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Simple Summary: Colorectal carcinoma is characterized by intratumoral heterogeneity that can be
assessed by radiogenomics. Radiomics, high-throughput quantitative data extracted from medical
imaging, combined with molecular analysis, through genomic and transcriptomic data, is expected
to lead to significant advances in personalized medicine. However, a radiogenomics approach in
colorectal cancer is still in its early stages and many problems remain to be solved. Here we review
the progress and challenges in this field at its current stage, as well as future developments.

Abstract: The steady improvement of high-throughput technologies greatly facilitates the imple-
mentation of personalized precision medicine. Characterization of tumor heterogeneity through
image-derived features—radiomics and genetic profile modifications—genomics, is a rapidly evolv-
ing field known as radiogenomics. Various radiogenomics studies have been dedicated to colorectal
cancer so far, highlighting the potential of these approaches to enhance clinical decision-making.
In this review, a general outline of colorectal radiogenomics literature is provided, discussing the
current limitations and suggested further developments.

Keywords: radiogenomics; machine learning; deep learning; oncologic imaging; genomics

1. Introduction

Worldwide, with over 1.8 million new colorectal cancer cases and 881,000 deaths,
colorectal cancer ranks third in terms of incidence (10.2%) and second in terms of mortality
(9.2%) [1]. Colorectal cancer (CRC) is a heterogeneous disease in terms of etiology, biology,
therapy response, and prognosis. Environmental factors (e.g., high intake of red and
processed meats, sugars, highly refined grains, smoking and heavy alcohol use, obesity),
personal history of cancer, chronic inflammatory bowel diseases and age are well known
examples of factors related to the increased risk of CRC [2]. Colorectal adenocarcinomas
are the result of a stepwise progression from normal tissue epithelium to carcinoma. TNM
classification (American Joint Committee on Cancer and the Union for International Cancer
Control; TNM classification (T-Tumor; N-Node; M-Metastais), the most used classification
for CRC, helps stratify patients into different therapeutic and prognostic subgroups), the
most used classification for CRC, helps stratify patients into different therapeutic and
prognostic subgroups [3]. The 5-year relative survival rate for CRC ranges from 90% in
patients diagnosed with stage 1 disease to 70% for patients with regional spread, and
down to 10–12% for patients with stage IV disease [4,5]. Within the same TNM stage,
survival rates remain highly variable for different patients, which can be explained in
part by tumor biological heterogeneity. Molecular biology showed that multiple events
involving tumor-suppressor genes, oncogenes, and DNA mismatch repair genes contribute
to the development of CRC, and the order in which these mutations occur is critical [6].
This results in spatial tumor heterogeneity (different tumoral clones within the primary
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tumor), intertumoral heterogeneity (tumoral heterogeneity between patients with the same
histologic type), and temporal heterogeneity(differences that developed inside the tumor
over time) [7].

Recently, tumor heterogeneity has also been assessed by radiomic features, i.e., quan-
titative metrics extracted from medical images. Different studies have investigated the
prognostic value of radiomic features of patients with colorectal cancers derived from
different modalities (e.g., PET, CT and MRI). Radiogenomics investigate the relationship
between imaging features and gene expression alterations, and/or their potential added or
complementary value in predictive oncological modeling.

The purpose of the present review is to provide a focused update on the rapidly
evolving field of colorectal radiogenomics. We describe the workflow of colorectal cancer
radiogenomics, their clinical application in oncology, and the future challenges in this field.

2. Radiomics
2.1. Radiomics Workflow

Medical imaging plays a central role in the detection, diagnosis, staging, and treat-
ment of cancer and can provide morphological, structural, metabolic, and functional
information [8]. The use of robust machine-learning techniques allows the extraction and
exploitation of high-dimensional mineable data (morphologic, intensity-based, fractal-
based, and textural features) from medical images for a more exhaustive characterization
of tumor phenotypes [9]. The complexity of the radiomics workflow increases the need for
standardized nomenclature and computation methods, which is being addressed by the Im-
age Biomarker Standardization Initiative (IBSI). The IBSI currently provides standardized
image biomarker nomenclature and definitions, a standardized general image processing
workflow, tools for verifying radiomics software implementations, and reporting guide-
lines for radiomic studies [10]. Radiomics quality score (RQS) offers also a tool to analyze
the methodology, reproducibility, and clinical applicability of radiomics studies [11].

Different modalities of medical imaging (CT [12], MRI, PET) are utilized for radiomics
and radiogenomics studies. Before feature extraction can be carried out, the definition of a
region/volume of interest (ROI/VOI) must be realized. It is one of the most challenging
tasks in medical image analysis, especially in colorectal cancer, due to the size and shape of
the organ and lesions (in any modality), as well as limited contrast between tissues (mostly
in CT). The segmentation techniques of medical images are often specifically optimized for
each combination of application, imaging modality, and body part [13]. In CT, because of
the small intensity differences between primary colorectal tumor and adjacent tissues, the
majority of studies relied upon a manual or semi-automated segmentation [14]. There are
advantages and disadvantages to each approach. Manual segmentation requires expert
annotation and is tedious, time-consuming, and prone to inter- and intra-observer variabil-
ity. Semi-automatic segmentation methods have higher repeatability but may not always
be as accurate as the manual segmentation in some situations (e.g., delineating the rectal
tumor after neoadjuvant therapy) [15]. Automated segmentation is also subject to (more
limited) variability. Therefore, the robustness of the radiomic features issued from multiple
segmentations should be assessed in the workflow [16]. Fully automated segmentation
methods, supervised and unsupervised, are generally built on basic image processing of
pixel intensities and/or textural features, with the most promising methods relying on deep
learning by training a U-net type structure [17]. Supervised techniques are considered to
be more accurate but interobserver variability will still be present, as the manual part of the
segmentation and the settings of the algorithm influence the result [12,18]. Unsupervised
segmentation techniques commonly rely on labeled atlases and have been shown to be less
accurate than the supervised techniques [19].

