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Numerous studies have been performed over the last decade to exploit the complexity of

genomic and transcriptomic lesions driving the initiation of acute myeloid leukemia (AML).

These studies have helped improve risk classification and treatment options. Detailed

molecular characterization of longitudinal AML samples is sparse, however; meanwhile,

relapse and therapy resistance represent the main challenges in AML care. To this end, we

performed transcriptome-wide RNA sequencing of longitudinal diagnosis, relapse, and/or pri-

mary resistant samples from 47 adult and 23 pediatric AML patients with known mutational

background. Gene expression analysis revealed the association of short event-free survival

with overexpression of GLI2 and IL1R1, as well as downregulation of ST18. Moreover, CR1

downregulation and DPEP1 upregulation were associated with AML relapse both in adults

and children. Finally, machine learning–based and network-based analysis identified overex-

pressed CD6 and downregulated INSR as highly copredictive genes depicting important

relapse-associated characteristics among adult patients with AML. Our findings highlight the

importance of a tumor-promoting inflammatory environment in leukemia progression, as

indicated by several of the herein identified differentially expressed genes. Together, this

knowledge provides the foundation for novel personalized drug targets and has the potential

to maximize the benefit of current treatments to improve cure rates in AML.
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Key Points

� Progression of AML is
associated with pro-
inflammatory media-
tors through altered
expression levels of
CR1, DPEP1, IL1R1,
and ST18.

� Upregulated CD6 and
downregulated INSR
are nodes in gene
expression networks
linked to AML relapse,
according to machine
learning analysis.
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Introduction

Acute myeloid leukemia (AML) is believed to arise through a combi-
nation of genetic alterations and aberrant gene expression patterns
caused by genetic and epigenetic changes, which in their composi-
tion also determine AML progression and therapy resistance. The
AML inter- and intra-tumor heterogeneity at disease onset has been
intensively investigated, resulting in improved disease classification1

and novel treatment alternatives,2-4 leading to complete remission in
the majority of patients. Nevertheless, 40% to 60% of adults and
30% to 40% of children relapse within 3 years,1,5-7 and these
relapsed patients often fail to respond to conventional treatment.
Together, this results in 5-year overall survival (OS) rates at only
28% and 70% for adults and children, respectively.8,9

Prognostic validation and treatment allocation in AML are currently
based on morphologic, cytogenetic, and genetic features. However,
risk stratification, including relapse prediction, remains challenging,
especially for patients without causative genetic aberrations. To
investigate novel treatment options that target each individual tumor,
it is necessary to identify aberrant pathways that drive tumor pro-
gression and therapy resistance. RNA-sequencing (RNA-seq) pro-
vides a comprehensive picture of the cellular transcriptome,
combining detection of various mutations and gene fusions with
gene expression analysis. Furthermore, single-cell RNA-seq has
emerged as a powerful tool for identifying cellular subgroups with
independent characteristics.10,11 Previous transcriptomic studies in
AML have mainly been focused on gene expression signatures at
diagnosis and their predictive potential.12-15 Only a limited number
of studies have investigated differential expression in relapsed and
primary resistant (R/PR) AML, and most of these lacked patient-
matched longitudinal samples and/or detailed knowledge about
underlying genetic alterations in the form of whole-genome sequenc-
ing (WGS) or whole-exome sequencing (WES) data.16,17 To the
best of our knowledge, the largest published transcriptomic studies
to date on patient-matched diagnosis/relapse samples comprised
24 adult18 and 23 pediatric19 AML cases; both of these studies
were either partially or entirely based on microarrays, which do not
allow for detection of various molecular aberrations.

Here we report an RNA-seq–based analysis, incorporating interpret-
able machine learning techniques, on longitudinal samples from 70
R/PR AML cases, all of which previously have been characterized
by WGS or WES. We identified differentially expressed genes
(DEGs) specific for relapse in AML (CR1 and DPEP1). Further-
more, another set of DEGs was associated with short event-free
survival (EFS; ie, GLI2, IL1R1, and ST18). Finally, rule networks
derived from machine learning–based analysis were investigated,
enabling the detection of additional putative drivers of leukemia pro-
gression and therapy resistance.

Patients and methods

Patient and control samples

Cryopreserved sequential AML samples from 47 adult patients and
23 pediatric patients with AML from the Nordic countries were
included in this study. Criteria for selecting cases were as follows:
available relapse or PR material of sufficient quality and yield via
Uppsala Biobank and Karolinska Institute Biobank, collected
between 1995 and 2016. Acute promyelocytic leukemia cases

were excluded. Patients were clinically characterized according to
the World Health Organization criteria,20 and all samples were previ-
ously analyzed on the genomic level via WGS or WES21 (supple-
mental Table 1). Sixty-three of the patients had de novo AML; 7
patients had either a prior diagnosis of myelodysplastic syndromes,
therapy-related AML, or therapy-related myelodysplastic syndromes.
The median length of EFS for relapse cases was 16.3 months
(range, 1.1-126.0 months) for adults and 11.0 months (range, 2.3-
33.6 months) for children (Table 1). Detailed biological characteris-
tics and supporting clinical information are reported in supplemental
Tables 2 and 3. CD34-expressing bone marrow (BM) cells from 5
healthy donors (AllCells Inc., Alameda, CA) were used as normal
controls (supplemental Table 4).

The study was approved by the Uppsala Ethical Review Board
(Sweden) and the Regional Ethical Committee South-East (Norway).
Informed consent was obtained from all patients or their legal guard-
ians according to the Declaration of Helsinki.

For validation purposes, RNA-seq data from another adult (The Can-
cer Genome Atlas [TCGA]13; phs000178) and pediatric (Therapeu-
tically Applicable Research to Generate Effective Treatments
[TARGET]12; phs000465) AML cohort were used.

Sample preparation

Mononuclear cells from BM aspirates or peripheral blood were iso-
lated through Ficoll gradient centrifugation and cryopreserved until
use. AML samples with leukemia cell content below 80% and suffi-
cient amount of starting material were purified by immune-based
depletion of nontumor cells (supplemental Tables 2 and 5). Total
RNA was extracted via the AllPrep DNA/RNA/Protein Kit (Qiagen,
Hilden, Germany) according to the manufacturer’s instructions,
incorporating DNase I treatment.

