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Haploinsufficiency of the insulin-like growth factor (IGF)-1 receptor (IGF1R) gene is a 
rare, probably under-diagnosed, cause of short stature. However, the effects of IGF1R 
haploinsufficiency on glucose metabolism, bone status, and metabolism have rarely 
been investigated. We report the case of a patient referred to our center at the age of 
18 months for short stature, failure to thrive, and Silver–Russell-like phenotype. Genetic 
analysis did not show hypomethylation of the 11p15.5 region or uniparental disomy of 
chromosome 7. Growth hormone (GH) stimulation tests revealed GH deficiency, whereas 
IGF-1 was 248 ng/mL. r-hGH treatment showed only a slight improvement (from −4.4 to 
−3.5 SDS). At 10 years of age, the child was re-evaluated: CGH-array identified a het-
erozygous de novo 4.92 Mb deletion in 15q26.2, including the IGF1R gene. Dual-energy 
X-ray absorptiometry showed a normal bone mineral density z-score, while peripheral 
quantitative computed tomography revealed reduced cortical and increased trabecular 
elements. A phalangeal bone quantitative ultrasonography showed significantly reduced 
amplitude-dependent speed of sound and bone transmission time values. The changes 
in bone architecture, quality, and metabolism in heterozygous IGF1R deletion patients, 
support the hypothesis that IGF-1 can be a key factor in bone modeling and accrual.

Keywords: insulin-like growth factor-I receptor, insulin-like growth factor-I, bone metabolism, quantitative 
ultrasonography, peripheral quantitative computed tomography

INtRoDUCtIoN

Insulin-like growth factor (IGF)-1 (IGF-1) and 2 (IGF-2) are major regulators of cell growth, proli-
feration, and death (1). IGF plays an important role in several tissues through the IGF receptor type 
1 (IGF1R), a heterotetramer (α2β2) with intrinsic tyrosine kinase activity (1).

Insulin-like growth factor-1 is a crucial factor in bone formation and remodeling via its actions 
on both osteoblasts and osteoclasts, and it is involved in the development of peak bone density 
during growth and bone loss in senile osteoporosis (2, 3). Furthermore, IGF-1 regulates glucose 
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metabolism by modulating insulin sensitivity and secretion (4); 
it is also expressed in the central nervous system and is essential 
for brain development (5, 6).

Haploinsufficiency of the gene encoding the IGF1R may be 
a rare and under-diagnosed cause of short stature (7, 8). Both 
heterozygous deletion and point-inactivating mutations of the 
gene can lower IGF1R mRNA and protein expression, with 
partial IGF-1 resistance (7, 8).

Different clinical phenotypes, including microcephaly, mental 
retardation, and facial dysmorphic features, were observed in 
patients with IGF1R deletion, but these phenotypes are uncom-
mon in IGF1R mutations (4, 6–21). Some of the phenotypical 
features described in the patients are likely to be attributable to 
the absence of one copy of the IGF1R gene, but other findings are 
linked to the haploinsufficiency of other genes included in the 
deletion (7, 14, 22). Heterozygous missense and nonsense muta-
tions of IGF1R show similar effects on growth and development. 
However, IGF1R mutations and deletions seem to differ in vitro, 
probably because of a dominant-negative effect of the mutation, 
which could decrease the number of fully functional receptors by 
up to 25%, whereas haploinsufficiency would theoretically lead to 
a 50% reduction (15).

The first IGF1R mutation was described by Abuzzahab et al. 
These authors reported the case of two patients with a history of 
intrauterine growth restriction (IUGR), poor postnatal growth, 
and the biochemical features of IGF-1 resistance (9). One patient 
was a compound heterozygote for point mutations in exon 2 
of the IGF1R gene and the other carried a nonsense mutation 
(Arg59stop) of the same gene (9).

Walenkamp et al. described the case of a girl carrying a termi-
nal 15.q26.2 → qter deletion. She displayed growth retardation, 
microcephaly, short stature, and elevated IGF-1 levels. She was 
treated with growth hormone (GH) with a good growth response 
and her final height was within the normal range (14).

Various aspects of IGF1R defects have been analyzed to date, 
but the effects of IGF1R haploinsufficiency on bone status and 
metabolism have not been reported.

