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Abstract

Background: Most plasmids depend on the host replication machinery and possess partitioning
genes. These properties confine plasmids to a limited range of hosts, yielding a close and
presumably stable relationship between plasmid and host. Hence, it is anticipated that due to
amelioration the dinucleotide composition of plasmids is similar to that of the genome of their
hosts. However, plasmids are also thought to play a major role in horizontal gene transfer and thus
are frequently exchanged between hosts, suggesting dinucleotide composition dissimilarity
between plasmid and host genome. We compared the dinucleotide composition of a large
collection of plasmids with that of their host genomes to shed more light on this enigma.

Results: The dinucleotide frequency, coined the genome signature, facilitates the identification of
putative horizontally transferred DNA in complete genome sequences, since it was found to be
typical for a certain genome, and similar between related species. By comparison of the genome
signature of 230 plasmid sequences with that of the genome of each respective host, we found that
in general the genome signature of plasmids is dissimilar from that of their host genome.

Conclusion: Our results show that the genome signature of plasmids does not resemble that of
their host genome. This indicates either absence of amelioration or a less stable relationship
between plasmids and their host. We propose an indiscriminate lifestyle for plasmids preserving
the genome signature discordance between these episomes and host chromosomes.

ments, for example in virulence [2], adaptation [3] and
most well-known in conferring antibiotic resistance [4].

Background
Prokaryotic mobile elements such as plasmids play key
roles in biological research as molecular biological vec-

tors. More importantly, they have contributed substan-
tially to genome evolution throughout biological history
[1]. In addition, various studies have demonstrated the
importance of horizontal transfer of genes via mobile ele-

The genome signature, which is the set of dinucleotide rel-
ative abundance values [5], is one of the parameters avail-
able to identify putative horizontally transferred DNA.
The genome signature is typical for a given bacterial

Page 1 of 8

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16480495
http://www.biomedcentral.com/1471-2164/7/26
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Genomics 2006, 7:26 http://www.biomedcentral.com/1471-2164/7/26

T

s 8

c 99 f

[T} =]

=

U o -

2 . & of plasmid =97.4

59

£

E o Proportion of genomic

o 8 fragments with a lower §* =98%
: /

g 2

o 27

g =

g e

= o e e e
o

L] 50 100 150
8" (x1000) >

0.13

4 < GC% of plasmid=24%

Proportion of genomic fragments
: with a lower GC%= 1%

Relative genomic fragment frequency -
0.10

\

I | I |
25 30 33 a0
GC% =2

Figure |

Comparison of the &* value and the GC content of plasmid Ip5 with the * value and the GC content of the
genome of B. burgdorferi B3 1. The chromosome sequence (here B. burgdorferi B31) is divided in non-overlapping fragments
with a size equal to the length of the input plasmid sequence (the Borrelia plasmid Ip5, NC_000957), after which a frequency
distribution is made for both 6* and the GC percentage scores. The &* value of the input plasmid sequence is plotted vertically
in the fragment distribution, indicating the proportion of genomic fragments with a lower &* value. Consequently, this analysis
can be performed for the GC content. The value of the plasmid GC content plotted in the fragment distribution indicates the
proportion of genomic fragments with a lower GC percentage.
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Figure 2

Distribution of the percentages of genomic fragments with a lower &* or lower GC content than that of the
plasmid. A) 61 plasmids compared to the genome sequence of the same strain. B) 230 plasmids compared with a single corre-

sponding representative genome sequence.

genome and similar between closely related genomes.
These host-specific patterns are thought to result from dif-
ferences in the replication and/or mismatch repair sys-
tems between species [6]. Due to its species-specific
nature, this signature enables easy detection of anoma-
lous genomic regions [7]. Recently, we developed an
application based on the genome signature that allows the
comparison of the genome signature of a sequence as
small as 1 kbp with that of a sequenced genome [8,9].