Transcriptome sequencing

Library preparation (Illumina TruSeq Stranded total RNA [ribosomal
depletion] libraries) and RNA-seq (HiSeq2500 and/or Nova-
Seq6000, Illumina, San Diego, CA) were conducted by the
SNP&SEQ Technology Platform, Science for Life Laboratory (SciLi-
feLab) (National Genomics Infrastructure, Uppsala, Sweden). Gene
counts, gene fusions, single nucleotide variants, and small insertions
and deletions (,50 base pairs) were retrieved and processed
(detailed further in the supplemental Methods).

RNA-seq analysis

Differential gene expression analysis was conducted by using Qlu-
core Omics Explorer 3.6 (Qlucore AB, Lund, Sweden). In brief, read
counts were filtered toward expressed, protein-coding genes and
normalized by the trimmed mean of M values (TMM22) followed by
normalization to the gene length. The Benjamini-Hochberg method
was used to correct for multiple testing, and the fold change (FC)
was calculated from the difference between the arithmetic averages
over each group, based on log2-transformed normalized values. Fur-
thermore, Gene Ontology (GO) enrichment analysis was performed
by using Gene Ontology Enrichment Analysis and Visualization.23,24

Machine learning–based analysis

In preparation for machine learning–based analysis, zero variance
genes across the leukemia samples were excluded. The expression
levels for each of the remaining genes were discretized into 3 equal
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bins according to low, medium, and high gene expression. To create
a ranking of the most informative features (ie, genes) that distinguish
between diagnosis and relapse, the Monte Carlo Feature Selection
(MCFS25; rmcsf v.1.2.6) algorithm was applied. Subsequently, inter-
pretable machine learning models were built by using the
R.ROSETTA R-package26 version 2.2.9. That algorithm is based on
the rough set theory. Following this supervised approach, classifiers
are transparent, as the predictive model is constructed from a set of
IF-THEN rules. Rules that represented copredictive mechanisms

between genes were visualized as networks by using VisuNet R-
package27 version 1.3.5. Finally, for investigating similarities among
cohorts, machine learning analysis was performed by using merged
feature lists obtained from MCFS. These models were used for net-
work comparison and discovery of copredictive genes visible in net-
works as highly connected nodes, also called hubs. Additional
details are given in the supplemental Methods.

Statistics

Statistical tests were conducted by using GraphPad Prism version
7.02 and version 9.0.2 (GraphPad Software, La Jolla, CA) or R ver-
sion 3.6 (R Foundation for Statistical Computing, Vienna, Austria).
P , .05 was defined as statistically significant unless otherwise
stated.

Results

We performed RNA-seq on 122 samples from 70 patients with
AML, all of whom relapsed or had PR disease. These comprised
samples collected at diagnosis (n 5 43) and relapse (n 5 73), as
well as PR samples (n 5 6) (Table 1; supplemental Table 1).
CD34-expressing BM cells from 5 healthy donors were used as a
source of normal control RNA (“BM-controls”). RNA-seq yielded an
average of 41 million reads per sample (supplemental Tables 2 and
6). The composition of genomic alterations for all AML samples had
previously been analyzed via WGS or WES.21 Fifty-seven percent
of the reported somatic protein-coding mutations could be validated
via RNA-seq, as detailed in the supplemental Results, supplemental
Tables 7 and 8, and supplemental Figure 1.

Recurrent gain of fusion transcripts during tumor

progression

In addition to protein-coding mutations, we identified 26 and 23
gene fusions at diagnosis and/or R/PR in adult and pediatric cases,
respectively (supplemental Tables 8 and 9). These comprised recur-
rent common AML-associated fusions, with translocations leading to
the gene fusion RUNX1-RUNX1T1 (adult, n 5 4 cases; pediatric,
n 5 4 cases) and NUP98 fusions (adult, n 5 1; pediatric, n 5 4)
among the most frequent events (Figure 1). In addition, we detected
previously unreported fusions involving known cancer-related genes,
including, for instance, FOS-PSAP, SRSF3-PLAG1, CEBPE-
CEBPA, and REXO1-NF1, with the latter leading to a frameshift.
Transcribed gene fusions were mainly stable or gained over the
course of the disease, with 37.5% of the fusions appearing during
leukemia progression, including gain of BCR-ABL1 (n 5 2) (supple-
mental Figures 2A and 3), RUNX1-RUNX1T1 (n 5 1) (supplemen-
tal Figure 2B), and SRSF3-PLAG1 (n 5 1). In adults, 16 (61.5%)
of 26 fusions were also determined by WGS, whereas 15 of 23
(65.2%) of the pediatric fusions were detected by both RNA-seq
and WGS.21 Of the remaining 18 gene fusion transcripts in adult
and pediatric cases combined, 14 were undetected via WGS. The
final 4 (eg, NUP98-NSD1) were identified in samples that at the
DNA level were analyzed via WES, which is known to rarely be able
to detect structural variants. On the contrary, out-of-frame ETV6 and
NF1 transcripts predicted by WGS to be generated through geno-
mic translocations could not be detected at the RNA level, poten-
tially due to nonsense-mediated decay.

Table 1. Patient cohort

Characteristic Value

No. of patients, n (%) 70 (100)

Adult cases 47 (67.1)

Elderly (aged $60 y) 25 (35.7)

Adult (aged 40-59 y) 16 (22.9)

Young adult (aged 19-39 y) 6 (8.6)

Pediatric cases

Adolescent (aged 15-18 y) 2 (2.9)

Child (aged 3-14 y) 14 (20.0)

Infant (aged ,3 y) 7 (10.0)

Sex, female 37 (52.9)

Background

De novo AML 63 (90.0)

Potential t-AML 3 (4.3)

MDS-AML 2 (2.9)

t-MDS-AML 2 (2.9)

No. of tumor samples, n (%) 122 (100)

Diagnosis 43 (35.2)

Relapse 73 (59.9)

R1 and R1-P 57 (46.7)

R2 and R2-P 13 (10.7)

R3 3 (2.5)

Primary resistant 6 (4.9)

Average age at onset, y

Adult cases 59.5 (range, 20.5-83.1; median, 62.2)