2.2. Features Extraction

Quantitative imaging features are subsequently extracted from the previously identi-
fied VOI. The features are usually classified into a number of families, such as intensity



Cancers 2021, 13, 973 3 of 19

histogram-based features, shape-based features, texture-based features [20]. Several fea-
tures require additional image processing steps before feature calculation (e.g., some inten-
sity histogram metrics and all textural features require a prior discretization of intensities
into a determined number of bins) [10].

2.3. Radiomics in Colorectal Cancer

Statistical analysis and prognostic model building are the next steps in radiomics
analysis. Because a large number of radiomic features can be extracted from the image
datasets, most of these exhibit intercorrelation and therefore are redundant. Combined with
a small sample (i.e., number of patients), this can often contribute to the over-fitting of the
models [21]. Feature selection should be performed to identify the most relevant and non-
redundant subset of features that will be exploited to train a multiparametric prediction
model according to the clinical endpoint [22]. Advanced machine and deep learning
algorithms are employed for training/validation and testing of radio(geno)mics models.
Various machine learning algorithms can be utilized—multivariate regression with least
absolute shrinkage and selection operator (LASSO). LASSO serves as a regularization and
variable selection method for any statistical model by shrinking the regression coefficients,
and reducing some of them to zero [23]. Random forests (RF) is a machine learning
algorithm that combines the predictions of a large number of small decision trees to
produce a more accurate prediction [24]. Support vector machine (SVM) is an algorithm
that performs classification by finding the hyperplane that maximizes the margin separating
the classes [25].

Different studies have investigated the prognostic role of radiomics analysis in CRC.
Radiomic analysis of colorectal cancer showed correlations with lymph node metastasis [26]
and perineural invasion [27] or prediction of lung metastasis [28]. For colorectal liver
metastasis, radiomics showed promising performance in predicting overall survival [29],
disease-free survival [30], response to targeted therapies [31], the outcome for patients
with unresectable hepatic metastases [32], or recurrence after liver resection [33]. In rectal
cancer, radiomics were shown to be correlated with tumor regression [34], lymph node
metastasis [35,36] or response after chemoradiation therapy [37,38].

3. Genomics and Transcriptomics

The development of CRC, from adenoma to adenocarcinoma, is the result of accu-
mulated mutations in multiple genes that regulate cell growth and differentiation [39].
Colorectal carcinogenesis can arise from one or a combination of three different conditions,
namely chromosomal instability (CIN), CpG island methylator phenotype (CIMP), and
microsatellite instability (MSI) [40]. The classical CIN, observed in 65–70% of sporadic
colorectal cancers, is associated with the acquisition of mutations in the adenomatous poly-
posis coli (APC), mutation of the KRAS oncogene, loss of chromosome 18q and deletion
of chromosome 17p, which contains the important tumor suppressor gene TP53 [41]. The
consequence of CIN is an imbalance in chromosome number (aneuploidy), subchromo-
somal genomic amplifications, and a high frequency of loss of heterozygosity (LOH) [42].
CIN + CRCs are correlated with poorer survival irrespective of ethnic background, anatom-
ical location, and treatment with 5-FU [43].

CpG island methylator phenotype CRC accounts for 15–20% of sporadic CRC and
characterized by the vast hypermethylation of promoter CpG island sites, resulting in
concomitant hypermethylation of multiple genes, silencing of normal tumor-suppressor
function and cancer formation [44]. Many genes that have been identified to be affected
in CIMP have important functions in the cell, (e.g., CACNA1G, IGF2, NEUROG1, SOCS1
and RUNX3) [45]. CIMP-high CRCs are associated with distinct clinicopathological and
molecular features such as older age, female preponderance, proximal tumor location,
higher grade, reduced COX-2 expression, increased frequency of TGFBR2 mutations, and
high rate of MSI, KRAS, and BRAF mutations [46].
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Microsatellite instability (MSI), detected in about 15% of all colorectal cancers, is a
molecular phenotype due to a defective DNA mismatch repair system [47]. The MSI-high
phenotype is characterized by mucinous or signet ring appearance, poor differentiation,
proximal colon, prominent lymphocytic infiltration [48].

Transcriptomics is the study of the RNAs transcription and expression levels, func-
tions, locations, trafficking, and degradation. RNAs studies allow the identification of
genes that are differentially expressed in distinct cell populations or in response to different
treatments [49]. The CRC Subtyping Consortium identified four molecular subtypes with
distinguishing features: CMS1 (microsatellite instability immune, 14%), hypermutated,
strong immune activation and microsatellite unstable; CMS2 (canonical, 37%), epithe-
lial, marked WNT and MYC signaling activation; CMS3 (metabolic, 13%), epithelial and
metabolic dysregulation; CMS4 (mesenchymal, 23%), prominent transforming growth
factor–β activation, angiogenesis, and stromal invasion [50].

