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Abstract: Sepsis has over the years proven a considerable challenge to physicians and researchers.
Numerous pharmacological and non-pharmacological interventions have been tested in trials,
but have unfortunately failed to improve the general prognosis. This has led to the speculation
that the sepsis population may be too heterogeneous to be targeted with the traditional one treatment
suits all’ approach. Recent advances in genetic and biochemical analyses now allow genotyping
and biochemical characterisation of large groups of patients via the ‘omics’ technologies. These new
opportunities could lead to a paradigm shift in the approach to sepsis towards personalised treatments
with interventions targeted towards specific pathophysiological mechanisms activated in the patient.
In this article, we review the potentials and pitfalls of using new advanced technologies to deepen
our understanding of the clinical syndrome of sepsis.

Keywords: sepsis; systems biology; transitional research; metabolomics; genomics; transcriptomics

1. Introduction: Sepsis—One Disease?

Sepsis is defined as a dysregulated host response to infection that may cause organ damage [1].
Sepsis is a leading cause of infection-related death worldwide and sepsis survivors often suffer from
complications, reducing self-rated health and daily function [2]. Despite substantial research focus
the pathophysiology remains unclear which is reflected in the clinical definition of the syndrome [1].
While this clinical definition has made it possible to compare incidence and outcomes across centres
and regions, it also has the back side that several profoundly distinct pathophysiologies could lead
to this rather non-specific clinical presentation. Patients suffering very different diseases are thus
currently classified together, i.e., circulatory failure following major bowel surgery and patients with
pneumonia, conditions that need differentiated therapy in almost all aspects. Nevertheless, this may
only be the tip of the iceberg. The pathophysiologies leading to the systemic coagulation, endothelial
leakage and circulatory collapse observed in septic shock may be different at a systemic and cellular
level [3], and this is, almost certainly, influenced by, among other factors, host genomics, natural
microbiome of the host and immune constitution.

During the last decade, several interventions have been investigated in septic patients, including
administration of activated protein C, tight glycaemic control with insulin, early targeted fluid
resuscitation, and mild induced hypothermia [4–8]. Few have proved beneficial in primary studies,
and none in confirmatory trials. Although each of these interventions may have failed for several
reasons, it may also be a consequence of the fact that we are unaware of the actual pathophysiology of
the individual patient. Further, it is striking that all the above interventions were supported by a large
base of data from cell line, animal or human experimental sepsis models. Thus, in vitro models have
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in general failed and animal studies have proven, for many reasons, to give very unprecise estimates
of human sepsis pathophysiology.

Recent clinical studies have also demonstrated that biomarkers traditionally used to classify a
patient’s degree of organ failure may only capture some aspects of organ failure, leaving groups of
patients falsely classified as not suffering an organ failure or vice versa [9–11].

In summary, these findings, and especially decades of failed empiric trials, make it less likely
that any intervention will work on the entire sepsis population as defined by the current definition,
and the classic approach of cell studies and animal studies as rationale for new interventions in this
field should be abandoned. We need to build our understanding of pathophysiology and potential
for treatment from studies of humans. These new insights make it necessary to develop methods
to study the individual processes taking place in the individual patient, and to design trials based
on this. As reviewed recently, interpretation of these novel bio-analyses is key and complicated [12].
Eventually these methods will form a solid basis for selection of patients for certain diagnostic tests
and for highly individualized interventions. Omics technologies could prove such a tool, but many
challenges need to be overcome before this strategy becomes everyday clinical practice. This review is
about these challenges and the perspectives that “omics” analyses can provide modern sepsis science
and treatment practice.