Pediatric cases 7.7 (range, 0.4-17.5; median, 7.3)

Average length of EFS (D>R1), d

Adult relapse cases 497 (range, 34-3844; median, 305.0)

Pediatric relapse cases 334 (range, 69-1026; median, 304.5)

Average length of OS, d

Adult relapse cases 1109 (range, 45-8270; median, 509)

Pediatric relapse cases 1682 (range, 126-6557; median, 572)

Sample purity* 89% (.80% tumor cells; range, 41-100)

Cell viability 63% ($75% viable cells; range, 10-94)

Average RIN 9.2 (range, 5.8-10.0; median, 9.3)

Sampling duration 1995-2016

Detailed biological and clinical data for each patient/sample are presented in
supplemental Tables 2 and 3. D, diagnosis; EFS, EFS as time to first relapse; MDS,
myelodysplastic syndromes; OS, OS as time to death or last follow-up; R1/2/3,
sequential relapses; R1/2-P, persistent relapse specimen; RIN, RNA integrity number;
t-AML, treatment-related AML.
*Single-nucleotide polymorphism–based calculation.
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Gene expression profiling in R/PR AML

Although most types of genomic alterations can be detected via
both WGS and RNA-seq, the latter holds the benefit of also con-
taining gene expression information. As an initial step to investigate
potential differences among the expression of protein-coding genes,
we applied unsupervised principal component analysis on the entire
cohort (supplemental Figure 4). Patient AML008 represents an adult
hypodiploid AML case with a partial or total loss of 10 different
chromosomes, resulting in a highly distinct transcriptome compared
with the rest of the cohort (supplemental Figure 4A). Longitudinal
samples from this patient were thus excluded from downstream
analyses. As a likely consequence of the well-known heterogeneity
in AML, unsupervised clustering of the remaining cases revealed no
significant separation among the tumor samples. Sequential tumor
samples from the same patient, however, were mainly grouped
together by unsupervised clustering, whereas all BM-control sam-
ples formed a distinct group.

Pro-inflammatory signatures are associated with

short EFS

We next investigated differences in the expression patterns between
various subgroups within the cohort. To obtain initial information
about poor outcome-associated transcriptomic alterations in AML,
factors characterizing time of EFS were examined. Here, we
focused solely on diagnosis samples, with the adult and pediatric
cases combined to gain statistical power (short EFS, n 5 18 [adults
,0.5 year; children ,1.0 year]; long EFS, n 5 24) (supplemental
Tables 8 and 10A). This comparison identified 996 DEGs (P ,
.05) (supplemental Table 11; supplemental Figure 5). Short EFS
was associated with 222 upregulated and 168 downregulated
genes based on a jlog2FCj.1 cutoff, with GLI2 (jlog2FCj53.7),
IL1R1 (jlog2FCj52.2), and ST18 (jlog2FCj52.9) found among the
highest ranked genes (Figure 2). GO enrichment analysis of genes
with higher expression in short EFS-associated samples revealed an
overrepresentation of genes in pathways related to immune
response (eg, IL1R1), regulation of cell differentiation (eg, GLI2),
and exocytosis (Figure 2D; supplemental Table 12).

GLI2, a mediator of sonic hedgehog (Shh) signaling, is involved in
the maintenance of normal and neoplastic hematopoietic stem
cells,28 and it plays an important role in the crosstalk between tumor
cells and their microenvironment.29 Overexpression of this gene
was associated with short EFS (PEFS 5 .0001) (Figure 2B). Further-
more, Kaplan-Meier analysis showed that higher GLI2 levels corre-
lated with poorer OS (POS 5 .045; 5-year OS GLI2low, 38.5%;
GLI2high, 12.5%) (Figure 2C; supplemental Table 13). The correla-
tion between higher GLI2 expression and adverse outcome was via
Kaplan-Meier analysis independently validated for both adult and
pediatric AML by the TCGA13 and TARGET12 data sets, respec-
tively (supplemental Figure 6). As previously reported,30 GLI2 over-
expression was pronounced in AML positive for FLT3–internal
tandem duplication (ITD) (supplemental Figure 7A). In our study,
however, a link between elevated expression of this gene and poor
outcome was seen also when excluding FLT3-ITD–positive samples
from the differential expression and Kaplan-Meier analyses (supple-
mental Figure 7B-E).

High expression of IL1R1 was associated with short EFS and
OS (PEFS 5 .0096; POS 5 .016; 5-year OS IL1R1low, 47.4%;
IL1R1high, 13.0%) (Figure 2B-C; supplemental Table 13). Again,

these observations could be independently validated by Kaplan-
Meier analysis on the TCGA and TARGET cohorts (supplemental
Figure 6). IL1R1 encodes an interleukin-1 receptor involved in regu-
lation of inflammatory and immune responses.31

ST18 encodes a zinc finger transcription factor associated with
negative regulation of proliferation, apoptosis, and inflammation.32,33

Expression of this gene was lower among samples associated with
short EFS as well as with shorter OS in all 3 cohorts (local cohort,
PEFS 5 .027; POS 5 .017; 5-year OS ST18low, 13.6%; ST18high,
45.0%) (Figure 2B-C; supplemental Table 13; supplemental
Figure 6). Elevated ST18 expression, especially in cases harboring
the good prognosis-associated inversion on chromosome 16
[inv(16)34], has previously been suggested as a marker for monitor-
ing of pediatric AML minimal residual disease.35 In the current study,
AML samples carrying inv(16) showed exceptionally high ST18
expression, albeit all of these cases eventually relapsed (supplemen-
tal Figure 6A).

CR1 and DPEP1 are differentially expressed at

relapse compared with patient-matched pretreat-

ment samples

To gain insight into the gene expression programs preferentially
active during AML progression, we explored gene expression differ-
ences between sequential tumor samples. The comparison of
patient-matched diagnosis and relapse samples (adult, n 5 22
pairs; pediatric, n 5 17 pairs) (supplemental Tables 8 and 10B)
resulted in 405 and 212 DEGs (P , .05) identified in adults and
children, respectively (supplemental Table 14; supplemental Figure
8A). Among these, 4 overlapping genes were found between the
adult and pediatric cases with jlog2FCj.1 (CR1, DPEP1, MREG,
and SHANK3) (Figure 3A; supplemental Figure 8B). DEGs associ-
ated with relapse clustered in pathways predominantly related to
immune response (eg, CR1) and cellular metabolic processes (eg,
DPEP1) (supplemental Table 15; supplemental Figure 9A).

