Spn-F-mCherry puncta became decreased in neurons of wild-type (B) and Rab11-RNAi (D) pupae. (E) The average fluorescent intensity of dispersed cytosolic

mCherry signals was measured in the same neurons of larvae and at various time points of pupae in wild-type, Rab11-RNAi and ik2-RNAi mutants. The fold changes

were determined by dividing the average cytosolic fluorescent intensity of mCherry signals in pupal neurons by that in the same larval cells, which was assigned as 1.

For wt, n = 9; for Rab11-RNAi, n = 9; for ik2-RNAi, n = 9. Data were analyzed by two-way ANOVA (���, p<0.001.). (F’-H’) The ddaC neurons were identified by ppk-
GAL4 and UAS-mCD8RFP. (F-H) The activated Ik2 signals were detected by antibodies against phosphorylated Ik2 (P-Ik2). The strong P-Ik2 signals were observed in

wild-type and Rab11-RNAi pupal C4da neurons at 1 h APF (G, H), but not in wild-type larval neurons (F). (I) The average P-Ik2 signal intensity was measured in the

cell body of ddaC neurons in (F-H). For wild-type larval neurons, n = 15; for wild-type pupal neurons, n = 8; for Rab11-RNAi pupal neurons, n = 9. The fold changes

were determined by dividing the cytosolic fluorescent intensity of P-Ik2 signals in neurons by the average P-Ik2 signal in larval cells, which is assigned as 1. Error bars

show SD. Scale bar, 10 μm in (D, H’).

https://doi.org/10.1371/journal.pgen.1008626.g004
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Fig 5. The interaction of Rab11 with Spn-F and Ik2 kinase in cells. (A) The co-IP (co-immunoprecipitation) experiments were

performed with lysates from S2 cells expressing Spn-F or GFP as a control to show the specific interaction between Spn-F and

endogenous Rab11 proteins. (B) The co-IP experiments with lysates from cells expressing either Rab11-wt, -CA or -DN revealed a

preferred interaction between Spn-F and Rab11-DN. The myc/FLAG ratio (by ImageJ) indicates the relative amounts of myc-Rab11

protein associated with Spn-F-FLAG protein in co-IP experiments with anti-FLAG antibody. (C) The co-IP experiments showed no
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interaction (Fig 5E). However, the deletion of Spn-F SCD domain completely abolished the

interaction between Rab11-DN and Spn-F (Fig 5E), indicating that the SCD domain of Spn-F

is critical for Spn-F to interact with Rab11 in cells. Finally, to study the role of Spn-F/Rab11

interaction in C4da neurons for dendrite pruning, we first used transgenic flies to overexpress

SpnF-ΔSCD proteins in neurons. In contrast to the control neurons and the ones expressing

wild-type Spn-F, the C4da cells expressing SpnF-ΔSCD proteins showed evident dendrite

pruning defects at 16 h APF (Fig 5F and 5G), suggesting that SpnF-ΔSCD proteins might func-

tion as a dominant negative mutant to interfere the endogenous Spn-F/Rab11 interaction and

result in defective dendrite pruning. Next, to validate the role of Spn-F/Rab11 interaction in

C4da neurons for dendrite pruning, we performed rescue experiments with SpnF-wt and

-ΔSCD in C4da neurons of spn-F mutants. Unlike the wild-type Spn-F, SpnF-ΔSCD failed to

rescue the dendrite pruning defects of C4da cells in spn-F mutants at 16 h APF (S5 Fig) [24],

revealing a crucial role of Spn-F/Rab11 interaction in C4da neurons for dendrite pruning. Col-

lectively, our data demonstrate that Ik2, Spn-F and Rab11 can form complexes in cells, and the

Spn-F/Rab11 interaction is critical for dendrite pruning in C4da neurons.

The Ik2/Spn-F complexes promote Rab11 GTPase activation

To further investigate the functional role of Ik2/Spn-F/Rab11 ternary complexes, we asked

whether Ik2 kinase and Spn-F could regulate the activity of Rab11. We tried to determine the

level of Rab11 activation in cells by performing pulldown assays on cell extracts with an anti-

body that specifically recognizes the active GTP-bound Rab11 proteins [33]. First, to verify the

specificity of this antibody, we employed this antibody to pulldown the active GTP-bound

Rab11 from the cell lysates incubated with GMPPCP, a non-hydrolyzable GTP analog, or with

GDP. We found that more Rab11 proteins, including both transfected eGFP-Rab11 and

endogenous Rab11 proteins, could be pulled down by this antibody from the cell lysates

treated with GMPPCP than from the ones treated with GDP and the control ones without any

treatment (Fig 6A and 6B). It demonstrates that this antibody has a high specificity to the

active GTP-bound Rab11, but not to the inactive GDP-bound one.