2. The ’Omics’—What Can We Learn and What Are the Challenges

The relatively new field of omics profiling refers to the systematic measurement of an entire
class of biochemical species, i.e., DNA, RNA lipids or small metabolites. Omics can be measured at a
single time-point to give a snap-shot of an individual’s current biochemical state or longitudinally to
determine how particular molecular pathways change over-time. With the advent and expansion of
genomics technologies in the early to late 2000s it was hoped that our understanding of the causes of
many common diseases would be explained by alterations in host-genetics. However, by the end of
this decade it became clear that while important, host genetics could only reveal part of the disease
risk and that environmental and other factors (i.e., microbiome) also play a role in driving pathogenic
changes [13–16]. Therefore, to get a clearer picture of many diseases, it was essential to widen the
lens and analyse the entire system through a variety of different omics techniques, with the main
aim being to identify either inherited risk factors or alterations in biochemical processes that lead to
disease. The major leap from traditional biochemical analysis to ‘omics’ technologies is the ability to
quantify the entire state of a human with regards to genes, RNA, proteins, metabolites etc., whereas
previous approaches have been more or less limited to single or few molecules. Omics technologies,
on the other hand, allow for the measurement of anywhere from a few hundred analytes (some
metabolomics and proteomics approaches) to millions of analytes (genomics approaches). This makes
it possible to critically appraise entire pathways of disease pathogenesis rather than single molecule
associations. Identification of these pathways can then be used to provide critical information about
disease sub-types or the pathogenesis of specific clinical outcomes, allowing for the identification and
stratification of individuals or groups based on the risk of a particular outcome or a predicted response
to therapy. These omics profilings assess a variety of diverse biochemical systems and include (but are
not limited to):

(a) Genomics: assessment of inherited genetic material or DNA mutations in somatic cells.
Variations in DNA are measured by investigating the presence or absence of common single nucleotide
polymorphisms (SNPs) (measured via SNP arrays [17]), the entirety of an individual’s exomes (whole
exome sequencing [18]) or genome (whole genome sequencing [19]). Any cellular material containing
DNA can be used to assess the inherited genome. Specific cellular subsets can also be assessed for
somatic mutations.

(b) Epigenomics: A systematic measurement of all epigenetic changes to a person’s genome or
histone proteins. Epigenetic changes (including DNA methylation, chromatin accessibility and histone
modifications) control which genes are expressed in a particular cell type. Epigenetic modifications
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vary between cell-types and must be measured using a variety of methods in order to capture the
different epigenetic changes (summarised in [20]).

(c) Transcriptomics (also known as gene expression analysis): an assessment of an individual’s
transcribed RNA in blood or cells at a given time. Measured to give an indication of which genes
are being expressed in a specific cell type or system. Assessed using micro-arrays or RNA-Seq
technology [21].

(d) Proteomics: assessment of the composition of proteins in blood or cells at a given time.
Measured to give an indication of the translated proteins present in a particular cell-type, system or
biological fluid. Can also indicate post-translational modifications (i.e., phosphorylation, glycosylation,
acetylation and oxidation). Predominantly measured using a variety of mass spectrometry
methods [22,23].

(e) Metabolomics: assessment of all the metabolites in a particular system. Metabolites are all the
small biochemical components and by-products of the physiological processes in the human body,
and can be of human or microbial origin. Measured to give an indication of the biochemical pathways
that are occurring in a specific cell-type, system or biological fluid. Predominantly measured using a
variety of mass spectrometry [24] or nuclear magnetic resonance spectroscopy methods [25].

3. How to Apply Omics in Sepsis Research

The knowledge gained by successful omics profiling is already being implemented into clinical
practice, particularly in oncology—with genetic and other molecular sub-typing used to identify
specific disease sub-groups and to tailor treatment strategies to the individual [26–29]. In sepsis
research, omics technologies are also showing promise [30]. Studies have identified potential subgroups
of patients with sepsis based on transcriptomics [31–33] and metabolomics [34], as well as genetic
risk factors for specific sepsis outcomes [35,36]. Further, genetic risk scores have been developed and
validated in external populations [37]. However, the studies are difficult to compare due variations in
population and analysis technique, reflecting an evolving new science field—bioinformatics. In contrast
to the classic statistical field comparing exposure to outcome, bioinformatics focusses on understanding
complex and dynamic systems. Bioinformatics is an essential tool if the large potential of omics data is
to be realized, but also requires that clinicians and researchers in general adapt to new metrics and
nomenclature. Further, the evolving nature of the field also leaves a risk of difficulty in reproducing
the results and formal interpretation of results. Put in plain words, it may currently be difficult to
distinguish if a finding is biology, math or neither. Thus, although the area has an enormous potential
to improve management of patients, so far, no comprehensive model has been developed for sepsis
patients to consistently characterize the pathways activated in specific patients. Consequently, focus is
currently aimed on improving reproducibility in bioanalysis and in the development of models that
are (more) easily interpreted. These are considerable challenges and large efforts are currently being
put into finding plausible solutions.