CR1 (also called C3b/C4b-receptor or CD35) encodes a comple-
ment receptor present on most circulating blood cells. Upon binding
of its ligands (C3b/C4b opsonins) and ligand degradation, it acts
as linkage between the innate and adaptive immune system.36,37

Furthermore, CR1 negatively regulates complement activity by inhib-
iting C3 convertase.38 We detected significantly lower expression
of CR1 at relapse compared with patient-matched diagnosis
samples in adults (jlog2FCj51.8; P 5 .0001) and children
(jlog2FCj51.6; P 5 .023) (Figure 3B; supplemental Figure 9B).
Decreased expression of CR1 over the course of the disease has
previously been reported for chronic myeloid leukemia39 but has not
been described for AML.

Higher expression of DPEP1 was seen at relapse both in adults
(jlog2FCj51.3; P 5 .0008) and in children (jlog2FCj52.5; P 5

.0038) (Figure 3C; supplemental Figure 9C). DPEP1 encodes
dipeptidase one, a zinc-dependent metalloproteinase, involved in the
regulation of apoptosis, inflammation, and cell migration.40,41

Interpretable machine learning for identification of

copredictive biomarkers in AML

To find the most informative transcriptomic features characteristic
for AML diagnosis vs relapse, we applied feature selection using
the MCFS algorithm25 (supplemental Figure 10). After selecting the
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most important features from high-dimensional data, interpretable
machine learning was performed by using the R.ROSETTA frame-
work.26 Subsequently, rule-based models were constructed, and
copredictive features for each data set were estimated.

The trained models had a mean accuracy of 78% for fivefold cross-
validation applied on the adult cohort and 90% for threefold cross-
validation applied on the pediatric cohort (P , .05). The model
based on the adult cohort identified CD6 as the feature most com-
monly differentiating diagnosis from relapse, with overexpression of
this gene at relapse (supported by 22 samples; 92% accuracy;
P 5 .00051) (Figure 4; supplemental Table 16). This finding was
verified by differential expression analysis (supplemental Figure
11A). CD6 encodes a lymphoid-associated surface glycoprotein
that is involved in cell adhesion and plays a role in immune synapse
formation.42

Furthermore, INSR was found to be (via rule-based modeling)
downregulated at relapse in adult AML, where it served as a node
gene. This node was connected to, for instance, overexpression of
CD6 (supported by 18 samples; 95% accuracy; P 5 .00094) and
upregulation of the transcription factor–encoding gene ZNF773
(supported by 16 samples; 100% accuracy; P 5 .00034) com-
pared with expression levels at diagnosis (Figure 4; supplemental
Table 16; supplemental Figure 11). Of note, low INSR expression
at diagnosis was associated with poor outcome in the TCGA cohort
(supplemental Figure 12), in part supporting the findings generated
through our relapse cohort that low INSR expression was associ-
ated with disease progression.

Likely due to the relatively small number of pediatric samples, the
machine learning model was unable to detect strong node connec-
tions associated with pediatric AML relapse (supplemental Table
17; supplemental Figure 13). To overcome this obstacle, we
merged the features identified via MCFS run independently on our
pediatric cohort and on additional diagnosis (n 5 20) and relapse
(n 5 38) samples available via TARGET, followed by generation of
rule-based models (supplemental Tables 18 and 19; supplemental
Figure 14). Relapses from our pediatric cohort and the TARGET
cohort clustered together in a network comparison (Figure 5A). Dis-
tinct patterns of, for instance, lower expression of NFATC4 and
KATNAL2 at diagnosis that were restored to normal at relapse com-
pared with the BM-controls were found predictive in the merged
setting (Figure 5; supplemental Figure 15). NFATC4 encodes a
transcription factor involved in cell quiescence,43 whereas the KAT-
NAL2 gene product regulates microtubule stability.44

Discussion

Current diagnostic and prognostic tools in AML mainly rely on cyto-
genetic and genetic approaches, including only a few genes with
targeted therapeutic potential. RNA-seq is beneficial because it can
be used both for detection of various transcribed genetic alterations
and for gene expression analysis. The identification of common dys-
regulated pathways among different patients with AML, independent
of their mutational background, may provide novel options for thera-
peutic intervention. Furthermore, RNA-seq–based studies of R/PR
AML cohorts with known genetic background are largely missing.
Here, we show the importance of including RNA-seq for detailed
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analysis of R/PR AML to improve the understanding of molecular
alterations promoting leukemia progression and therapy resistance.

RNA-seq allows for fusion detection, whereas fusions often are
impossible to detect by WES. Using RNA-seq data, we verified all
genomic aberrations leading to in-frame gene fusions previously
detected by WGS in the respective AML samples.21 Moreover, we
detected 18 additional fusion transcripts that were not identified
through WGS/WES. In 2 treatment-resistant cases, BCR-ABL1
fusions were gained during leukemia progression, with one of these
fusions only detected according to RNA-seq. This highlights the

importance of screening for BCR-ABL1 fusions at AML relapse to
allow for utilization of tyrosine kinase inhibitors as optional treatment.

Shh signaling regulates normal hematopoiesis by controlling the fre-
quency and maintenance of hematopoietic stem cells, whereas
aberrant activation promotes myeloid leukemia progression and dor-
mant leukemia stem cells.28,45 GLI1 and GLI2 encode mediators of
the Shh pathway and have previously been shown to be dysregu-
lated in AML. Higher messenger RNA levels of GLI1 have been
linked to MYC and BCL2 activation, as well as to relapse and
resistant disease in AML.46 GLI2 was previously found to be

Figure 2. (continued) performed by using Qlucore Omics Explorer version 3.6. (B) Scatter plots with mean and SD illustrating the log2-transformed, TMM-normalized

expression values in samples associated with short vs long EFS for GLI2, IL1R1, and ST18. Applied statistical test, Mann-Whitney test. Samples highlighted in orange in the

scatter plot illustrating ST18 harbor an inversion on chromosome 16, leading to a CBFB-MYH11 gene fusion. (C) Kaplan-Meier plots showing 5-year OS for cases with low

expression (blue lines) and high expression (red lines) of GLI2, IL1R1, and ST18 at diagnosis. The average expression value for the respective gene over all samples

included in the analysis was used to discretize between low and high expression. P values were calculated by using the log-rank (Mantel-Cox) test. (D) GO analysis of

DEGs between short vs long EFS-associated samples. GO terms presented above the x-axis are enriched among genes upregulated in samples associated with short EFS,

whereas pathways below the x-axis are enriched among downregulated genes. Short EFS was considered as ,0.5 year for adults and ,1.0 year for pediatric patients.