So, in this report, we describe a female patient with a terminal 
deletion of chromosome 15, involving the IGF1R gene, who has 
been treated with r-hGH from the age of 4.5 years with a long-
term follow-up. In this patient, we evaluated glucose metabolism 
and bone metabolism and status using dual-energy X-ray absorp-
tiometry (DXA), peripheral quantitative computed tomography 
(pQCT), and quantitative ultrasonography (QUS).

As per institutional and national guidelines, no ethics approval 
was needed. Written informed consent was obtained from the 
parents before publication of this case report and any accompany-
ing images.

Case RepoRt

The proband was a toddler referred to the Paediatric 
Auxoendocrinology Unit of Meyer Children’s University Hospital 
of Florence for short stature and failure to thrive.

The patient was the first child of healthy, unrelated parents 
and was born after a 36-week gestation, complicated by unex-
plained (IUGR), by cesarean section. No behavioral or dietary 

problems affected the proposita’s mother during pregnancy. The 
Apgar score was 7I-9V. Birth weight was 1,930  g (−1.46 SD), 
length 41.6  cm (−2.07 SD), and head circumference 29.2  cm 
(−2.16 SD).

She was breastfed, but did not catch up after birth, showing 
failure to thrive and suffering gastroesophageal reflux symptoms 
from the first months of life. Her psychomotor development was 
slightly delayed: she sat upright at 7 months, began to walk inde-
pendently at 16 months, and began to use language at 17 months.

At 18 months of age, she was referred to our Hospital; at physi-
cal examination, she showed dysmorphic features suggestive of 
Silver–Russell Syndrome: a triangular face, with a prominent fore-
head and micrognathia, clinodactyly V, inferior limb asymmetry 
(near 1.5 cm), and multiple hyperpigmented lesions on the body. 
Her length was 67 cm (−4.27 SD), weight 6.600 kg (−3.77 SD), 
and head circumference 44.5 cm (−2.00 SD). Her mother’s height 
was 169 cm (1.09 SD) and the height of her father was 176 cm 
(−0.16 SD); consequently, her target height was 166.5 cm (0.67 
SD). Screening blood tests, including celiac, disease serological 
markers, and thyroid function, were normal; basal IGF-1 was in 
the upper normal range (248 µg/L; 97th percentile 250 ng/mL). 
Bone age was delayed: 10 months at 18 months of age. She showed 
a normal female karyotype (46, XX), whereas the methylation 
study of the 11p15.5 region and the evaluation of uniparental 
disomy of chromosome 7 were both negative.

At the age of 4 years and 4 months, she was newly evaluated 
for a persistent and significant growth delay [length was 81.5 cm 
(−5.11 SD), weight 8.860 kg (−6.33 SD), and body mass index 
(BMI) 13.31 (−1.83 SD)].

An endocrine work-up was performed: free-thyroxin [(FT4) 
1.32 ng/dL, n.v. 0.86–2.12 ng/dL], thyroid-stimulating hormone 
[(TSH) 3.03 μUI/dL, n.v. 0.4–4.0 μUI/dL], cortisol (11.34 µg/dL,  
n.v. 5–25  µg/dL), adrenocorticotropic hormone [(ACTH) 
27 ng/L, n.v. 09–52 ng/L], glucose (78 mg/dL, n.v. 55–110 mg/dL),  
and prolactin [(PRL) 127 mUI/ml] were in the normal range. The 
electrolyte, venous blood gas, hemoglobin, total protein, serum 
albumin, coagulation profile, calcium, and phosphorous were also 
normal. The anti-tissue transglutaminase (tTG) test was negative.

Arginine [basal (GH) 1.99, peak 8.92 ng/mL] and clonidine 
(basal GH 0.48, peak 6.92  ng/mL) stimulation tests disclosed 
a GH deficiency; IGF-1 level was 243  µg/L. Bone age was 
significantly delayed: 1  year, 10  months at 4  years, 4  months 
of chronological age. r-hGH treatment was started at a dosage 
of 0.23 mg/kg/week; the auxological follow-up showed a slight 
improvement in the first year of r-hGH treatment (from −5.11 
to −3.5 SD) (Figure 1).