The advancement, expansion and subsequent reduction in price of omics profiling technology
have resulted in a significantly increased access of these profiling techniques for groups that have
access to clinical samples, but not necessarily the in-house expertise required to analyse or interpret
them. As detailed in the previous section, this is a critical point to overcome as omics analyses are
becoming increasingly data-rich and require effective collaboration and communication between
bioinformaticians, biologists, statisticians and clinicians to analyse and interpret omics results
effectively, and then finally incorporate these results into the clinical setting where they can be fully
assessed for clinical utility.

Another major issue, when it comes to designing effective omics studies in the context of
sepsis, is the issue of sample size. The large number of markers measured using any one omics
technology and small contributing effect size of many of the analytes, mean that without sufficient
sample sizes for discovery and validation cohorts the risk of both type 1 and 2 errors are high.
In consequence, resources may be wasted or potentially unethical and dangerous results may enter
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the clinical setting if spurious results are allowed to persist [38]. As no single site is likely to be
able to recruit enough patients, nor have the relevant expertise, machinery or funding to perform
the variety of omics analyses that may be needed to elucidate sepsis subtypes, it is clear that a
collaborative approach to omics based sepsis research must be pursued. This sort of approach is already
underway in asthma research (a disease that is also complicated by a heterogenous pathogenesis) and
producing promising results [39]. Of particular interest is the U-BIOPRED (Unbiased BIOmarkers
in PREDiction of respiratory disease outcomes) initiative. U-BIOPRED is a multicentre collaborative
research program aimed at identifying asthma endotypes using novel omics techniques and traditional
clinical measurements [40]. This initiative has already succeeded in identifying potential asthma
endotypes based on transcriptomics data [41], identified genomic characteristics associated with
various inflammatory phenotypes [42] as well as defined transcriptomic characteristics of clinically
defined phenotypes [43]. This multi-institute approach should be considered as a model for sepsis
research initiatives moving forward, as both a discovery phase for identifying clinically relevant
phenotypes and/or biomarkers, but also as a platform for implementing any observations into a
clinical setting. Such a collaborative research would also facilitate the standardisation and sharing
of research methods, expertise (both analytical and clinical), as well as descriptions/definitions of
clinical outcomes and causes of death, in a similar way to what has been done in HIV and transplant
research [44,45]. The most common approach today is post hoc collaborations across centres with
biomaterial and data from previous investigations. This has proven a viable solution, but care must
be taken when using existing biobanks and databases. One should critically appraise how regional
or site variations in inclusion and outcome ascertainment may influence results and make direct
interpretation of data difficult. Unambiguous definitions of populations, phenotypes and outcomes
may prove to be the key to producing stable findings.

4. Towards Personalized Treatment of Sepsis

It is clear from previous sections that omics technologies can and will probably play a significant
role in sepsis research moving forward. However, what is not clear is how these technologies will
necessarily lead to clinical benefit for the sepsis patient. This section will suggest some strategies to
integrate both clinical and omics interrogation of sepsis patients with an eye on improving clinical
outcome in these individuals.

The analysis of omics technologies is often viewed as a black-box, whereby samples are put
in on one end and biologically relevant clusters or associations come out the other end. However,
without clinical understanding of the underlying disease, a clear biological question and an adequately
powered sample size there is a significant risk of producing results and literature that have little to no
biological or clinical relevance. Several strategies could be envisioned:

Some phenotypes are well-recognized as being associated with a particular adverse outcome.
Understanding pathways leading to an increased incidence of these could prove valuable in identifying
targets for intervention. These include, but are not limited to, endothelial damage, sepsis associated
liver damage, sepsis associated lung damage and acute kidney injury. As such, it is critical that clinical
input occurs prior to initiation of omics studies and relevant phenotypes are defined from the get-go.
Previous approaches often solely focus on mortality as the phenotype of interest (i.e., dead or alive at
follow-up). While this approach would be valid for a homogeneous disease, as discussed previously it
is more likely that sepsis consists of a variety of different pathogeneses. These different pathogeneses
may then lead to mortality in a variety of ways. Grouping and analysing these together risks masking
the signal of each individual aetiology and should be avoided where possible.