Next, to quantify the level of active GTP-bound Rab11 in cells, we applied this Rab11-GTP-

specific antibody in pulldown assays on the lysates of S2 cells expressing eGFP-Rab11 together

with various combination of plasmids carrying spn-F, ik2 or ik2-G250D, which encodes a

kinase-dead Ik2 protein. We found that the amount of active GTP-bound Rab11 (eGF-

P-Rab11-GTP) was significantly increased in the lysates of cells expressing both Ik2 kinase and

Spn-F, while compared to that of cells expressing Spn-F alone and of the control ones (Fig 6C

and 6D). It suggests that Ik2 kinase and Spn-F together, not Spn-F alone, could promote

Rab11 activation in cells. Furthermore, we did not detect increased amount of active

Rab11-GTP proteins in the cells expressing Ik2 proteins alone (Fig 6D) or in the cells co-

expressing kinase-dead Ik2-G250D and Spn-F proteins (Fig 6C and 6D), implying that Ik2

kinase alone cannot assist Rab11 activation, and the kinase activity of Ik2 is critical for Ik2/

Spn-F complexes to promote Rab11 activation. Taken together, these results suggest that Ik2

preference of DN-Rab11 for wt-, 8A (phospho-deficient)- and 8D (phospho-mimetic)-Spn-F. (D) The co-IP experiments showed

that the formation of Ik2/Spn-F/Rab11 ternary complexes depends on the presence of Spn-F. (E) The co-IP experiments showed

that the SCD domain of Spn-F is required for Spn-F/Rab11 interaction. (F) Quantification of pruning defects in neurons at 16 h

APF. The percentage of ddaC neurons showing pruning defects among the total number of neurons examined. For wild-type

control, n = 60; for spnF-wt overexpression, n = 38; for spnF-ΔSCD overexpression, n = 90. (G) Quantification of the total length of

unpruned dendrites in neurons at 16 h APF. For wild-type control, n = 20; for spnF-wt overexpression, n = 38; for spnF-ΔSCD
overexpression, n = 21. Data are mean±SEM. IB, immunoblotting. over-exp, overexpression.

https://doi.org/10.1371/journal.pgen.1008626.g005
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Fig 6. Ik2 and Spn-F act together to promote Rab11 GTPase activation. (A) The same batch of lysates of S2 cells

expressing eGFP-Rab11 was divided into three aliquots: no treatment, incubated with GMPPCP (a non-hydrolyzable

GTP analog) or with GDP, and subjected to pulldown assays with the antibodies against active Rab11-GTP. (B)

Quantification of relative Rab11-GTP levels of eGFP-Rab11 in cell lysates with different treatments shown in (A). The

signal intensity of bound eGFP-Rab11-GTP in cell extracts without any treatment was assigned as 1. (C) The active
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and Spn-F function together to promote Rab11 activation, and the kinase activity of Ik2 is cru-

cial for Rab11 activation by Ik2 and Spn-F in cells.

Given the SCD domain of Spn-F is critical for the interaction between Spn-F and Rab11

(Fig 5E), we questioned whether this Spn-F/Rab11 interaction is important for Rab11 activa-

tion by Ik2 kinase and Spn-F. To answer this question, we quantified the level of active GTP-

bound Rab11 in the cells expressing Ik2 kinase with either wild-type Spn-F or mutant SpnF-

ΔSCD by pulldown assays. Unlike the cells with Ik2 and wild-type Spn-F co-expression, we did

not detect increased level of active Rab11-GTP proteins in the cells with Ik2 and SpnF-ΔSCD

co-expression (Fig 6E and 6F). Since the kinase activity of Ik2 is crucial for Rab11 activation

promoted by Ik2 and Spn-F (Fig 6C and 6D), and SpnF-ΔSCD still retains the normal interac-

tion with Ik2 kinase [24], these results indicate that the Spn-F/Rab11 interaction is critical for

Rab11 activation by Ik2 and Spn-F in cells.

Since our data demonstrate that Ik2 and Spn-F act together to promote Rab11 activation in

cells, and the active GTP-bound Rab11 is essential for dendrite pruning, we then asked

whether the constitutively active form of Rab11, Rab11-CA, could rescue the pruning defects

in neurons of spn-F null mutants and in neurons with SpnF-ΔSCD overexpression. After over-

expression of Rab11-CA proteins in spn-F null mutants, we found that the pruning defects in

spn-F mutant neurons could not be rescued by Rab11-CA overexpression (Fig 6G and 6H).