During r-hGH therapy: IGF-I was persistently between the 
90th and 97th percentile for age and sex, with glycemia, FT4, 
TSH, basal glycemia, basal insulin, and glycosylated hemoglobin 
(HbA1c) in normal ranges.

Therefore, in light of the unsatisfactory response to r-hGH 
treatment, a re-evaluation was performed at the age of 10 years 
and 10  months: height was 124.7  cm (−2.82 SDS), weight 
21.900  kg (−2.93 SDS), BMI 14.08 (−2.14 SDS), and pubertal 
evaluation was B1 PH1 AH1. A re-testing of GH secretion 
confirmed low values of GH after arginine (basal GH 1.31, peak 
7.76  ng/mL) and clonidine (basal GH 1.11, peak 7.23  ng/mL)  
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FIGURe 1 | Growth chart of the patient.
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testing; the IGF-I level was 371  µg/L. Bone age was still sig-
nificantly delayed: 7  years, 11  months at 10  years, 10  months 
of chronological age. A new extensive endocrine work-up gave 
normal results. The tTG test was negative. Since the presence 
of HbA1c was in the upper limit of normality, we performed 
an oral glucose tolerance test that disclosed a reduced glucose 
tolerance: fasting glucose was 83 mg/dL, 2-h glucose 181 mg/dL,  
fasting insulin 2.19  μU/mL, peak 54.2  μU/mL 2-h insulin 
54.0  μU/mL. The patient showed low leptin level (0.5  ng/mL, 
n.v. 1.0–12.0 ng/mL). At 11 years old, her intelligence quotient 
(IQ) was 108, even though the performance IQ was 85 and she 
exhibited some behavioral abnormalities.

Genetic analysis
At 10 years and 10 months of age, CGH-array analysis was performed 
using the Agilent Human Genome CGH Microarray Kit 60 K  
(Agilent Technologies, Santa Clara, CA, USA). The CGH-array 
revealed a heterozygous deletion of chromosome 15, compris-
ing 4.942  Mbp of the terminal part of its long arm (15q26.2-
q26.3) involving several genes, such as IGF1R, ADAMTS17  
(A Disintegrin-Like and Metalloproteinase with Thrombospondin 
Type 1 Motif, 17), CERS3 (Ceramide Synthase 3), ALDH1A3 
(Aldehyde Dehydrogenase 1 Family, Member A3), and Chondroitin 
Sulfate Synthase 1 (CHSY1) (Figure 2; Table 1) The deletion was 
not present in the parents.
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taBLe 1 | Genes involved in the 15q26.2-q26.3 deletion of the patient.

Gene possible effects on bone structure and quality

IGF1R Decreased bone quality, impaired cortical density, and increased 
trabecular density

ADAMTS17 BDNA. Homozygous mutation in the ADAMTS17 gene caused 
Weill–Marchesani-like syndrome l

CERS3 BDNA. Homozygous mutation in the CERS3 gene caused a form 
of congenital ichthyosis

ALDH1A3 BDNA. Homozygous mutation in the ALDH1A3 gene caused a 
form of microphthalmia

CHSY1 BDNA. Mice lacking Chsy1 display chondrodysplasia and 
decreased bone density

IGF1R, insulin-like growth factor I receptor; ADAMTS17, a disintegrin-like and 
metalloproteinase with thrombospondin type 1 motif, 17; CERS3, ceramide synthase 3; 
ALDH1A3, aldehyde dehydrogenase 1 family, member A3; CHSY1, chondroitin sulfate 
synthase 1; BDNA, bone data not available.

FIGURe 2 | Molecular karyotyping was performed by array-CGH on the proband’s DNA using an Agilent 60 K array platform with a resolution of approximately 
100 kb. Based on the physical mapping positions of the February 2009 Assembly (GRCh37/hg19) of the UCSC Genome Browser, this analysis showed a deletion of 
approximately 4,942 Mb that involved the 15q26.2-q26.3 region, with the breakpoint falling between 97,457,185 bp (first deleted oligomer) and 102,399,819 bp 
(last deleted oligomer).
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Bone Density and structure evaluation
At the age of 10  years and 11  months, the patient underwent 
an evaluation of bone metabolism, density, and structure. Bone 
mineral density (BMD, g/cm2) was measured by DXA at the 
lumbar spine (L2–L4) (Delphi-A System, Hologic, Inc., Waltham, 

MA, USA) and expressed as z-scores. To estimate the volumetric 
density (bone mineral apparent density or BMAD), we used the 
formula of Kröger et  al. (23). The BMD z-score, corrected for 
height, was 0.67: BMD at the lumbar spine was 0.631 g/cm2 and 
the bone mineral content was 22.27 g.