A second approach, as have been previously attempted, is to try to identify groups of patients
that share a common pathophysiology. This is achieved through methods commonly referred to as
unsupervised learning. In unsupervised learning, clusters of patients are derived based on similarities
across many different biologic characteristics. In these types of studies, the question becomes which
groups to include and analyse: (a) Patients meeting the current definition of sepsis to understand the
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diversity of pathophysiologies across several different infectious sources and different organ failures;
or (b) patients with a specific infection to understand the pathophysiologies that cause the variation
in outcome and clinical presentation? Both approaches should be considered as presenting different
aspect of the disease.

Just as clinical input should be sought before designing the omics aspect of the study, so should
statistical, biological and bioinformatic expertise sought prior to initiation of any study. This is to ensure
that the omics platforms and analysis techniques chosen can adequately answer the biological question
posed. There are also critical (particularly with analyses of the genome), regulatory and even storage
steps that need to be carefully considered prior to the initiation of any clinical study involving the
collection of clinical samples and omics analyses. Traditional analyses of exposure and outcome, may
not fully utilise the power of the combined data—and may lead to overly conservative estimates—or
give altogether wrong answers. As mentioned in previous sections there are a variety of different
omics platforms available and these can be performed in isolation or in a complimentary fashion.

Due to the reduction in costs of technology and standardised analysis pipelines analyses main
omics tool used in research is often genomics. Although this technology presents somewhat of a
problem in sepsis research, as it is likely that the heritability of the immune response to sepsis is low.
If so, no single genetic variant will be responsible for the clinical outcomes seen in sepsis patients,
but rather by a multitude of weakly associated variants. These weakly associated variants are likely to
vary between individuals, but still lead to the same phenotype by altering expression of a particular
gene or pathway. Traditional genome wide association studies are unlikely to detect these variants,
however, other types of analyses (i.e., gene-set analyses (GSA)) have been developed to overcome
these issues [46]. In GSA, SNPs are first annotated to genes and genes similarly annotated to pathways
(also known as gene-sets). Once SNPs have been aggregated and annotated to gene-sets the association
with, or enrichment of, SNPs within a particular gene-set is tested against a phenotype—asking the
question whether sets of SNPs (when aggregated in genes or gene-sets) are more associated with
a particular phenotype than would be expected by chance. This approach has been shown to be a
reliable methodology for analysing diseases with complex pathogenesis and can also be applied to
rare variants [47]. Additionally, as GSA bypasses the relatively small effect size of individual SNPs by
aggregating them to genes and gene sets, this allows for increased power for identifying biological
associations in smaller sample sizes [48].

While there may be some heritable aspect of the host response in sepsis, it is also likely that
environmental factors will also influence how an individual or groups of individuals respond to
infection. As such it is unlikely that analysing the genome in isolation will provide a true understanding
of sepsis pathogenesis and a multi-omics strategy should be pursued wherever possible. Incorporating
additional omics analyses of down-stream biochemical groups (i.e., transcriptomics, proteomics or
metabolomics) enables a real-time snapshot of the cellular and extra-cellular signalling pathways that
are up and down-regulated in different clinical sub-groups, while also providing additional weight to
observed genetic variants (by measuring down-stream gene products). Ideally, these pathway style
analyses can also reveal critical biomarkers that will be able to stratify the clinical sub-groups, making
real-time stratification in the clinical setting simpler.

Once these clinical sub-groups are more clearly defined through enrichment with omics based
biomarkers (including confirmation in adequately powered validation studies), these biomarkers must
undergo the rigorous quality control required to enable omics based guidance of patient care in clinical
trials [49]. Further, the technologies must be transformed into tools that can be used in a clinical setting.
For a disease such as sepsis that affect many patients, evolve quickly and likely need interventions to
be started shortly after presentation, this includes high internal validity, short turn-around time from
sampling to result and substantial cost-reduction. Only then can the focus can shift towards designing
interventional strategies that are tailored to the specific sub-groups. These interventional strategies
would ideally be tailored to the specific aetiology of the sub-group (as discovered using omics based
pathway analysis) and may require new drug discovery (of which omics can also play a role [50–52])
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or other interventional strategies. With this more targeted treatment approach we would then expect
to see a clear reduction in overall sepsis mortality, as well as the more specific sub-group outcomes,
Figure 1.Healthcare 2018, 6, x FOR PEER REVIEW  6 of 9 
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