However, the pruning defects in C4da neurons with SpnF-ΔSCD overexpression could be par-

tially rescued by Rab11-wt and -CA, not by Rab11-DN expression (Fig 6I and 6J). Although

SpnF-ΔSCD proteins act as a dominant negative mutant in wild-type C4da neurons, overex-

pressed Rab11-wt and -CA proteins could still work together with endogenous Spn-F to rescue

the pruning defects (Fig 6I). Therefore, the incapability of Rab11-CA to rescue the pruning

defects in C4da neurons of spn-F null mutants (Fig 6G) could be due to the absence of wild-

type Spn-F proteins present in spn-F null mutants. These results indicate that increasing the

amount of Rab11-CA proteins could partially rescue the pruning defects in the neurons with

SpnF-ΔSCD overexpression, but not in the neurons of spn-F null mutants. Taken together, our

findings suggest that Rab11 activation is likely to be one of the targeting events in Ik2/Spn-F

signaling for dendrite pruning of C4da neurons.

Discussion

Neuronal pruning is a widely observed strategy across the animal kingdom and adapted by the

developing nervous systems to refine their circuitry [1]. Pruning is considered as a self-

destruction program [2,34], and thus requires tight regulation to confine this pruning activity

Rab11-GTP antibodies were applied to pulldown eGFP-Rab11-GTP in lysates of S2 cells expressing Spn-F alone, or

Spn-F with wild-type Ik2 or with kinase-dead Ik2 (G250D). (D) Quantification of relative Rab11-GTP levels in cells

expressing distinct combination of Spn-F, Ik2 and Ik2-G250D. n�4 for each group. (E) The pulldown assays with

active Rab11-GTP antibodies were applied to cell lysates of S2 cells expressing Ik2 and wild-type Spn-F or Spn-F-

ΔSCD. (F) Quantitative analysis of relative Rab11-GTP levels in cells expressing various combination of Ik2, Spn-F and

Spn-F-ΔSCD. n = 3 for each group. (D,F) One-way ANOVA was performed with a Dunnett’s multiple comparison test

(��, p<0.01. ���, p<0.001. n.s., not significant). (G,I) Quantitative analysis of pruning defects in ddaC neurons at 16 h

APF. The percentage of ddaC neurons showing pruning defects among the total number of neurons examined. (G) For

Rab11-CA (constitutively active) overexpression (over-exp), n = 80; for spn-F2 mutants, n = 60; for Rab11-CA
overexpression in spn-F2 mutants, n = 90. (I) For spnF-ΔSCD over-exp, n = 110; for Rab11-wt and spnF-ΔSCD over-

exp, n = 120; for Rab11-CA and spnF-ΔSCD over-exp, n = 100; for Rab11-DN and spnF-ΔSCD over-exp, n = 80.

Fisher’s exact test was performed in (G), p = 0.1068 (n.s., not significant). Chi-square tests were performed in (I) (���,

p<0.0001). (H,J) Quantitative analysis of the total length of unpruned dendrites in ddaC neurons at 16 h APF. (H) For

Rab11-CA overexpression, n = 40; for spn-F2 mutants, n = 19; for Rab11-CA overexpression in spn-F2 mutants, n = 18.

(J) For spnF-ΔSCD over-exp, n = 20; for Rab11-wt and spnF-ΔSCD over-exp, n = 26; for Rab11-CA and spnF-ΔSCD
over-exp, n = 32; for Rab11-DN and spnF-ΔSCD over-exp, n = 11. I, input; B, bound; NB, not bound. IB,

immunoblotting. Error bars show SD in (D, F); SEM in (H, J).

https://doi.org/10.1371/journal.pgen.1008626.g006
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in restricted cellular compartments. The dendrite pruning of Drosophila sensory neurons is a

well-characterized model to study the regulatory mechanisms that confine pruning activity in

the dendrites. We previously showed that both Ik2 kinase and its downstream mediator Spn-F

are essential for the dendrite severing in pupal C4da neurons [11,24]. Moreover, Ik2 is cur-

rently the only known molecule sufficient to cause precocious dendrite severing in larval neu-

rons [11], underlining the central role of Ik2 kinase in dendrite pruning. However, how Ik2/

Spn-F signaling leads to dendrite pruning in pupal C4da neurons remains unknown. Here we

found a small GTPase Rab11 playing an important role and showing a functional connection

with Ik2/Spn-F signaling in the dendrite pruning of Drosophila sensory neurons.

In this study, we provided evidence to show that Rab11 plays a critical role not only in the

dendrite pruning of pupal neurons, but also in the dendrite morphogenesis of larval neurons.

The number and length of dendritic branches are significantly reduced in the larval neurons

with either Rab11-dsRNAs or Rab11-DN expression (Fig 2), indicating the crucial role of

Rab11 in dendrite morphogenesis. However, the molecular mechanism by which Rab11 regu-

lates dendrite development in fly neurons is unclear. In the case of vertebrate neurons, it is

known that Rab11 and its-binding protein Protrudin are both required for neurite formation

via directional membrane transport [35]. Although we did not find the homologue of verte-

brate Protrudin in fly genome, it is still possible that Rab11 acts together with unidentified pro-

teins, resembling Protrudin in vertebrate neurons, to regulate dendrite morphogenesis in

Drosophila neurons.