Supplemental Table 10A presents details regarding samples included in this figure, supplemental Table 11 presents details for all DEGs, and supplemental Table 13

presents details regarding statistical results associated with panel C. *False discovery rate (FDR) , 0.25, **FDR , 0.1, ***FDR , 0.05 (Benjamini-Hochberg correction).
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overexpressed predominantly in FLT3-ITD AML and associated with
adverse outcomes.30,47 We found that elevated GLI2 expression,
independent of FLT3-ITD status, correlates with shorter EFS and
OS in AML (supplemental Figure 7). Altogether, this suggests that
GLI1/2 overexpression may give rise to an increased number of leu-
kemia stem cells, known to be resistant to chemotherapeutic drugs.
Glasdegib, an Shh inhibitor, has been approved for the treatment of
patients with R/PR AML ineligible for standard treatment.48 Our
data (supplemental Figure 6) suggest that patients with elevated
GLI2 expression at diagnosis could benefit from Shh inhibitors in
combination with standard treatment. Moreover, arsenic trioxide, a
drug approved by the US Food and Drug Administration for the
treatment of acute promyelocytic leukemia, reportedly inhibits GLI1
and GLI2.49

GO enrichment analysis revealed overrepresentation of pathways
involved in immune response in the DEG analysis investigating asso-
ciations with time of EFS as well as relapse. The dysregulation of
the immune system via evasion of destruction and/or tumor-

promoting inflammation are hallmarks of cancer.50 IL1R1 encodes a
key regulator of inflammation and immune response and promotes
tumor progression by activating numerous tumor-beneficial path-
ways such as NF-kB and MAPK, as well as antiapoptotic signal-
ing.31 Similar to these former findings, we report here an
association between high IL1R1 transcript levels and short EFS as
well as OS in AML (Figure 2).

Downregulation of ST18 has previously been reported to promote
tumorigenesis through tumor-promoting regulation of inflamma-
tion.32,33 Low ST18 expression was associated with short EFS and
OS in our cohort as well as in 2 independent validation cohorts
(TCGA and TARGET) (Figure 2; supplemental Figure 6). The correla-
tion between downregulated ST18 and cancer was first reported for
breast cancer, resulting from promoter hypermethylation detected in
80% of breast cancer samples.32 Subsequent studies revealed
ST18 as a negative regulator of tumor growth, inflammation, and apo-
ptosis.32,33 Altogether, our data suggest that decreased ST18
expression can potentially be used as a biomarker in AML.
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Former studies report the establishment of a pro-inflammatory micro-
environment in hematopoietic organs through complement activa-
tion, after chemotherapy or radiation treatment.51 Complement
activation promotes tumor growth and oncogenesis.50 Here, we
found downregulation of CR1/CD35, encoding a negative regulator
of the complement system, at AML relapse both in adults and chil-
dren (Figure 3B). These results highlight the pronounced role of a
tumor-promoting environment during disease progression in AML.
The functional implication of CR1 in relapsed AML has yet to be elu-
cidated, however.

Taken together, our data provide a rationale for targeting key regula-
tors of pro-inflammatory pathways in AML. Inhibition of the IL1R1
signaling pathway has been shown to increase drug sensitivity and
prolong EFS,52,53 whereas numerous drugs targeting complement
activation are under investigation. Although targeting immune regula-
tors in AML holds great potential, the optimal point of intervention
remains to be established.

Our analysis of DEGs during AML progression revealed upregula-
tion of DPEP1 at relapse both in adult and pediatric AML. DPEP1
overexpression is best known as an adverse prognostic factor in
colorectal cancer.54 In addition, increased proliferation, survival, and
resistance upon DPEP1 overexpression in lymphocytic leukemia
models have been observed,55 and elevated levels of DPEP1 mes-
senger RNA have been detected in treatment-refractory samples in
one AML study.56 Little is known about the molecular mechanism
by which DPEP1 acts in different cancers, and its prognostic value
is contradictory.54,57 However, the overexpression of DPEP1 found
in R/PR AML merits investigation of its surface expression on AML
cells for potential chimeric antigen receptor T cell targeting thera-
pies, as previously indicated in pre–B-cell acute lymphoblastic
leukemia.58

Machine learning models have gained popularity within biological
big data analyses. Here, we relied on transparent classifiers, com-
bined with preselection of features (ie, genes) to enhance predictive
power as well as interpretability. Features were selected and ranked
by using the MCFS algorithm (rmcfs25). Subsequently, R.ROSETTA
was used to build predictive models to explore AML disease stages
and to construct legible rule-based classifiers. The models allowed
us to find patterns in the data based on rules that characterized
copredictive mechanisms for genes with well-defined statistical
properties. We found distinct CD6 overexpression at AML relapse
in adults, frequently combined with decreased INSR expression lev-
els (Figure 4). This finding suggests that aberrant production of the
lymphoid-associated surface glycoprotein CD6 may aid in therapy
evasion, potentially mediated through interaction with the CD6-
associated ligand ALCAM,59 leading to adherence of the AML cells
to a protected niche. Our results indicate that these AML cells
simultaneously benefit from lower INSR levels, which hypothetically
may lead to decreased cell proliferation and thus a more quiescent
cell state associated with greater chemotherapy resistance. Further-
more, rule-based modeling identified downregulation of both KAT-
NAL2 and NFATC4 at diagnosis in pediatric AML, with the
expression levels at relapse being restored to what were seen for
normal CD341 BM-controls (Figure 5; supplemental Figures 14
and 15). This suggests that low KATNAL2 and NFATC4 protein lev-
els promote leukemia onset, whereas higher expression of the

KATNAL2 and NFATC4 genes are selected for at relapse.
NFATC4 overexpression has been associated with cell quiescence
and chemotherapy resistance in ovarian cancer.43 Finally, the differ-
ential expression of KATNAL2, encoding a microtubule-severing
enzyme,44 raises the potential of introducing microtubule-targeting
drugs such as colchicine or CYT997 (reviewed elsewhere60) as
novel treatment alternatives at diagnosis to further distort microtu-
bule function.