Most plasmids depend on the host replication machinery
and possess partitioning genes. These properties confine
plasmids to a limited number of hosts, yielding a close
and presumably stable relationship between plasmid and
host. Genome signature compatibility between a plasmid
and its host could indicate a long-term association, for
example via strict vertical transmission, whereas high
genomic dissimilarity scores between the plasmid and the
host could indicate separate evolutionary histories.
Although Wong and co-workers have previously sug-
gested that plasmids are more dissimilar from chromo-

somes than chromosomes from the same strain amongst
each other, the extent of their analysis was limited [10].
We therefore analyzed genome signature dissimilarities of
230 plasmid sequences with representative host chromo-
some sequences.

Results

Sequence length independence genome signature
comparison between a plasmid and the genome of its host
Genome signature dissimilarity scores (6*) are calculated
as described previously [8,11], with * being the average
absolute dinucleotide relative abundance difference (see
methods). For this analysis, the relevant chromosome
sequence, in Fig. 1 that of Borrelia burgdorferi B31, is
divided in non-overlapping fragments of identical length
as the B. burgdorferi B31 plasmid Ip5. The distribution of
the 8* scores between these genomic fragments and the
host genome sequence are visualised in a frequency distri-
bution plot, with the 3* between plasmid and host indi-
cated as a vertical line (Fig. 1). For plasmid Ip5 we find a
high 8* value of 97.4, and from the position of this 5*
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Table I: Intraspecies genome signature comparisons. When more than 2 genome sequence are available for the plasmids from the
database, the lowest and highest * is depicted (6* ;, and ¥ ., respectively).

# of available genome

&*min (x1000) *max (x1000)

# Species
sequences™

| Bacillus anthracis 3
2 Bacillus cereus 3
3 Bacillus licheniformis 2
4 Bacteroides fragilis 2
5 Buchnera aphidicola 3
6 Campylobacter jejuni 2
7 Escherichia coli 4
8 Helicobacter pylori 2
9 Neisseria meningitidis 2
10 Pseudomonas syringae 2
I Salmonella enterica 2
12 Shigella flexneri 2
13 Staphylococcus aureus 6
14 Staphylococcus epidermidis 2
15 Streptococcus agalactiae 2
16 Streptococcus pneumoniae 2
17 Streptococcus pyogenes 5
18 Streptococcus thermophilus 2
19 Thermus thermophilus 2
20 Xylella fastidiosa 2
21 Yersinia pestis 3

0.012006
1.578633

0.06936

4.59874

0.05647

1.859383
59.25254
3.636911
7.086455
7.324047
3.94554

16.17344
1.560395
0.365415
1.613145
2.965408
3.441733
2.326183
2.864896
0.872791
1.734364
6.746043
2.809856

16.95546

0.596158

0.761036

0.448649

0.335064

*) At the time of analysis, June 2005

value in the distribution it is deduced that 98% of the B.
burgdorferi B31 chromosomal fragments have a lower *
value than that of plasmid Ip5 (Fig. 1A). A similar proce-
dure to compare the GC content of plasmid Ip5 to that of
the chromosome indicates that only 1% of the chromo-
somal fragments have a lower GC content than plasmid
Ip5 (Fig. 1). These results indicate a substantial composi-
tional difference between plasmid lp5 and the genome of
B. burgdorferi B31 This approach allows us to compare the
genome signature differences and GC content deviations
between different plasmid/host genomic fragment combi-
nations from entries of the Plasmid Genome Database
[12].

Genome signature comparison between plasmids and the
sequenced genome of their host

Analyses of the 8* values between 61 plasmids and their
corresponding host strains (comprising 30 prokaryotic
species, Supplementary table S1 [see additional file 1])
show that in most instances the 5* between plasmid and
the chromosome is higher than that of the bulk of the
genomic fragments (Fig. 2A). Additionally, most of the
plasmids have a lower GC content than the bulk of the
chromosomal fragments of their respective hosts.
Together these results indicate that the majority of plas-
mids have a DNA composition dissimilar to that of their
corresponding host chromosome.