The results of our GeneSwitch experiments (Fig 2) clearly demonstrated that Rab11 is

required for dendrite pruning of pupal neurons. Our studies also showed a modest, but repro-

ducible, genetic interaction between Rab11 and spn-F on dendrite pruning of C4da neurons

(Fig 3A). Moreover, we observed more neurons exhibiting pruning defects both in Rab11/spn-
F double mutants and in Rab11/ik2 double mutants than in single mutants (Fig 3B and 3D),

confirming the genetic interactions between Rab11 and ik2/spn-F on dendrite pruning. There-

fore, we proposed two mechanisms, Spn-F-dependent and -independent mechanisms, to elu-

cidate how Rab11 is involved in dendrite pruning (Fig 7).

For the Spn-F-dependent mechanism, considering the genetic interaction between Rab11
and spn-F genes (Fig 3) and normal Ik2 activation in Rab11-RNAi neurons (Fig 4), the func-

tional connection between Rab11 and Spn-F might be downstream of Ik2 kinase signaling. It

is consistent with our findings in Drosophila S2 cells revealing that Ik2 kinase and Spn-F func-

tion together to promote Rab11 activation (Fig 6). The activity of Rab GTPases and their cellu-

lar functions are regulated by guanine nucleotide exchange factors (GEFs) and GTPase-

activating proteins (GAPs) [36]. To promote Rab11 activation, Ik2/Spn-F complexes could

either increase Rab11-GEF activity or decrease Rab11-GAP activity. Given the critical role of

Spn-F SCD domain in Spn-F/Rab11 interaction (Fig 5E) and in Rab11 activation (Fig 6E and

6F), and the fact that Spn-F has a stronger association with Rab11-GDP than with Rab11-GTP

(Fig 5B), we think that increasing the activity of Rab11-GEF is likely the mechanism by which

Ik2/Spn-F complexes promote Rab11 activation in cells. Therefore, Spn-F might function as a

linker to bring Ik2 kinase, the inactive Rab11-GDP protein and unidentified Rab11 GEF

together in a complex. During dendrite pruning in C4da neurons, the Ik2/Spn-F complexes

elevate the activity of Rab11-GEF, likely through the kinase activity of Ik2. The activated

Rab11-GEF could thereby promote Rab11 activation through exchanging the GDP on the

inactive Rab11-GDP with GTP. Once the active GTP-bound Rab11 is formed, it would be dis-

charged from the Ik2/Spn-F complexes and finally lead to dendrite pruning (Fig 7).

The SCD domain of Spn-F protein is critical for Spn-F to interact not only with

Rab11-GDP (Fig 5E), but also with Cut up (Ctp) [24], the Drosophila homologue of dynein

light chain 1 and a subunit of cytoplasmic dynein motor complex. Since both genes Rab11 and
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ctp are crucial for dendrite pruning of C4da neurons [this paper, 24], the failure of Spn-F-ΔSCD

in rescuing the pruning defects of spn-F mutant neurons (S5 Fig) [24] is likely a combinatory

result caused by disrupting both Spn-F/Ctp and Spn-F/Rab11 interactions concurrently. Given

that Spn-F proteins can form oligomers through self-association in cells [24], it is possible that

Spn-F interacts with both Rab11 and Ctp concomitantly via the SCD domains of different

monomeric Spn-F in the same Spn-F oligomers. It implies that Ik2/Spn-F/Rab11-GDP com-

plexes could link to cytoplasmic dynein via Spn-F/Ctp interaction in the same complexes. If the

on-site Rab11 activation by Ik2/Spn-F is required locally in the proximal dendrites, cytoplasmic

dynein could be the motor transporting Ik2/Spn-F/Rab11-GDP complexes to the proximal den-

drites, where the dendrite severing are expected. However, the cellular site (soma or proximal

dendrites) where Ik2/Spn-F complexes promote Rab11 activation in C4da neurons during

pruning is currently unclear. Further studies are required in the future.

The degradation of cell adhesion molecule Nrg is impaired in Rab11 mutant C4da neurons

during dendrite pruning [25], suggesting the requirement of Rab11 for normal membrane

protein degradation. Since the small GTPase Rab family proteins are the key regulators of

Fig 7. Proposed model for the roles of Rab11 in dendrite pruning. We proposed Rab11 participates in at least two different mechanisms, Spn-F-dependent and

-independent, in the dendrite pruning of Drosophila C4da neurons. The Spn-F-dependent mechanism is likely involved in Ik2/Spn-F signaling, which consists of Ik2

kinase activation, Spn-F phosphorylation and dynein-dependent Spn-F dispersion. Ik2/Spn-F complexes could promote Rab11 activation through an unknown GEF to

promote pruning. Rab11 was previously found essential for Neuroglian degradation in dendrite pruning, and this could be one of the Spn-F-independent mechanisms

of Rab11 to mediate pruning. Moreover, we suggested that there could be unidentified downstream targets other than Rab11 in Ik2/Spn-F pathway to regulate pruning.