Furthermore, we performed a pQCT of the left (non-dominant) 
radius at sites 4 and 66% using a Norland-Stratec XCT 3000 scan-
ner (Stratec Medical, Pforzheim, Germany). As for the growth 
retardation of the patient, all bone size-dependent parameters 
(Total, Cortical, and MuscleCSA) were corrected for height (24, 25).  
We disclosed an imbalance between the trabecular and cortical 
bone, with an augmented trabecular component (318.4  mg/cm3, 
z-score 3.8) and a very low cortical density (727.8 mg/cm3, z-score 
−6.9) in relation to the age. The proband showed a normal total den-
sity value (321.3 mg/cm3, z-score 0.7) and a significantly reduced 
bone area for muscle area (31.2 mm2, z-score −4.0) and for height 
(28.9 mm2, z-score −4.1). The SSI polar (62.5 mm3, z-score −2.2) 
was significantly reduced. Fat and muscle components were also 
poorly represented (304 mm2, z-score −1.8; and 1,376 mm2, z-score 
−1.9, respectively) (Figures 3A–H).

Finally, the bone quality status was evaluated with a DBM 
Sonic 1200 device (IGEA Bone Profiler, Carpi, Italy) (24).  
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FIGURe 3 | Cross-sectional evaluation of trabecular bone mineral density (TrabBMD) (a), cortical bone mineral density (CrtBMD) (B), total density corrected for age 
(C), bone area corrected for height (D), muscle cross-sectional area (MuscleCSA) corrected for height (e), bone area corrected for MuscleCSA (F), fat cross-sectional 
area (FatCSA) corrected for height (G), and density-weighted polar section modulus (SSIp) (h). The gray squares in the panels (a,B,C,h) represent the bone 
age-adjusted values.
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The evaluation showed a very low amplitude-dependent speed of 
sound (AD-SoS, 1,791 m/s; z-score −3.85) and bone transmission 
time (BTT, 0.78 µs; z-score −2.18) values. Since bone size could 
also influence QUS parameters (26), we created a height-adjusted 
z-score for AD-SoS.

The study of the bone metabolism showed a low 25(OH) 
vitamin D [25(OH)D] level (14.3 ng/mL, n.v. >20 ng/mL) and 
a moderately high parathyroid hormone level (51  pg/mL; n.v. 
<43 pg/mL). Total protein, serum albumin, calcium, and phos-
phorous levels were normal; however, osteocalcin (34.3 mg/ml; 
n.v. 55–135  mg/ml), bone alkaline phosphatase (30  IU/L; n.v. 
39.4–346.1 IU/L), and urinary deoxypyridinoline concentrations 
(23.45  nM/mM creatinine; n.v. 30.3–54.7  nM/mM creatinine) 
were lower than reference values for sex and age.

DIsCUssIoN

We reported the case of a heterozygous, de novo 15q26.2-26.3 
deletion involving the IGF1R gene. As in other previous reported 
cases of IGF1R deletion, our patient had a history of unex-
plained IUGR and severe short stature without catch-up growth  
(8, 10–14).

A recent study found that IGF1R haploinsufficiency was pre-
sent in 2 out of 100 short small for gestational age (SGA) children 
with persistent short stature who benefited from GH therapy 
with moderate catch-up growth. The authors suggest that IUGR, 
microcephaly, micrognathia, relatively high IGF-1 levels, and 
developmental delays are the main predictors of IGF1R deletion 
(15). Our patient, treated with GH linear growth showed only 
a slight improvement, although she still remained persistently 
below her target height (Figure  1). Treatment response seems 
to be variable across patients, but all cases reported in the lit-
erature benefited from therapy, through the increase of GH and 
IGF-1 levels and most likely overcoming IGF-1 partial resistance  
(14, 15, 27).