In conclusion, our results highlight the importance of comple-
mentary study approaches to fully elucidate the biological dif-
ferences between leukemia blasts at diagnosis and their
counterparts at a later stage during tumor progression. We
identified novel or previously unappreciated DEGs associated
with tumor progression in AML (eg, IL1R1, CR1, GLI2), many
of which are expected to promote a pro-inflammatory tumor
environment. Further studies are needed to investigate if tar-
geting of their gene products or associated downstream path-
ways has therapeutic potential in AML or could improve
treatment by sensitizing the cells to conventional drugs. We
envision that knowledge gathered through this study gained by
the combination of genomic and transcriptomic data, partially
facilitated through machine learning approaches, will improve
therapeutic innovations and help prolong patient survival.

Acknowledgments

Technical support was provided by Maria Lindstr€om (Clinical
Pathology, Uppsala University Hospital), Clinical Genomics Upp-
sala (SciLifeLab), and BioVis (Department of Immunology, Genet-
ics and Pathology, Uppsala University). Patient samples were
provided by U-CAN, Clinical Pathology and Clinical Genetics,
Uppsala University Hospital (Sweden), and Nordic Society of Pae-
diatric Haematology and Oncology. Transcriptomic sequencing
was performed by the SNP&SEQ Technology Platform in Uppsala,
part of the National Genomics Infrastructure Sweden and SciLife-
Lab. The SNP&SEQ Platform is supported by the Swedish
Research Council and the Knut and Alice Wallenberg Foundation.
The computations were performed on resources provided by the
Swedish National Infrastructure for Computing (SNIC) through the
Uppsala Multidisciplinary Center for Advanced Computational Sci-
ence (UPPMAX), partially funded by the Swedish Research Coun-
cil through grant agreement no. 2018-05973, under Project SNIC
sens2017604 and sens2018512. Computational assistance was
provided by SciLifeLab-Wallenberg Advanced Bioinformatics Infra-
structure (WABI) support at Uppsala University, and S.A.Y. was
part of the Swedish Bioinformatics Advisory Program through the
SciLifeLab bioinformatics platform. The authors thank Fredrik Bar-
ren€as, who contributed to the improvement of rule clustering.
This work was supported by grants from the Knut and Alice Wal-

lenberg Foundation (KAW 2013-0159), The Swedish Research
Council (2013-03486), The Swedish Childhood Cancer Foundation
(PR2013-0070 and TJ2013-0045), The Swedish Cancer Society
(CAN2013/489), and The Kjell and M€arta Beijer Foundation (L.H.),
by grants from the Polish National Science Centre (DEC-2015/16/
W/NZ2/00314), The University of Washington, Seattle, The National
Institute of Allergy and Infectious Diseases, Division of AIDS, National
Institutes of Health (ABL Contract No. HHSN272201700010I), and
The eSSence program (J.K.).

11 JANUARY 2022 • VOLUME 6, NUMBER 1 THE RELAPSED ACUTE MYELOID LEUKEMIA TRANSCRIPTOME 161



Authorship

Contribution: S.S. performed experiments, analyzed data, and wrote
the paper; S.A.Y. performed the machine learning–based analysis,
merging of data sets for network comparisons, and wrote the corre-
sponding part of the paper; M.G. performed network comparisons
and visualization of machine learning–based results; J.S. performed
RNA-seq gene fusion analysis; A.S., M.M., and N.N. analyzed RNA-
seq data; M.K.H., C.S., A.E., M.H., J.P., J.A., K.J., M.C.M.-K., B.Z.,
K.P.T., and L.C. contributed clinical samples and/or data; J.K. con-
tributed and supervised the machine learning–based analysis; L.H.
designed the study, performed experiments, analyzed data, and
wrote the paper; and all authors read and contributed to the final
version of the manuscript.

Conflict-of-interest disclosure: The authors declare no competing
financial interests.

ORCID profiles: S.S., 0000-0002-7438-9093; S.A.Y., 0000-
0002-7201-2604; M.G., 0000-0002-2497-194X; N.N., 0000-
0002-3823-1555; M.K.H., 0000-0001-7179-4643; C.S., 0000-
0002-8160-5647; M.H., 0000-0003-2468-0226; J.K., 0000-
0002-0766-8789; L.H., 0000-0003-4140-3423.

Correspondence: Linda Holmfeldt, Department of Immunology,
Genetics and Pathology, Science for Life Laboratory, Uppsala Uni-
versity, Rudbeck Laboratory SE-75185 Uppsala, Sweden; e-mail:
linda.holmfeldt@igp.uu.se.

References

1. D€ohner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert
panel. Blood. 2017;129(4):424-447.

2. Stone RM, Mandrekar SJ, Sanford BL, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med. 2017;
377(5):454-464.

3. Stein EM, DiNardo CD, Pollyea DA, et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood. 2017;130(6):722-731.

4. DiNardo CD, Stein EM, de Botton S, et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med. 2018;
378(25):2386-2398.

5. Verma D, Kantarjian H, Faderl S, et al. Late relapses in acute myeloid leukemia: analysis of characteristics and outcome. Leuk Lymphoma. 2010;
51(5):778-782.

6. Karlsson L, Forestier E, Hasle H, et al. Outcome after intensive reinduction therapy and allogeneic stem cell transplant in paediatric relapsed acute
myeloid leukaemia. Br J Haematol. 2017;178(4):592-602.

7. Bejanyan N, Weisdorf DJ, Logan BR, et al. Survival of patients with acute myeloid leukemia relapsing after allogeneic hematopoietic cell
transplantation: a Center for International Blood and Marrow Transplant Research study. Biol Blood Marrow Transplant. 2015;21(3):454-459.