EE, early endosomes; RE, recycling endosomes; LE, late endosomes; MVB, multivesicular bodies.

https://doi.org/10.1371/journal.pgen.1008626.g007
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intracellular vesicle trafficking and transport networks [37,38], disrupting the function of one

member in Rab family might not only directly interrupt specific trafficking pathways, but also

indirectly affect other pathways in the networks. It has been reported that the internalization

of membrane proteins is reduced in unicellular protozoa Trypanosoma brucei upon Rab11
depletion [39], demonstrating that cells with Rab11 ablation have a general defect in endocytic

pathways. Consistently, the disruption of Rab11 function in C4da neurons could affect general

endocytic pathways and indirectly resulted in impaired Nrg degradation during dendrite

pruning [25]. Therefore, the defective endocytic pathways caused by impaired Rab11 function

could be considered as one of Spn-F-independent mechanisms for the genetic interaction

between Rab11 and spn-F genes on dendrite pruning of C4da neurons (Fig 7).

The pruning defects found in C4da neurons with SpnF-ΔSCD overexpression could be par-

tially rescued by Rab11-CA expression (Fig 6I and 6J), suggesting that overexpressed Rab11-CA

could still function together with endogenous wild-type Spn-F proteins and lead to dendrite

pruning. However, the incapability of Rab11-CA to rescue the pruning defects in spn-F mutant

C4da neurons (Fig 6G) led us to examine the role of Rab11-CA (Q70L), which has a defective

GTPase activity, as a constitutively active Rab11 protein in S2 cells. We performed pulldown

assays with the active Rab11-GTP-specific antibody on the lysates of S2 cells expressing eGF-

P-Rab11-CA (Q70L) (S6 Fig). Unlike the Rab11-CA in Dictyostelium discoideum being entirely

pulled down by the Rab11-GTP-specific antibody [33], we only pulled down a portion of

Rab11-CA proteins in control S2 cell lysates with the same antibody (S6A Fig). Moreover, we

could pull down more Rab11-CA proteins in cell lysates incubated with GMPPCP, and less

Rab11-CA proteins in cell lysates treated with GDP (S6A Fig). It suggested that the Rab11-CA

(Q70L) acts like a wild-type Rab11 in S2 cells (Fig 6A and 6B), and might not function as a con-

stitutively active Rab11 as we expected in C4da neurons of spn-F mutants. Consistent with our

findings, it has been shown that yeast Rab1 GAP proteins can still accelerate GTP hydrolysis of

assumed constitutively active Rab1 proteins, which have the similar glutamine to leucine muta-

tion, both in vitro and in vivo [40–42]. Therefore, it is reasonable to presume that even after GTP

binds to Rab11-CA (Q70L) in cells, endogenous Rab11 GAPs could still be able to accelerate

GTP hydrolysis of assumed GTPase-deficient Rab11-CA. This could be the possible reason why

Rab11-CA (Q70L) proteins could not rescue dendrite pruning defects in spn-F mutant neurons

(Fig 6G). Another possible reason is that additional unidentified molecules, other than Rab11, in

Ik2/Spn-F signaling pathway are also required for dendrite pruning of C4da neurons (Fig 7).

Both ik2 and spn-F have been shown to act in the same pathway during bristle morphogen-

esis and oogenesis [43,44]. During Drosophila bristle elongation, the directional transport of

activated Ik2, Spn-F and Rab11 to the bristle tips, where the microtubule minus ends are con-

centrated, requires Spn-F to act as an adaptor to link Ik2 to dynein complexes [43,45]. More-

over, the activated Ik2 signals and Spn-F are found accumulated at the microtubule minus

ends in oocytes and follicle cells during oogenesis [46]. It is similar to our previous findings

that both Ik2 activation and dynein complex are essential for Spn-F redistribution, which is

crucial for dendrite pruning in C4da neurons [24]. Our new findings that Ik2 kinase activity

and Ik2/Spn-F complexes promote Rab11 activation in C4da neurons during dendrite pruning

provide a novel molecular mechanism that might be conserved in regulating bristle morpho-

genesis and oocyte polarity.