Genome signature comparisons between plasmids and
genomes of their host and relatives there off

For 21 prokaryotic species, of which plasmids are availa-
ble in the plasmid genome database, different strains of
the same species have been sequenced. The genome
sequences of the strains belonging to the same species are
compared to each other and the absolute 3* between
these related chromosomes are depicted in table 1. In
most cases, 3* values between the chromosome sequences
of related strains within species are low (8*<10), except
for Buchnera aphidicola and Pseudomonas syringae (8*>10).
6* values between 104 plasmids and chromosome
sequences of the same (applicable) host species are com-
parable (supplementary table S2 [see additional file 1]),
again except for B. aphidicola and P. syringae plasmids. This
legitimizes the comparison of the nucleotide composition
of plasmids, of which the host genome has not been
sequenced, with that of a genome sequence of a represent-
ative strain.

Genome signature comparisons between plasmids and
genomes of a representative host

Finally, we compared the genomic dissimilarity between
230 plasmids from the Plasmid Genome Database and a
single applicable representative chromosome each. In the
case that multiple representative host chromosome
sequences are available, a conservative choice was made
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Figure 3

Compositional discordance between plasmids and their host's according to the plasmid size. The proportion of

genomic fragments of the representative host chromosome with a &* value lower than that of the plasmid is plotted as a func-
tion of plasmid size. Note the logarithmic scale on the X axis. Thirty-five plasmids have a 5* value lower than that of 80% (val-
ues range from 29% to 80%) of the identical sized fragments of their host's genome (red symbols), while 42 plasmids have a 6*
value higher than all identical sized fragments of their host's genome (yellow symbols).

(i.e. a representative host with the lowest 5* between the
plasmid and genome sequence). For this analysis we
excluded the different B. aphidicola and P. syringae plas-
mids, as no representative genome sequence can be
selected due to high 8* values between chromosome
sequences of members of the same species. Similar to the
previous analysis, the genome signature of the majority of
the plasmids exceeds that of the preponderance of the
genomic fragments of each representative host chromo-
some, and has a lower GC content than the bulk of the
chromosomal fragments of each representative host (Fig.
2B, supplementary table S3 [see additional file 1]). Also,
we observe an increase in the number of plasmids with a
very high GC content.

Correlation between nucleotide composition discordance
with host genomes and plasmid's size and mobility

Of 230 plasmids, 195 have a 3* value higher than the 6*
value of 80% of identical (to the plasmid) sized fragments
of their host genome (Fig. 3), again indicating discord-
ance in composition between plasmids and their host's
genome. Of 230 plasmids, only 35 (15%) have a 3* value
lower than that of 80% (values range from 29% to 80%)
of the identical sized fragments of their host's genome.

There was no relation with species of the host. Of these 35
plasmids, 18 have a size between 1 kbp and 5 kbp, 16 had
a size between 5 kbp and 10 kbp, while only one was
larger than 10 kbp. Of these 35 plasmids, eight (23%) har-
boured genes encoding putative proteins involved in
mobility, another three (9%) had genes encoding putative
proteins involved in transposition and five (14%) con-
tained information encoding putative proteins involved
in integration [13]. In contrast, of 230 plasmids, 42 have
a 8* value higher than all identical sized fragments of their
host's genome, indicating a high discordance between the
nucleotide composition of these plasmids and that of
their host genomes. The size of only three of these 42 plas-
mids ranged between 1 kbp and 5 kbp and that of only
four between 5 kbp and 10 kbp. The remaining 35 plas-
mids with a high compositional discordance with their
host's genome were larger than 10 kbp. Again, relation
with species of the host was not observed. However, of
these 42 plasmids, 17 (40%) harboured genes encoding
putative proteins involved in mobility or transfer, while
another eight (19%) encoded genes encoding putative
proteins involved in transposition and only five (12%)
contained information encoding putative proteins
involved in integration.
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Discussion

In general, we find high genomic dissimilarity scores
between plasmid sequences and representative host chro-
mosome sequences. In addition, the GC contents of the
plasmids show a bias towards low (and to a lesser extent,
high) GC percentage scores. This lower GC content in
plasmids has previously been noted, and has been
explained in terms of a higher energy cost and limited
availability of G and C over A and T/U [14]. Although
available genome sequences are biased as they originate
predominantly from medically and industrially relevant
strains, it is unlikely that these plasmids form a particular
class. In addition, our results are in accordance with those
obtained by Wong and co-workers [10]. They showed, for
a limited number of plasmids, that chromosomes within
a species share a more similar dinucleotide composition,
or genome signature, than plasmids do with the host
chromosome(s).