8. Howlader NNA, Krapcho M, Miller D, et al. SEER Cancer Statistics Review (CSR) 1975-2016. SEER web site. Bethesda, MD: National Cancer
Institute; 2018

9. Abrahamsson J, Forestier E, Heldrup J, et al. Response-guided induction therapy in pediatric acute myeloid leukemia with excellent remission rate.
J Clin Oncol. 2011;29(3):310-315.

10. van Galen P, Hovestadt V, Wadsworth Ii MH, et al. Single-cell RNA-seq reveals AML hierarchies relevant to disease progression and immunity.
Cell. 2019;176(6):1265-1281.e24.

11. Wu J, Xiao Y, Sun J, et al. A single-cell survey of cellular hierarchy in acute myeloid leukemia. J Hematol Oncol. 2020;13(1):128.

12. Bolouri H, Farrar JE, Triche T Jr, et al. The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-
specific mutational interactions [published corrections appear in Nat Med. 2018;24(4):526 and Nat Med. 2019;25(3):530]. Nat Med. 2018;24(1):
103-112.

13. Ley TJ, Miller C, Ding L, et al; Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid
leukemia. N Engl J Med. 2013;368(22):2059-2074.

14. Mou T, Pawitan Y, Stahl M, et al. The transcriptome-wide landscape of molecular subtype-specific mRNA expression profiles in acute myeloid leuke-
mia. Am J Hematol. 2021;96(5):580-588.

15. Docking TR, Parker JDK, J€adersten M, et al. A clinical transcriptome approach to patient stratification and therapy selection in acute myeloid
leukemia. Nat Commun. 2021;12(1):2474.

16. Wiggers CRM, Baak ML, Sonneveld E, Nieuwenhuis EES, Bartels M, Creyghton MP. AML subtype is a major determinant of the association
between prognostic gene expression signatures and their clinical significance. Cell Rep. 2019;28(11):2866-2877.e5.

17. Hackl H, Steinleitner K, Lind K, et al. A gene expression profile associated with relapse of cytogenetically normal acute myeloid leukemia is
enriched for leukemia stem cell genes. Leuk Lymphoma. 2015;56(4):1126-1128.

18. Toffalori C, Zito L, Gambacorta V, et al. Immune signature drives leukemia escape and relapse after hematopoietic cell transplantation. Nat Med.
2019;25(4):603-611.

19. Bachas C, Schuurhuis GJ, Zwaan CM, et al. Gene expression profiles associated with pediatric relapsed AML. PLoS One. 2015;10(4):e0121730.

20. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia.
Blood. 2016;127(20):2391-2405.

162 STRATMANN et al 11 JANUARY 2022 • VOLUME 6, NUMBER 1

https://orcid.org/0000-0002-7438-9093
https://orcid.org/0000-0002-7201-2604
https://orcid.org/0000-0002-7201-2604
https://orcid.org/0000-0002-2497-194X
https://orcid.org/0000-0002-3823-1555
https://orcid.org/0000-0002-3823-1555
https://orcid.org/0000-0001-7179-4643
https://orcid.org/0000-0002-8160-5647
https://orcid.org/0000-0002-8160-5647
https://orcid.org/0000-0003-2468-0226
https://orcid.org/0000-0002-0766-8789
https://orcid.org/0000-0002-0766-8789
https://orcid.org/0000-0003-4140-3423
mailto:linda.holmfeldt@igp.uu.se


21. Stratmann S, Yones SA, Mayrhofer M, et al. Genomic characterization of relapsed acute myeloid leukemia reveals novel putative therapeutic
targets. Blood Adv. 2021;5(3):900-912.

22. Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11(3):R25.

23. Eden E, Lipson D, Yogev S, Yakhini Z. Discovering motifs in ranked lists of DNA sequences. PLOS Comput Biol. 2007;3(3):e39.

24. Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC
Bioinformatics. 2009;10(1):48.

25. Draminski M, Rada-Iglesias A, Enroth S, Wadelius C, Koronacki J, Komorowski J. Monte Carlo feature selection for supervised classification.
Bioinformatics. 2008;24(1):110-117.

26. Garbulowski M, Diamanti K, Smoli�nska K, et al. R.ROSETTA: an interpretable machine learning framework. BMC Bioinformatics. 2021;22(1):110.

27. Smolinska K, Garbulowski M, Diamanti K, et al. VisuNet: an interactive tool for rule network visualization of rule-based learning models. GitHub
repository: https://github.com/komorowskilab/VisuNet; 1 February 2019.

28. Zhao C, Chen A, Jamieson CH, et al. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature. 2009;
458(7239):776-779.

29. Elsawa SF, Almada LL, Ziesmer SC, et al. GLI2 transcription factor mediates cytokine cross-talk in the tumor microenvironment. J Biol Chem.
2011;286(24):21524-21534.

30. Lim Y, Gondek L, Li L, et al. Integration of Hedgehog and mutant FLT3 signaling in myeloid leukemia [published correction appears in Sci Transl
Med. 2015;7(295):295er6]. Sci Transl Med. 2015;7(291):291ra96.

31. Acuner Ozbabacan SE, Gursoy A, Nussinov R, Keskin O. The structural pathway of interleukin 1 (IL-1) initiated signaling reveals mechanisms of
oncogenic mutations and SNPs in inflammation and cancer. PLOS Comput Biol. 2014;10(2):e1003470.

32. Jandrig B, Seitz S, Hinzmann B, et al. ST18 is a breast cancer tumor suppressor gene at human chromosome 8q11.2. Oncogene. 2004;23(57):
9295-9302.

33. Yang J, Siqueira MF, Behl Y, Alikhani M, Graves DT. The transcription factor ST18 regulates proapoptotic and proinflammatory gene expression in
fibroblasts. FASEB J. 2008;22(11):3956-3967.

34. H�ajkov�a H, Fritz MH-Y, Ha�skovec C, et al. CBFB-MYH11 hypomethylation signature and PBX3 differential methylation revealed by targeted bisulfite
sequencing in patients with acute myeloid leukemia. J Hematol Oncol. 2014;7(1):66.