Materials and methods

Fly strains

The Rab11ΔFRT [26] was kindly provided by Dr. O. Schuldiner. spn-F2 [30], ppk-eGFP [47],

ppk-GAL4 [48] and UAS-IKKεIR [31] have been described previously. UAS-mCD8RFP was
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kindly provided by Dr. Y.N. Jan. The following stocks were obtained from Bloomington Stock

Center: UAS-YFP-Rab11 (#9790); FRT82B, tubP-GAL80 (#5135); UAS-Luciferase-dsRNAs
(#31603); ppk-CD4-tdTom (#35845); GSG2295 (#40266). The UAS-Rab11-dsRNAs (#108382)

was obtained from the Vienna Drosophila RNAi Center (VDRC). The SOP-FLPs (#109944,

#109945) were obtained from the Kyoto Stock Center. Flies were raised with regular fly foods

at 25˚C. Transgenic flies UAS-Rab11-GFP, UAS-Rab11-CA-GFP and UAS-Rab11-DN-GFP
were generated by standard P-element mediated transformation.

Evaluation and quantification of the pruning phenotype

Our previous study [11] with ddaC neurons labeled with ppk-eGFP or ppk-GAL4::UAS-
mCD8GFP showed that normal dendrite severing occurs around 4–6 h APF, and dendrite

debris clearance completes around 16–18 APF. Therefore, we analyzed the pruning phenotype

of ddaC neurons at 16 h APF to exclude individual temporal differences. At time of analysis,

ddaC neurons having any single dendrite branches with continuous GFP signals extended

from the center of soma more than 100 μm were considered pruning defective [24].

RNAi knockdown efficiency assay

The Rab11-GFP protein was visualized in larval ddaC neurons with ppk-GAL4::UAS-
mCD8RFP and UAS-Rab11-GFP. To measure the RNAi knockdown efficiency of UAS--
Rab11-dsRNAs line, the total fluorescence intensities of GFP in the soma of ddaC neurons

were calculated and divided by the soma area to obtain the average fluorescence intensity of

Rab11-eGFP of control neurons (expressing Luciferase-dsRNAs) and RNAi knockdown neu-

rons (expressing Rab11-dsRNAs).

GeneSwitch experiments

The embryos were collected at intervals of 4 hours and reared on normal fly food until the

third larval stages around 96 hours after egg laying (AEL). Then, the larvae were transfer to fly

food containing 240 μg/ml mifepristone (Sigma) [21], which was kindly provided by Dr. C.T.

Chien, for about 24 hours prior to pupation.

Molecular cloning

The spn-F full-length DNA fragments were amplified from the cDNA clone LD01470 (Dro-
sophila Genomics Resource Center). To generate UAS-spn-F-mCherry constructs, the spn-F
full-length DNA fragments were inserted together with mCherry coding sequence into pUAST
vector. To generate UAS-spn-F-ΔC-myc constructs, which delete the protein sequences a.a.

340–364 of Spn-F, the deletion DNA constructs were amplified by PCR and inserted together

with coding sequences containing myc tag into pUAST vector. The full-length DNA fragments

of wild-type Rab11 and two Rab11 mutants, Rab11-DN (S25N) and Rab11-CA (Q70L), were

amplified from the plasmids generously provided by Dr. C. Chan. All Rab11 wild-type and

mutant DNA fragments were inserted together with EGFP coding sequence or the coding

sequences containing myc, or FLAG tags into pUAST vector to make various UAS-Rab11 con-

structs. All DNA constructs were verified by DNA sequencing.

Cell culture, immunoblot and co-immunoprecipitation assays

Drosophila Schneider cells (S2 cells) were cultured in Shields and Sang M3 insect medium

(Sigma) supplemented with 10% FCS and antibiotics at 25˚C. Plasmids were transfected using

Effectene (QIAGEN). Cells were transfected with tubulin-GAL4 to drive various UAS
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constructs: UAS-ik2-HA, UAS-ik2-G250D-HA, UAS-spn-F-myc, UAS-spn-F-FLAG, UAS-spnF-
8A-FLAG, UAS-spnF-8D-FLAG, UAS-spnF-ΔCC3-myc, UAS-spnF-ΔSCD-myc, UAS-spnF-ΔC-
myc, UAS-GFP-myc, UAS-myc-Rab11, UAS-myc-Rab11-CA, UAS-myc-Rab11-DN, UAS-FLA-
G-Rab11-DN, UAS-eGFP-Rab11, UAS-eGFP-Rab11-DN. Cells were lysed in lysis buffer (20

mM Tris pH 7.0, 150 mM NaCl, 2 mM EDTA, 1% TritonX-100, 1 mM DTT and protease

inhibitors (Roche)). The cell lysates were incubated with anti-FLAG M2 agarose beads (Sigma)

on ice and washed thoroughly with lysis buffer. Proteins were eluted and detected using

immunoblot assays with rabbit antibody to Myc (Santa Cruz Biotechnology), mouse antibody

to FLAG (Sigma), mouse antibody to Rab11 (BD Bioscience, catalog number 610656) and

appropriate HRP-conjugated secondary antibodies (Jackson Immuno Research).