4. Radiogenomics in Colorectal Cancer

The molecular landscape of CRC has prognostic relevance and affects the choice of
therapeutic strategies [51]. Carcinogenesis could be triggered by the activation of sev-
eral pathways downstream the epidermal growth factor receptor (EGFR), (RAS/MAPK;
SRC/FAK; PI3K/AKT pathway) through deregulation of protein synthesis, cell cycle, apop-
tosis, angiogenesis [52]. KRAS mutations are present in 30–50% of colorectal cancers and
the RASCAL study of 2721 colorectal cancers showed that the presence of KRAS mutation
was significantly associated with poorer prognosis [53]. K-Ras is a critical mediator of
EGFR-induced signaling cascades and resistance to anti-EGFR therapies has been observed
in patients with KRAS mutation [54]. Cetuximab and panitumumab, EGFR monoclonal
antibody-based therapies that block ligand binding and lead to the inhibition of the down-
stream RAS-RAF-MEK-ERK signaling pathway, are reserved for patients with wild-type
KRAS mCRC [55]. MSI-H non-metastatic CRC patients have improved survival and receive
no benefit from fluorouracil (FU)-based adjuvant therapy [56]. Therapy with programmed
cell death 1 (PD1)-blocking antibodies, pembrolizumab, and nivolumab have shown effi-
cacy in patients with MSI metastatic CRC [57]. Other pathways implicated in initiation,
progression, activation, and migration of CRC, such as Wnt/β-catenin, Notch, Hedgehog,
and TGF-β/SMAD, (PI3K)/AKT could be potential sites for targeted therapy [58].

Since genomic analysis is now essential for therapy in colorectal cancer, there have
been several attempts to explore a potential role of radiomics within this context, either
as a surrogate of genomics (i.e., “virtual biopsy”) or as a complementary tool (i.e., added
information). The development of radiogenomics models capable of predicting CRC
genetic mutations is very useful in general practice to improve decision-making and
patient outcomes.

4.1. 18F-FDG PET

The literature on CRC radiogenomics is limited but the rapidly increasing number
of studies have examined the role of 18F-FDG PET in the radiogenomics assessment of
KRAS mutations in CRC. Fluorodeoxyglucose positron-emission tomography/computed
tomography (FDG PET/CT) allows for the evaluation of functional tumor activity via an
assessment of metabolic activity and PET/CT is clinically indicated to evaluate for distant
metastatic CRC patients.

In a study of 179 patients, Lee et al. found that the CRC patients with KRAS mutations
had significantly higher standardized uptake value (SUV max) and SUV peak values than
the patients expressing wild-type KRAS mutations [59]. A retrospective study of Kawada
et al. found that KRAS/BRAF status could be predicted with an accuracy of 75% when
a SUVmax cutoff value of 13 or 14 was used [60]. Interestingly these studies excluded
patients with high C-reactive protein (CRP) levels because local inflammation and elevation
in CRP could cause false-positive results in the 18F-FDG PET examinations [61]. Recently,
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Arslan et al. found that KRAS mutation and increased 2-FDG uptake are associated with a
negative prognostic factor in CRC [62].

KRAS, BRAF, and PIK3CA mutations are highly concordant between primary tumors
and distant metastatic CRC tumors, indicating that either type of tumor tissue could be
useful as a source to detect KRAS mutations for the selection of anti-EGFR therapy [63,64].
For CRC metastases, the Krikelis et al. study including 58 stage IV patients found no
correlation between SUV max and KRAS mutations, [65] Kawada et al., to minimize bias
due to the partial volume effect, only considered tumors larger than 10 mm in diameter and
showed that the KRAS mutation can be reliably predicted with an accuracy of 71.4% using
a SUVmax threshold greater than 6.0 [66]. When considering only CRC liver metastasis
Mao et al. reported SUVmax on both early and delayed scans predict patients harboring
KRAS mutations [67].

Chen et al. found increased SUVmax and TW40% were associated in CRC tumors
with TP53 and KRAS mutations [68]. They also reported an association between contrast
(gray-level co-occurrence matrix) and KRAS mutations, the TP53 mutation was associated
with an increased value of short-run low gray-level emphasis (gray-level run length matrix)
and APC mutations were correlated with lower low gray-level zone emphasis (gray-level
zone length matrix). Miles et al. showed that KRAS mutations are associated with SUVmax,
hypoxia-inducible factor-1 (HIF-1), and minichromosome maintenance protein 2 [69].

However, a number of studies have highlighted contradictory findings, concluding
that none of the PET parameters could predict KRAS status in a meaningful way. In a study
including 55 patients, Oner et al. cannot predict KRAS gene mutations using PET/CT
parameters (SUVmax, metabolic tumor volume or total lesion glycolysis) [70]. Chen et al.
in a study on 103 patients confirmed these results [68]. Krikelis et al. did not find any
correlation between SUVmax measured in the metastasis and KRAS status analyzed in the
primary cancer [65]. This can be partially be explained by the heterogeneity of the studied
populations, SUVmax cut-off value, small sized tumors, etc. Table 1 summarizes the main
PET/CT studies that have evaluated radiogenomics in colorectal cancer.

4.2. Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is the modality of choice for rectal cancer. The high
soft-tissue contrast of MRI accurately assesses the extramural tumor spread and enables
staging of both early and advanced rectal cancer, response assessment, and detection of
recurrent disease [71]. Several studies evaluated the association between MRI derived
features and KRAS mutations. Shin et al. found that tumors with KRAS mutations exhibited
a longer axial length, as well as a larger ratio of the axial to the longitudinal dimensions on
pretreatment rectal MRI [72]. With an accuracy of 0.640 (95% CI, 0.520 to 0.747, p = 0.0292),
the study Jo et al. confirmed these findings [73]. Xu et al. reported that lower Max-ADC,
Mean-ADC, pure diffusion, and higher pseudo-diffusion coefficient values were demon-
strated in the KRAS mutant group [74]. They also reported that mean values of the six
textural features (Mean, Variance, Skewness, Entropy, gray-level nonuniformity, run length
nonuniformity) were significantly higher in KRAS mutant group compared to the KRAS
wild type group (p < 0.0001) [75]. Histogram metric of diffusion kurtosis imaging showed
moderate diagnostic significance for KRAS status in the Cui et al. study [76]. The same
team found that a model combining seven radiomic features trained with support vector
machine was able to predict the KRAS status with AUC of 0.722 (95% CI, 0.654–0.790) [77].
Meng et al. showed a radiomic model evaluating Ki-67 index with an AUC value of
0.699 (95% CI, 0.611–0.786) and KRAS-2 gene status with an AUC value of 0.651 (95% CI,
0.539–0.763) [78]. Hong et al. found no significant correlation between parameters of
dynamic contrast-enhanced MRI and molecular prognostic factors (mutation of the KRAS
oncogene status and microsatellite instability) [79]. Horvat et al. in a retrospective study
of 65 patients found no correlation between radiomics and genetic mutations only signif-
icant correlation between qualitative MRI imaging features and genetic mutations [80].
Huang et al. model, built with clinical and radiomic features extracted from T2WI images,
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predicted the microsatellite instability status in rectal cancer [81]. Table 2 summarizes the
main MRI studies that have evaluated radiogenomics in colorectal cancer.