Previously, Campell and co-workers compared plasmids
to a collection of large chromosomal fragments of the
host and showed that the genome signatures between
each plasmid and its natural host rank amongst the closest
[15]. Their suggestion that similar genome signatures of
plasmids and host chromosome is required for plasmid
establishment is not supported by the present data [15].
We find that intragenomic compositional comparisons of
plasmids with their host often show higher genomic dis-
similarity values than the genomic dissimilarity between
genomic fragments and their host chromosome. This dif-
ference in interpretation of plasmid &* values may be
results of the, to our opinion more robust, method to
compare these values with that of their host chromosome.
First a distribution of 8* values by comparing disjoint
genomic fragments to the full genomic sequence is made,
providing information about the average and variance of
the &* values that a single species can display in different
regions of its genome. Fragments with extreme &* values
(thus in the right tail of the distribution, Fig. 1) may result
from events such as horizontal transfer or are caused by
other genomic aberrations (e.g. rRNA gene clusters)
[8,11]. Thus, these extreme fragments deviate substan-
tially from the average genome composition and are con-
sidered compositionally dissimilar from the average
chromosome content. Consequently, although the &* val-
ues of most plasmids may fall within the very close cate-
gory defined by Campbell and co-workers, we consider
them as dissimilar, since they behave like the extreme
fragments in the distribution plot. In addition, by com-
paring each plasmid with its host genome fragmented
into pieces with the same size of the plasmid, the effect of
the sensitivity of 8* of small DNA fragments to small
changes in word is circumvented.

http://www.biomedcentral.com/1471-2164/7/26

The genome signature of DNA is thought to have evolved
due to selection exerted by its host's replication, recombi-
nation and repair machineries, resulting in comparable
genome signatures between members of the same species,
but different genome signatures between members of dif-
ferent species [6]. Plasmids seem to be less subjected to
these selective pressures, although they are allegedly con-
fined to a limited number of hosts due to the presence of
partitioning genes and their dependence on the host rep-
lication machinery.

The observed genomic dissimilarity between the three dif-
ferent B. aphidicola genome sequences supports a role for
replication, recombination and repair proteins in deter-
mining the genome signature. As the genome signature
represents evolutionary relatedness between species simi-
larly as other more classical parameters, such as 16S RNA
similarity [16], intraspecific high genomic dissimilarity
scores indicates rapid genome evolution or long-term
host co-speciation (as has been described earlier [17]).
The loss of genes involved in replication, recombination
and the repair machinery in Buchnera genomes [18] might
be responsible for the divergence of their genome signa-
tures. These intracellular endosymbionts might then form
an excellent example to investigate the origin of the
genome signature. Interestingly, we find a Buchnera plas-
mid (plasmid pBBp1, NC_004555) which shows a high
genomic dissimilarity with the genome sequence from the
same strain from which the plasmid was isolated (i.e. B.
aphidicola (Baizongia pistaciae)), and a lower genomic dis-
similarity with both other Buchnera genome sequences.
This supports a history of mobility for this plasmid, in
which it was recently acquired from a different Buchnera
strain, similar to previous observations by Van Ham and
co-workers [19]. Interestingly, high genomic dissimilarity
between members of the same genus (the Mollicutes) has
been observed previously [20,21], which also concerns
bacteria with an intracellular life-style.