Time-lapse imaging, quantification and image processing

The details of time-lapse imaging of Spn-F distribution in C4da neurons are performed as

described previously [24]. In brief, to imaging Spn-F-mCherry distribution in ddaC neurons,

larvae and pupae were placed with dorsal side up and imaged with Zeiss LSM 700 laser scan-

ning confocal microscope. To analyze the cytosolic fluorescence of Spn-F-mCherry in neu-

rons, we applied the profile analysis module of the Zen software (Zeiss) to avoid Spn-F-

mCherry puncta, which display the peaks of fluorescence intensity. The cumulative fluores-

cence intensities of dispersed cytosolic Spn-F-mCherry (excluding the signals of any Spn-F-

mCherry puncta) were calculated and divided by the pixels numbers to obtain the average dis-

persed fluorescence intensity in the cytosol of each neuron. The average cytosolic dispersed

fluorescence intensity of larval neurons was considered as one to calculate the fold changes of

average cytosolic dispersed signals in the same neuron at various time points after pupation.

Statistical analysis was conducted and graphs were generated in GraphPad Prism. Images of

fluorescent signals were acquired in live animals and fixed samples on confocal microscopes of

Zeiss LSM 700. The z-stack images were collected and the maximum intensity projection was

used for further analysis. The images were processed using ImageJ (National Institutes of

Health), and brightness and contrast were adjusted by Photoshop (Adobe).

Immunohistochemistry

Primary antibodies used for immunohistochemistry were rabbit anti-P-Ik2 antibodies (1:300,

a gift of Dr. S. Hayashi) [32]. The secondary antibodies used for visualizing P-Ik2 signal were

Alexa Fluor 488-conjugated donkey anti-rabbit IgG (1:200, Jackson Immuno Research). The

larvae and pupae were dissected in cold 1X phosphate-buffered saline (PBS), and then fixed

with 4% formaldehyde for 20 min at room temperature. Following fixation, samples were

immersed in blocking solution, which is 5% normal donkey serum (Jackson ImmunoRe-

search). Subsequently, samples were stained with primary antibodies.

Rab11-GTP activation assay

To measure the activation of Rab11, a mouse monoclonal antibody that specifically recognizes

active Rab11-GTP (NewEast Bioscience, catalog number 26919) was employed. Drosophila S2

cells expressing eGFP-Rab11 were lysed with lysis buffer. According to manufacturer’s recom-

mended protocol, S2 cell lysates containing equal amounts of total proteins were incubated

with anti-active Rab11-GTP antibody for 1 hour at 4˚C. The GTP-bound Rab11 was pulled

down by protein G magnetic bead (Merck), washed with lysis buffer and eluted by 2X SDS

sample buffer. All bound proteins and a portion of proteins from input and not bound frac-

tions were separated by SDS-PAGE and immunoblotted with mouse antibody to Rab11 (BD

Bioscience). The proportion of active Rab11-GTP proteins (bound Rab11) to the total Rab11

Rab11 activation by Ik2/Spn-F in dendrite pruning

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008626 February 14, 2020 20 / 25

https://doi.org/10.1371/journal.pgen.1008626


proteins (bound and unbound Rab11) was calculated for each group from the relative amount

of each protein determined by densitometric analysis using ImageJ.

Supporting information

S1 Fig. The localization of Spn-F and organellar markers in neurons. (A-E) Spn-F-mCherry

and several organellar markers, including Cnn-GFP (A), Mito-GFP (B), Golgi-GFP (C),

Grasp65-GFP (D), and KDEL-GFP (E), were co-expressed in larval C4da neurons under the

control of ppk-GAL4. Cnn-GFP encodes GFP-tagged Centrosomin, which marks centrosome.

Mito-GFP encodes GFP-tagged human cytochrome c oxidase subunit 8A-derived mitochon-

drial import sequence, which marks mitochondria. Golgi-GFP encodes GFP-tagged human

beta-1,4-galactosyltransferase 1-derived Golgi localization sequence, which marks trans-Golgi.

Grasp65-GFP encodes GFP-tagged Grasp65, which marks Golgi complex. KDEL-GFP encodes

GFP-tagged endoplasmic reticulum (ER) retention sequence, which marks ER. The organellar

markers (A’-E’) and Spn-F-mCherry (A”-E”) manifest as puncta with various sizes. Scale bar,

10 μm.