4.3. CT SCAN

Computed tomography (CT) is the preferred imaging examination for colorectal cancer
in clinical practice. Lubner et al. found that histogram skewness was negatively associated
with KRAS mutation (p = 0.02) in patients with hepatic metastatic colorectal cancer [82].
He et al. investigated the predictive performance by using a residual neural network
(ResNet) to estimate the KRAS mutation status on pre-treatment contrast-enhanced CT
with an AUC 0.818 in testing cohorts [83]. Yang et al. reported an association between
the CT texture signatures and the predicted KRAS/NRAS/BRAF mutations status of CRC
when using a support vector machine model yielded an area under curve (AUC) of 0.869
(95% CI, 0.780–0.958) in the primary cohort and 0.829 (95% CI, 0.718–0.939) in the valida-
tion cohort [84]. Taguchi et al. showed that a multivariate support vector machine model
including 14 CT textural features, yielded a significantly higher AUC (0.82) and thus a
superior prediction performance when compared to the FDG PET-derived SUVmax for
prediction of KRAS mutation status [85]. Dercle et al. retrospectively analyzed 667 patients
from the randomized phase III multicenter trial CRYSTAL (NCT00154102) comparing fluo-
rouracil, leucovorin, and irinotecan (FOLFIRI) plus cetuximab (cohort FC) with FOLFIRI
alone (cohort F) in the first-line treatment of metastatic. The four radiomics features
model, built using a Random Forest algorithm to diagnose anti-EGFR treatment-sensitive
tumors, outperformed both KRAS-mutational status at baseline (AUC = 0.67, p < 0.001) and
8-week tumor shrinkage (RECIST 1.1-like unidimensional tumor shrinkage) [31]. Badic
et al. showed correlations between the expression changes in four genes (ABCC2, CD166,
CDKNV1, INHBB) and radiomic features in primary colorectal patients [86]. High CXCL8
levels in CRC tumors are associated with poor prognosis in CRC patients [87] and Chu
et al. showed correlations between CT radiomics features and CXCL8 expression [88].

Pernicka et al. combined two clinical variables and 40 radiomic features into a mi-
crosatellite instability (MSI) prediction model with an AUC 0.80 in training cohort and
AUC of 0.79 in the validation cohort [89]. Fan et al. model predicting the MSI status
combined six radiomic features and 11 clinical characteristics to achieve an AUC of 0.75
in stage 2 colorectal patients [90]. Wu et al. built a nine features model (three clinical
features and six radiomic features) derived from dual energy computed tomography for
predicting MSI status in CRC patients with an AUC of 0.961 in the training set and of 0.918
in the validation set [91]. Table 3 summarizes the main CT studies that have evaluated
radiogenomics in colorectal cancer.
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Table 1. Colorectal cancer radiogenomics studies based on PET/CT imaging.

Year Author Study N Study
Population Aim Segmentation Radiomic Features Main Results Internal

Validation
External

Validation Conclusions

2020 Arslan R 83 All stages
Prediction of

the KRAS
status

M SUVmax

KRAS mutation mean
SUVmax (24.0 ± 9.0); KRAS

wild type mean SUVmax
(17.7 ± 8.2)

N N

Coexistence of KRAS
mutation with higher
SUVmax is a negative

prognostic factor

2020 Popovic R 37 Stage IV
Prediction of

KRAS status in
CRLM

M/A

SUV metrics corrected
for tumor-to-blood

standard uptake ratio
(SUR) and partial

volume effect (PVE)

SUV metrics(AUC 0.69–0.72);
SUR metrics(AUC 0.73–0.75) N N

Corrected PET standard
uptake values (SUV)

correlated KRAS status

2019 Chen R 74 All stages

Association
between

radiomics and
genetic

mutations

M 63 radiomic features

KRAS predictor histograms
(OR 1.99) and contrast
(OR 1.52) from GLCM

predictors; SRLGE associated
TP53 (OR 243); LGZE

predictor APC (OR < 0.001)

N N

PET/CT-derived radiomics
can determine KRAS, TP53,

and APC genetic
alterations

2018 Mao R 49 Stage IV
Prediction of

KRAS status in
CRLM

M

Maximum standardized
uptake value (SUVmax);

change of SUVmax
(DSUVmax); retention

index (RI)

SUVearly AUC 0.694
(p = 0.002, 95% CI

0.582–0.807); SUVdelayed
AUC 0.760 (p < 0.001, 95% CI
0.658–0.862); DSUVmax AUC

0.757 (p < 0.001, 95% CI
0.654–0.861); RI (%) AUC
0.684 (p = 0.003, 95% CI

0.571–0.797)

N N

KRAS mutations predictors
in CRLM: early and
delayed SUVmax,

DSUVmax, RI

2017 Oner R 55 Na
Prediction of

the KRAS
status

A SUVmax, SUVmean,
MTV and TLG

SUVmax (AUC 0.54, OR 0.08,
95% CI, 0.38–0.7 p = 0.6);

MTV (AUC 0.54, OR 0.08,
95% CI, 0.38–0.6 p = 0.6)

N N

No significant association
between KRAS gene

mutations and SUVmax,
MTV, TLG, NLR, PLR,
CEA, CA 19-9 values
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Table 1. Cont.