35. Steinbach D, Bader P, Willasch A, et al. Prospective validation of a new method of monitoring minimal residual disease in childhood acute
myelogenous leukemia. Clin Cancer Res. 2015;21(6):1353-1359.

36. Fearon DT. Identification of the membrane glycoprotein that is the C3b receptor of the human erythrocyte, polymorphonuclear leukocyte, B
lymphocyte, and monocyte. J Exp Med. 1980;152(1):20-30.

37. Tedder TF, Fearon DT, Gartland GL, Cooper MD. Expression of C3b receptors on human be cells and myelomonocytic cells but not natural killer
cells. J Immunol. 1983;130(4):1668-1673.

38. Iida K, Nussenzweig V. Functional properties of membrane-associated complement receptor CR1. J Immunol. 1983;130(4):1876-1880.

39. Lanza F, Castoldi G. Complement receptor 1 (CR1) expression in chronic myeloid leukemia. Leuk Lymphoma. 1992;8(1-2):35-41.

40. Toiyama Y, Inoue Y, Yasuda H, et al. DPEP1, expressed in the early stages of colon carcinogenesis, affects cancer cell invasiveness.
J Gastroenterol. 2011;46(2):153-163.

41. Camano S, Lazaro A, Moreno-Gordaliza E, et al. Cilastatin attenuates cisplatin-induced proximal tubular cell damage. J Pharmacol Exp Ther. 2010;
334(2):419-429.

42. Castro MA, Oliveira MI, Nunes RJ, et al. Extracellular isoforms of CD6 generated by alternative splicing regulate targeting of CD6 to the
immunological synapse. J Immunol. 2007;178(7):4351-4361.

43. Cole AJ, Iyengar M, Panesso-G�omez S, et al. NFATC4 promotes quiescence and chemotherapy resistance in ovarian cancer. JCI Insight. 2020:
5(7):e131486.

44. Ververis A, Christodoulou A, Christoforou M, Kamilari C, Lederer CW, Santama N. A novel family of katanin-like 2 protein isoforms (KATNAL2),
interacting with nucleotide-binding proteins Nubp1 and Nubp2, are key regulators of different MT-based processes in mammalian cells. Cell Mol
Life Sci. 2016;73(1):163-184.

45. Sadarangani A, Pineda G, Lennon KM, et al. GLI2 inhibition abrogates human leukemia stem cell dormancy. J Transl Med. 2015;13(1):98.

46. Terao T, Minami Y. Targeting hedgehog (Hh) pathway for the acute myeloid leukemia treatment. Cells. 2019;8(4):312.

47. Wellbrock J, Latuske E, K€ohler J, et al. Expression of hedgehog pathway mediator GLI represents a negative prognostic marker in human acute
myeloid leukemia and its inhibition exerts antileukemic effects. Clin Cancer Res. 2015;21(10):2388-2398.

48. Cortes JE, Heidel FH, Hellmann A, et al. Randomized comparison of low dose cytarabine with or without glasdegib in patients with newly
diagnosed acute myeloid leukemia or high-risk myelodysplastic syndrome. Leukemia. 2019;33(2):379-389.

49. Beauchamp EM, Ringer L, Bulut G, et al. Arsenic trioxide inhibits human cancer cell growth and tumor development in mice by blocking Hedgehog/
GLI pathway. J Clin Invest. 2011;121(1):148-160.

50. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-674.

11 JANUARY 2022 • VOLUME 6, NUMBER 1 THE RELAPSED ACUTE MYELOID LEUKEMIA TRANSCRIPTOME 163

https://github.com/komorowskilab/VisuNet


51. Lenkiewicz A, Bujko K, Brzezniakiewicz-Janus K, Xu B, Ratajczak MZ. The complement cascade as a mediator of human malignant hematopoietic
cell trafficking. Front Immunol. 2019;10(1292):1292.

52. Carey A, Edwards DK V, Eide CA, et al. Identification of interleukin-1 by functional screening as a key mediator of cellular expansion and disease
progression in acute myeloid leukemia. Cell Rep. 2017;18(13):3204-3218.

53. Wang Y, Sun X, Yuan S, et al. Interleukin-1b inhibits normal hematopoietic expansion and promotes acute myeloid leukemia progression via the
bone marrow niche. Cytotherapy. 2020;22(3):127-134.

54. Eisenach PA, Soeth E, R€oder C, et al. Dipeptidase 1 (DPEP1) is a marker for the transition from low-grade to high-grade intraepithelial neoplasia
and an adverse prognostic factor in colorectal cancer. Br J Cancer. 2013;109(3):694-703.

55. Zhang J-M, Xu Y, Gale RP, et al. DPEP1 expression promotes proliferation and survival of leukaemia cells and correlates with relapse in adults with
common B cell acute lymphoblastic leukaemia. Br J Haematol. 2020;190(1):67-78.

56. Horibata S, Gui G, Lack J, DeStefano CB, Gottesman MM, Hourigan CS. Heterogeneity in refractory acute myeloid leukemia. Proc Natl Acad Sci U
S A. 2019;116(21):10494-10503.

57. Zhang G, Schetter A, He P, et al. DPEP1 inhibits tumor cell invasiveness, enhances chemosensitivity and predicts clinical outcome in pancreatic
ductal adenocarcinoma. PLoS One. 2012;7(2):e31507.

58. P€ol€onen P, Mehtonen J, Lin J, et al. Hemap: an interactive online resource for characterizing molecular phenotypes across hematologic
malignancies. Cancer Res. 2019;79(10):2466-2479.

59. Bowen MA, Patel DD, Li X, et al. Cloning, mapping, and characterization of activated leukocyte-cell adhesion molecule (ALCAM), a CD6 ligand.
J Exp Med. 1995;181(6):2213-2220.

60. Chen X, Yang C, Xu Y, Zhou H, Liu H, Qian W. The microtubule depolymerizing agent CYT997 effectively kills acute myeloid leukemia cells via
activation of caspases and inhibition of PI3K/Akt/mTOR pathway proteins. Exp Ther Med. 2013;6(2):299-304.

164 STRATMANN et al 11 JANUARY 2022 • VOLUME 6, NUMBER 1


	TF1
	TF2