We suggest three possible explanations for the reduced
sensitivity of plasmids to the selective pressures generat-
ing their host's genome signature. First, the observed high
genome signature dissimilarity may actually prevent the
integration of plasmids into the host chromosome. Thus,
what is observed for non-integrating plasmids in nature
may be a biased pool of compositionally dissimilar DNA,
as similar plasmids could potentially integrate into their
host's chromosome more readily. Secondly, horizontally
mobile plasmids may occasionally be exposed to the
extracellular environment, where the atypical dinucle-
otide composition may favour resistance to degradation
of the plasmid. Such a mechanism might drive the
genome signature of plasmids towards comparable val-
ues, but the large variety in GC content among plasmids
suggests otherwise. However, we cannot exclude that dif-
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ferent environments select for different genome signa-
tures. Thirdly, horizontal transmission of plasmids may
be far more important than currently thought. This latter
point is supported by the conclusion in a recent review by
Sorensen and co-workers, that the overall extent of the
HGT of plasmids in the environment examined might
have been underestimated [22]. In addition, plasmid
transfer between genera, phyla and even different
domains has been described [22]. Plasmid transfer
between unrelated species may be rare, but followed by a
more rapid distribution among related species, would
result in compositional discordance between many plas-
mids and their host. Our data, showing that a large pro-
portion of the plasmids with high nucleotide discordance
with their host's genome harbour genes encoding proteins
involved in mobility or plasmid transfer, fits with this
notion.

In addition, the plasmids showing relatively low nucle-
otide discordance with their host's genome are smaller
than those showing high nucleotide discordance with
their host's genome (Fig. 3). This could be indicative for a
larger sensitivity of 8* of small DNA fragments to small
changes in word than larger plasmids. However, 50% of
the plasmids with a relatively low compositional discord-
ance with their host's genome are larger than 5 kbp. More-
over, as aforementioned, the 8* value of each plasmid is
compared with a distribution of 8* values of disjoint
genomic fragments compared to the full genomic
sequence, which provides information about the average
and variance of the 8* values that in different regions of
the host's genome. On the other hand, the copy number
of small plasmids is in general higher than that of large
plasmids. This would implicate faster replication of these
smaller plasmids, hence faster amelioration rates.

We suggest that plasmids with high genomic dissimilarity
scores are relatively recently acquired by the host, while
the minority of plasmids with a genome signature similar
to that of the host genome share a longer history with that
host (i.e. a vertical association). The latter, strictly verti-
cally transmitted, plasmids may therefore show a less
atypical dinucleotide composition as a result from co-evo-
lution with the host, but also selection due to extracellular
conditions would be absent.

Conclusion

The high genome signature divergence between plasmids
and their hosts indicates that plasmids are excluded from
the selective pressures that generate the genome signature,
hence form a separate DNA flux within the global micro-
bial metagenome. This suggests a more indiscriminate
lifestyle for plasmids than previously anticipated.

http://www.biomedcentral.com/1471-2164/7/26

Methods

The approach is based on the dinucleotide relative abun-
dance values or genome signature (p* yy). Karlin and
Burge previously stated that each genome has its own
genome signature, which is conserved between related
species [5]. In brief, the dinucleotide relative abundance
values pyy * are defined as the frequency of the dinucle-
otide XY divided by the product of the background fre-
quencies of the individual nucleotides in the combined
sense and reverse complement sequence (p* yy = fyy/(fx *
fy)). 6* is the average absolute dinucleotide relative abun-
dance difference given by 8* (f, g) = 1/16 * X | pxy *(f) -
pxy ¥(g)|, where pyy *(f) denotes the abundance values
calculated for input sequence f and pyy *(g) the abun-
dance values calculated for genome sequence g. This cal-
culation can be performed online at 8p-web [9] and also
presents the amount of genomic fragments with a lower
8* or GC% [8]. All complete genome and plasmid
sequences are retrieved from the NCBI [13] website as of
1 June 2005. To avoid statistically irrelevant computa-
tions, the minimum length of a plasmid sequence should
be 1000 bp, allowing adequate dinucleotide counts per
sequence. The maximum length of a plasmid sequence
should not exceed 2% of that the host genome sequence,
as longer sequences may not allow a genomic frequency
distribution with ample genomic fragments [8,9]. There-
fore plasmids smaller than 1000 bp and those larger than
2% of their host's genome were excluded.
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