Year Author Study N Study
Population Aim Segmentation Radiomic Features Main Results Internal

Validation
External

Validation Conclusions

2016 Lee P 179 All stages

Predict the
KRAS status

depending on
C-reactive

protein (CRP)
levels

M/A

Maximum standardized
uptake value (SUVmax),

peak standardized
uptake value (SUVpeak),
metabolic tumor volume

None of the PET/CT-related
parameters showed

significant KRAS prediction;
In normal CRP group,

mutated KRAS associated
with higher SUVmax (OR,

3.3; 95% CI, 1.4–7.4),
SUVpeak (OR, 3.8; 95% CI,

1.5–9.3)

N N
Higher SUVmax and

SUVpeak values in KRAS
mutated patients

2016 Lovinfosse R 151 All stages
Prediction of
KRAS, NRAS,

BRAF
M

Standardized uptake
values (SUVs),
volume-based

parameters and texture
analysis

SUVcov highest AUC (0.65),
sensitivity 56%, specificity

64%; SUVmax AUC 0.65 and
sensibility 69%
specificity 52%

N N

The accuracy of 18F-FDG
PET/CT quantitative

metrics could not play a
clinical role

2015 Chen R 103 All stages

Prediction of
TP53, KRAS,
APC, BRAF,
and PIK3CA

M

SUVmax, and various
thresholds of metabolic

tumor volume, total
lesion glycolysis, and
PET/CT-based tumor

width (TW) were
measured

SUVmax predicting TP53,
OR 1.28 (95% CI, 1.01–1.61);
TW 40% predicting KRAS,
OR 1.15 (95% CI, 1.06–1.24)

N N
Increased SUVmax and
TW40% associated with

TP53 and KRAS mutations

2015 Kawada R 55 Stage IV
Prediction of

the KRAS
status

M SUVmax

SUVmax (cutoff value 6.0) in
tumors larger than 10 mm
OR 0.78 (95% CI, 0.61–0.99)

predicted KRAS status

N N

18F-FDG accumulation into
metastatic CRC was

associated with KRAS
status

2014 Chen R 121 All stages
Prediction of

the KRAS
status

A

SUVmax; metabolic
tumor volume, total

lesion glycolysis,
PET/CT-based tumor

width

SUVmax OR 1.23 (95% CI,
1.01–1.52); TW 40% OR 1.15

(95% CI, 1.02–1.30).
N N

SUVmax and TW40% were
associated in CRC with

KRAS mutations

2014 Krikelis R 44 Stage IV
Prediction of

the KRAS
status

M SUVmax No correlation of SUVmax
with KRAS status N N

No statistically significant
correlation between

SUVmax values and KRAS
mutation status or GLUT1

mRNA levels.
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Table 1. Cont.

Year Author Study N Study
Population Aim Segmentation Radiomic Features Main Results Internal

Validation
External

Validation Conclusions

2014 Miles P 33 All stages
Prediction of

the KRAS
status

M
SUVmax, mean of

positive pixels [MPP]),
blood flow (BF)

The true-positive rate,
false-positive rate, and

accuracy (95% confidence
intervals) of the decision tree

were 82.4% (63.9%–93.9%),
0% (0%–10.4%), and 90.1%

(79.2%–96.0%), respectively.

Y N

Combined measurements
of tumor 18F-FDG uptake,
CT texture, and perfusion

has the potential to identify
KRAS mutations

2012 Kawada R 51 All stages

KRAS/BRAF
mutations
affect FDG

accumulation
in CRC

M Radiomic features

KRAS and BRAF mutations
correlated with SUVmax (OR,
1.17; 95% CI, 1.03–1.33), TLR
(OR, 1.40; 95% CI, 1.08–1.80)

N N
FDG accumulation was

higher in CRC with
KRAS/BRAF mutations

Abbreviations: sens: sensitivity; spec: specificity; retrospective (R); prospective (P); not available (Na); area under the curve (AUC); microsatellite instability (MSI); area under curve (AUC); Kirsten rat sarcoma
viral oncogene ( KRAS); NRAS Proto-Oncogene, GTPase (NRAS); (CR)—colorectal tumors, (R)—rectal tumors, (SRLGE)—short-run low gray-level emphasis; colorectal liver metastases (CRLM); maximum
standardized uptake value (SUVmax); change of SUVmax (DSUVmax); retention index (RI); standard uptake ratio (SUR); partial volume effect (PVE); tumor-to-blood standard uptake ratio (SUR); mean of
positive pixels (MPP); blood flow(BF); Na—not available, manual segmentation (M); manual/automatic segmentation (M/A).

Table 2. Colorectal cancer radiogenomics studies based on magnetic resonance imaging. All studies included rectal tumors.

Year Author Study N Study
Population Aim Segmentation Radiomic Features Main Results Internal

Validation
External

Validation Conclusion

2020 Wang R 306 Na

Deep model to
independently

predict the genetic
status of KRAS

mutations

M DL model
MBCAM2 model- accuracy
90.50%, sens 92.79%, spec
87.64%, and AUC 96.00%

Y N

Multi-branch cross
attention model

outperforms all the
methods of DL

2020 Oh R 60 All stages Prediction of
KRAS status M Three radiomic model

sens (84%), spec (80%),
accuracy values (81.7%),

AUC (0.884) of the decision
tree for the whole dataset

Y N
Three MRI imaging

features that could predict
KRAS status

2020 Cui R 304 + 86 Na Prediction of
KRAS status M Seven radiomics features

Training dataset AUC of
0.722 (95% CI, 0.654–0.790);

internal validation AUC
0.682 (95% CI, 0.569–0.794);

external validation AUC
0.714 (95% CI, 0.602–0.827)

Y Y Moderate performance to
predict KRAS status
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Table 2. Cont.