(TIF)

S2 Fig. The knockdown of Rab11 expression specifically in C4da neurons results in den-

drite pruning defects. (A, B) At 16 h APF (after puparium formation), the dendrites were

pruned in wild-type (wt) neurons (A), but remained attached to the neurons of Rab11 RNAi

(RNA interference) mutants (B). (C) Quantification of dendrite pruning phenotypes in neu-

rons at 16 h APF. The percentage of cells was determined by dividing the number of neurons

with defective pruning by the total number of cells examined for each genotype; for wild type

(wt), n = 50; for ppk-GAL4 and Rab11-dsRNAs, n = 90; for Rab11-dsRNAs, n = 100. (D) Quan-

tification of the total length of unpruned dendrites in neurons at 16 h APF. For wild type (wt),

n = 20; for ppk-GAL4 and Rab11-dsRNAs, n = 43; for Rab11-dsRNAs, n = 20. (E, F) The signals

of Rab11-GFP were decreased in the soma of ddaC neurons with Rab11-dsRNAs expression

(F), compared to the wild-type cells with control Luciferase-dsRNAs expression (E). (E’, F’)

The neurons were visualized with ppk-GAL4 and UAS-mCD8RFP. (G) Quantification of

Rab11-GFP intensity in the soma of larval ddaC neurons with control (E) and Rab11-RNAi

(F) using a two-tailed unpaired t test is shown (���, p<0.001.); for control, n = 9; for Rab11-
RNAi, n = 10. a.f.u., arbitrary fluorescence units. Error bars show SEM in (D); SD in (G). Scale

bars, 20 μm in (B); 10 μm in (F’).

(TIF)

S3 Fig. The dendritic morphology of Rab11 mutant larval neurons could be rescued by

wild-type or constitutively active-Rab11 expression. (A-E) Confocal images of MARCM

clones of larval ddaC neurons. The dendritic morphology is normal in the control clones (A),

but abnormal in the Rab11ΔFRT clones (B). The expression of Rab11-wt (wild-type) (C) or of

Rab11-CA (constitutively active) (D), but not Rab11-DN (dominant negative) (E), could res-

cue the abnormal dendritic morphology in Rab11ΔFRT clones. Scale bar, 20 μm.

(TIF)

S4 Fig. The colocalization of Spn-F with dominant negative Rab11 in neurons. (A-E) Spn-

F-mCherry was co-expressed with Rab11-DN (dominant negative) (A), Rab11-CA (constitu-

tively active) (C), in larval ddaC neurons for investigation of colocalization between Spn-F and

Rab11 puncta. Colocalizing puncta are defined by showing overlapping signal peaks in signal

profile data (B), and non-colocalizing Spn-F puncta are defined by lacking overlapping signal

peaks (D). A colocalizing Spn-F punctum (B) and a non-colocalizing Spn-F punctum(D) are

demonstrated in Rab11-DN-expressing neuron (A, arrow) and Rab11-CA-expressing neuron
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(C, arrow), respectively. (E) Quantification of the number of colocalized Rab11/Spn-F puncta

in each type of neuron. In the group of small Spn-F puncta (diameter < 0.6 μm), there are

significantly more Spn-F puncta colocalizing with Rab11-DN than with Rab11-CA or -wt.

Two-way ANOVA with Tukey’s multiple comparison test was performed. �, p<0.05. ����,

p<0.0001. n.s., not significant. Error bars show SD. a.f.u., arbitrary fluorescence units. Scale

bar, 5 μm.

(TIF)

S5 Fig. The Rab11-interacting domain of Spn-F is crucial for dendrite pruning in neurons.

(A) Quantification of dendrite pruning phenotypes in neurons at 16 h APF (after puparium

formation). The percentage of cells was determined by dividing the number of neurons with

defective pruning by the total number of cells examined for each genotype; for control,

n = 100; for spn-F2, n = 100; for spn-F2 rescued with spn-F-wt (wild-type), n = 88; for spn-F2

rescued with spn-F-ΔSCD, n = 100. Fisher’s exact test was performed (���, p<0.0001). (B)

Quantification of the total length of unpruned dendrites in neurons at 16 h APF. For control,

n = 40; for spn-F2, n = 15; for spn-F2 rescued with spn-F-wt, n = 29; for spn-F2 rescued with

spn-F-ΔSCD, n = 19. Error bars show SEM.

(TIF)

S6 Fig. The constitutively active Rab11 in S2 cells. (A) The same batch of lysates of S2 cells

expressing eGFP-Rab11-CA (constitutively active) was divided into three aliquots: no treat-

ment, incubated with GMPPCP (a non-hydrolyzable GTP analog) or with GDP, and subjected

to pulldown assays with the antibodies against active Rab11-GTP. (B) Quantification of rela-

tive Rab11 levels of eGFP-Rab11-CA pulled down by antibody in cell lysates with different

treatments shown in (A). The signal intensity of bound eGFP-Rab11-CA in cell extracts with-

out any treatment was assigned as 1. B, bound; NB, not bound. IB, immunoblotting.

(TIF)
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