Year Author Study N Study
Population Aim Segmentation Radiomic Features Main Results Internal

Validation
External

Validation Conclusion

2019 Horvat R 65 Na

Correlations
between genetic
mutations and

radiomics

M Thirty-four texture
features

No associations between
clusters/qualitative features
and gene mutations (except

for PTPRT)

N N

Associations between
quantitative features and
genetic mutations; pas de

correlations between
qualitative features and

genetic mutations

2019 Cui R 148 Exclusion
Stage IV

Prediction of the
status of KRAS M

D, K, and apparent
diffusion coefficient

(ADC) values

K75th AUC value of 0.871
(0.806–0.920) sensitivity

81.43%, specificity78.21%,
positive predictive value

77.03%, negative predictive
value 82.43%

N N

DKI metrics with
whole-tumor volume
histogram analysis is
associated with KRAS

mutation

2019 XU R 158 Na Prediction of
KRAS status M

Mean, Variance,
Skewness, Entropy,

gray-level nonuniformity,
run length

nonuniformity

texture features AUC
(0.703–0.813); ADC values

(AUC 0.682, 95% CI:
0.564–0.801), sensitivity
(66.67) and specificity

(62.12%)

N N

Mean values (Mean,
Variance, Skewness,
Entropy, gray-level

nonuniformity, run-length
nonuniformity) higher in

KRASmt group

2018 JO R 75 Na Prediction of
KRAS status M

Tumor length, ADC,
relative contrast

enhancement

The higher ratio of axial to
LTL in the KRAS-mutant

group AUC 0.640 (95% CI,
0.520 to 0.747, p = 0.0292),

maximum accuracy of 64%

N N

Ratio of axial to
longitudinal tumor lengths
predicted KRAS mutation

(accuracy of 64%)

2018 XU R 51 Na Prediction of
KRAS status M

Max-ADC, Min-ADC,
Mean-ADC, pure

diffusion, perfusion
fraction,

pseudo-diffusion
coefficient

Kras status AUC values of
Max-ADC, Min- ADC,

Mean-ADC, D, f and D* were
0.695, 0.604, 0.756, 0.701,

0.599 and 0.710

N N

Lower Max-ADC,
Mean-ADC and D and

higher D values observed
in the KRAS mutant group

2018 Meng R 345 Na

Radiomic model’s
prediction of

biological
characteristics

M DL model

Model Ki-67 (AUC 0.699 95%
CI, 0.611–0.786); HER-2 (AUC

0.696, 95% CI, 0.610–0.782)
Ki-67; KRAS-2 (AUC0.651,

95% CI, 0.539–0.763),

Y N
Radiomic signatures
correlated to HER-2,
KRAS-2 gene status
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Table 2. Cont.

Year Author Study N Study
Population Aim Segmentation Radiomic Features Main Results Internal

Validation
External

Validation Conclusion

2016 Shin R 275 All stages Prediction of
KRAS status M

Axial tumor length, ratio
of the axial to the

longitudinal tumor
dimensions

KRASm tumors- longer axial
length, larger ratio of the
axial to the longitudinal

dimensions.

N N

KRAS status associated
with gross tumor pattern,
axial length, ratio of the
axial to the longitudinal
dimensions of the tumor

2013 Hong R 29 Na

correlations
between

parameters of
dynamic

contrast-enhanced
magnetic resonance

imaging and
prognostic factors

M

Steepest slope (SLP),
time to peak (Tp),

relative enhancement
during a rapid rise

(Erise), maximal
enhancement (Emax)

Erise was significantly
correlated with N stage, and

Tp was significantly
correlated with histologic

grade

N N

no significant correlations
between DCE-MRI

parameters and K-ras
mutation, microsatellite

instability

Abbreviations: sens: sensitivity; spec: specificity; retrospective (R); manual (M); not available(Na); apparent diffusion coefficients (ADC); area under the curve (AUC); microsatellite instability (MSI); area under
curve (AUC); Kirsten rat sarcoma viral oncogene (KRAS); NRAS Proto-Oncogene, GTPase (NRAS); B-Raf Proto-Oncogene (BRAF); standard deviation (SD); Steepest slope (SLP), time to peak (Tp); dynamic
contrast-enhanced(DCE); diffusion-weighted imaging(DWI); relative enhancement during a rapid rise (Erise); maximal enhancement (Emax); magnetic resonance imaging (MRI). D*-Pseudo-diffusion coefficient.

Table 3. CT scan imaging radiogenomics studies of colorectal cancer published in literature.

Year Author Study N Study
Population Aim Segmentation Radiomic Features Main Results Internal

Validation
External

Validation Conclusion

2020 HE R 117 + 40 All

Predictive performance
by using residual
neural network

(ResNet) to estimate the
KRAS status

M 4 features radiomics model

Radiomics model training cohort,
AUC 0.945 (sens: 0.75; spec: 0.94);

testing cohort, AUC 0.818
(sens: 0.70; spec: 0.85). ResNet
model AUC 0.90 testing cohort

Y N
Better prediction of Kras status

by residual neural network
than radiomics model

2020 CHU R 99 + 42 All

Relationship among
prognosis, radiomics

features, and gene
expression

M 12 radiomics features

Radiomic model training cohort
AUC 0.829 (95% CI: 0.750–0.908)
testing cohort AUC 0.727 (95%

CI: 0.570–0.884)

Y N

Radiomics model reflected by
CXCL8 combined with tumor
stage information predict the

prognosis

2020 Negreros-
Osuna R 145 Stage IV Prediction of BRAF

mutation M
Standard deviation (SD), the

mean value of positive
pixels (MPP)

Lower SD 22.31 (95% CI: 20.66,
24.62) and MPP 51.54 (95% CI:
47.14, 58.99) in BRAF mutant

tumors

N N
Radiomics texture features

predictors of BRAF mutation
status and 5-year OS

2020 González-
Castro R 47 All Prediction of KRAS

status M Radiomic model
(second-order features)

Neural Networks model sens of
88.9%, spec 75.0%, accuracy

of 83%
Y N Prediction of KRAS status in

CRC
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Table 3. Cont.

Year Author Study N Study
Population Aim Segmentation Radiomic Features Main Results Internal

Validation
External

Validation Conclusion

2020 Dercle R 667
Stage IV

(CRYSTAL trial
(NCT00154102))

Predict tumor
sensitiveness to

FOLFIRI ± cetuximab.
M 4 features radiomics model

AUC 0.80 (95% CI: 0.69–0.94)
sens 0.80, and spec 0.78);

p < 0.001)
Y N

Performance of the signature
outperformed both

KRAS-mutational status at
baseline

2019 Pernicka R 139 + 59 Stage II and III Prediction of (MSI)
status M 40 radiomic features

AUC of 0.80 for the training set
and 0.79 for the test set

(spec = 96.8% and 92.5%,
respectively)

Y N
The combined model

performed slightly better than
the other models

2019 Taguchi R 40 Stage II-IV Prediction of KRAS
status M 14 CT radiomics et SUV max

Multivariate support vector
machine CT radiomics model

AUC of 0.82 superior compared
to the SUVmax.

N N

CT texture analysis was
superior to the SUVmax for

predicting the KRAS mutation
status

2019 Wu R 102 Na Prediction of (MSI)
status M 6 radiomics features

Training set AUC 0.961
(accuracy: 0.875; sens: 1.000;

spec: 0.812); testing set AUC of
0.875 (accuracy: 0.788; sens:

0.909; spec: 0.727)

Y N

Radiomics analysis of
iodine-based material

decomposition predict MSI
status

2019 Fan R 119 Stage II Prediction of (MSI)
status Semiautomatic 6 radiomics features

Radiomic model AUC = 0.688;
accuracy = 0.713; sens = 0.517;

spec = 0.858; clinical model 0.598
AUC value, 0.632accuracy, 0.371
sens, and 0.825 spec; combined

model AUC 0.752
(accuracy = 0.765; sens = 0.663;

spec = 0.842).

N N

Better detection of MSI status
with combined clinical and

radiomics feature model than
clinical/radiomics alone

2019 Badic R 64 All
Prognostic value of
gene expression and

radiomics
M Shape, second and third

order texture features

PFS Cox model combining
Stage 3, ABCC2 and

EntropyGLMC HR 22.8 95% CI 3.7
to 141 p < 0.0001 OS Cox model

with Ratio and ALDH1A HR 8.4
95% CI 3.4 to 20.6 p = 0.0005

N N

Model combining CE-CT
radiomics, gene expression,

histopathological examination
could provide higher

prognostic stratification power

2018 YANG R 61 + 56 All
Predict

KRAS/NRAS/BRAF
mutations

M 3 radiomics features

Testing cohort AUC 0.869, sens
0.757, and spec 0.833; Validation

cohort AUC 0.829, sens 0.686,
spec 0.857

Y N
Prediction of

KRAS/NRAS/BRAF
mutations

2015 Lubner R 77 Stage IV

CT texture features
relate to pathologic
features and clinical

outcomes

M First class radiomics
Skewness was negatively

associated KRAS mutation
(p = 0.02).

N N MPP, SD, correlates overall
survival

Abbreviations: sens: sensitivity; spec: specificity; retrospective (R); manual (M); not available (Na); microsatellite instability (MSI); area under curve (AUC); Kirsten rat sarcoma viral oncogene (KRAS);
NRAS Proto-Oncogene, GTPase (NRAS); B-Raf Proto-Oncogene (BRAF); standard deviation (SD); the mean value of positive pixels (MPP), computed tomography (CT).
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5. Limitations of Radiogenomics Studies

Despite the great potential of radiogenomics analysis in various oncologic applications,
variability in feature extraction and lack of reproducibility are the main limitations of these
studies [66,67]. Standardization of the imaging protocol with regard to dose administration,
consistent acquisition parameters, and the use of reconstruction kernels with lower noise
levels could be utilized in future radiomics studies [92]. In an analysis, of 41 studies
including different imaging modalities and pathologies, Traverso et al. showed that
first-order features were overall more reproducible than the shape metrics and textural
features and entropy was one of the most stable first-order features [93]. Berenguer
et al. found that only 71 of the 177 radiomic features extracted from CT images were
reproducible and retained only 10 radiomic features because of redundant information in
a two phantoms study to identify reproducible and non-redundant radiomic features for
computed tomography [94].

Accurate identification and segmentation are essential for selectively gathering ra-
diomic features from a tumor. Manual and semiautomated segmentation techniques are
time-consuming and have high inter- and intrareader variability due to variability in the
shape, size, poor contrast between adjacent organs and surrounding structures, organ
position, etc., [95]. Utilization of automated segmentation approaches in abdominopelvic
organs, such as detection of features, edges or intensities, clustering methods, strong or
weak shape and/or location priors, thresholding and deformable models, could improve
reproducibility of radiomic studies [96]. Standards for radiomic features are essentials
for comparison of results between studies in the literature. An important initiative to
advance the quality of radiomics research is the development of the publicly available
Image Biomarker Standardization Initiative (IBSI) reference standard and associate rec-
ommendations that provide image biomarker nomenclature and definitions, benchmark
data sets, and associated values enabling researcher to verify image processing and image
biomarker calculations of their own software or implementation; reporting guidelines for
high-throughput image analysis [10]. This can have an impact on radiogenomics studies as
well, at least their radiomic component.

Typically, thousands of quantitative imaging features can be extracted from images of
tumors, in each available modality. Numerous genomics parameters can also be available.
As a result, robust machine learning techniques for training reliable models have become
mandatory. These methods have the ability to learn from data and thus automate and
improve the prediction process, improve the performance of radiomics-based predictive
models [97]. Parmar et al. valuated 14 feature selection methods and 12 classification
methods in terms of their predictive performance and stability in NSCLC patients [98].
The authors emphasize the importance of selecting appropriate machine learning methods
for each tumor type. However, too many features may include redundant and irrelevant
information and cause overfitting. The number of features can be reduced before being
considered as input to machine learning training, for example by performing test–retest
analyses in patients or phantoms (to identify the most reliable/repeatable features) and by
evaluating redundancy through correlation measurements [99].

Identification of the study population is important to avoid selection bias [100]. Vari-
ability exists in CRC incidence, age, race, prognosis, and risk factors [101]. In colorectal
cancer APC, KRAS, BRAF, PIK3CA alterations are more common in older patients, and
MSI-High, TP53, and CTNNB1 mutations are more frequently observed in younger pa-
tients [102]. Histopathologic characteristics of tumors, node status, metastasis, microsatel-
lite status, tumor grade, lymphovascular invasion molecular subtypes, characterization of
the inflammatory infiltrate help stratify patients into different therapeutic and prognostic
subgroups [103]. Microsatellite instability-high colorectal cancers have better overall sur-
vival and are associated with mucinous histology, a Crohn’s-like inflammatory response
and, tumor-infiltrating lymphocytes [104]. Tumor infiltrating lymphocytes in CRC differs
by primary tumor site; high CD81 cell density is associated with favorable prognostic factor



Cancers 2021, 13, 973 14 of 19

for patients with right-sided colon tumors while CD31 cell density is a favorable prognostic
factor for right colon and rectum tumors [105].

Heterogeneity exists in many morphological and physiological features, such as
expression of cell surface receptors, proliferative, and angiogenic potential. Tumors often
display intratumoral heterogeneity, i.e., several subpopulations within one tumor show
differences in morphology, inflammatory infiltrate, mutational status, or gene expression
profile [106]. Intratumor heterogeneity also takes place on a transcriptional level due
to different cancer cells clone, tumor microenvironment, cell cycle, cell differentiation,
and in response to local signaling [107]. Mutational timing, suggested by multiregional
sequencing studies, showed that not only clone selection but also the timing of mutations
contributes to the tumor heterogeneity and the relative clonal compositions of various
regions of a developing tumor [108]. All these factors should be taken into consideration
when building radiogenomics prognostic models, although these factors could end up
being favorably replaced by more efficient radiogenomics. Different studies have already
shown models combining clinical features with lower prognostic value than radiomics
models [109], combined clinical and radiomic features models [89], or radiogenomics
models [86].

Finally, the stability and reproducibility of the prognostic/predictive models should
be assessed before applying them in a clinical setting [110]. Most studies have published re-
sults in relatively small datasets and internal validation may not be sufficient to extrapolate
the performance in external datasets. Such external validation in a large multicenter setting
is thus essential before implementing these prediction models in clinical practice [111].

6. Discussion and Future Directions

The use of radiogenomics for predicting correlations with genetic or transcriptomic
tumor abnormalities in colorectal cancer patients still needs much larger data studies
to fully validate the concept. A limitation of using “big data” in radiogenomics is that
even though a lot of correlations may be derived using carefully controlled experiments,
causality is notoriously difficult to establish [112]. Future research should focus on the
limitations mentioned above, which remain the greatest barriers to adapting these tools for
clinical application.

Multicenter, prospective clinical trials and creation of large and shared imaging/genomics
datasets as a source of data that could be used by research teams around the world to develop
and test new radiogenomics approaches, could be an interesting approach to advance the
quality of radiogenomics studies and facilitate integration in clinical practice. Researchers
should thus be encouraged to feed the existing databases (The Cancer Imaging Archive-TCIA,
The Cancer Genome Atlas-TCGA, response to drug or radiation therapy -RIDER). Publicly
available phantom datasets, intended for radiomics reproducibility tests, could help assess
the influence of acquisition settings in order to eliminate non-robust radiomic features [113].

Relying on the radiomics quality score for assessment of homogeneous evaluation
criteria and reporting guidelines could also contribute to improving the robustness and
generalizability of future radiogenomics studies [112]. Finally, the transparent reporting of
a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) state-
ment provides additional guidance for authors to report when developing or validating
prediction models [114].

Intratumor or intermetastatic heterogeneity seems to affect drug response. The therapy
strategy is decided on the basis of genetic evaluation from a small part of the primary tumor
tissue, which might represent only a minor proportion of the subclones. Multiregion whole-
exome sequencing revealed that metastatic tumors exhibit less intratumor heterogeneity
than the primary tumors and inherit multiple genetically distinct subclones from primary
tumors, supporting a possible polyclonal seeding mechanism for metastasis [115]. The
correlations between these modifications and radiomics should be further evaluated.
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7. Conclusions

In this review, we discussed the current utility of radiogenomics in colorectal cancer
research, and described its potential future applications to clinical oncology. The ability to
study biological phenomena with radiogenomics, added to conventional disease diagnosis
and treatment, is expected to lead to significant advances in precision medicine. Further
research in this rapidly evolving field is necessary in order to integrate radiogenomics in
clinical decision-making.
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