Furthermore, our study provides very interesting data about 
bone structure and metabolism in IGF1R deletion patients, 
assessed by using three different approaches and sites scanned: 
DXA in lumbar spine, typically rich in trabecular bone (28); pQCT 
at radius, distinguishing cortical and trabecular components, as 
well as fat and muscle areas (24); quantitative ultrasonography at 
non-dominant hand phalanges, providing information not only 
on the density but also on structure and mechanical properties of 
the segment in question, whose composition is similar to femoral 
one (24, 29).

The data obtained in this IGF1R haploinsufficient patient seem 
to suggest an impaired cortical bone density (low z-scores at 
pQCT) and an increased trabecular component, despite normal 
BMD evaluated by DXA. As we described in a previous work (29), 
in fact, pQCT allows us to differentiate trabecular and cortical 
components, unlike the projective methods, such as DXA. The 
impaired bone quality of cortical component, well represented 
in phalanges, also resulted in the low z-score values related to 
density and stiffness measured at QUS. Moreover, pQCT has the 
advantage of measuring the real density of bone in a given volume 
without the superposition of other tissues, reducing the effect of 
auxological parameters, such as height and BMI. Therefore, the 

apparently normal outcome of lumbar DXA z-score is probably 
due to the prevalence of trabecular bone in vertebral site, compo-
nent that may be less affected in IGF-1 disorders. The impairment 
of cortical compartment is instead shown by radial pQCT, which 
assess it separately from trabecular one, and by QUS, which evalu-
ate a site where cortical bone is well represented, i.e., phalanges.

Several studies have demonstrated that humans lacking a  
functional IGF-1 gene suffer from severe osteopenia (30); 
however, mice that are deficient in liver-derived IGF-1 (LID), 
acid labile subunit (ALS) knockout mice (KO), and double gene 
disruption LID + ALSKO mice have a reduced femoral periosteal 
circumference, a smaller cross-sectional area, and a thinner 
cortical bone, when compared to control mice (31), which may 
be partially explained by the dramatic growth retardation in 
IGF-1-deficient mice (32). However, altered parameters were 
observed in both the trabecular and cortical compartments of 
IGF-I-null mice femurs, compared to wild-type mice (32). In rats, 
combined rhGH and rhIGF-1 treatment appeared to stimulate 
cortical bone mass, as evaluated by pQCT, more than rhGH alone 
does (33). Nevertheless, another study conducted in young adult 
mice with an IGF-I gene deletion showed significant alterations in 
bone mass and bone structure in both the cortical and trabecular 
compartments (32). Previous studies in IGF-I-deficient mice 
of a different background showed a decrease in cortical bone 
formation but an increase of several trabecular parameters in 
the tibia (34, 35). These data indicate that circulating IGF-1 is 
critical for bone modeling, quality, and structure, and it has been 
hypothesized that bone regional differences in response to IGF-I 
deficiency might be a consequence of the dual effect of IGF-1 on 
both osteoblastogenesis and osteoclastogenesis (36).

Circulating IGF-1 exerts its anabolic effects on the periosteal 
surface. Studies have shown that circulating IGF-1 stimulates 
periosteal bone growth along the cortex (37), whereas reduced 
serum levels of IGF-1 in mice lacking liver-specific IGF-1 were 
associated with impaired periosteal apposition, leading to 
the development of slender bones during growth (38). When 
subjected to a loading regimen, periosteal bone formation was 
substantially elevated in the IGF-1-overexpressing mice but not 
in wild-type littermates (39), suggesting that circulating IGF-1 
enhances bone responses to mechanical loading.

We can observe that the haploinsufficiency of IGF1R may cause 
an imbalance of bone quality, structure, and modeling, probably 
leading to inferior mechanical properties and an increased risk of 
fracture, as showed by the SSIp value.

However, although IGF-1 undoubtedly affects GH action, it is 
now clear that: GH can have direct effects on multiple tissues; IGF-1 
has endocrine, paracrine, and autocrine effects that are, in part, 
GH-independent; and GH and IGF-1 are likely to have overlap-
ping, counteractive, and/or collaborative effects (40). However, we 
cannot know the effects of the performed r-hGH treatment on the 
bone quality and structure of our patient. More data are necessary 
to better understand this aspect in patients with IGF1R deletion.

Using current knowledge, it is likely that the only other gene 
involved in this patient’s deletion that could have affected the 
patient’s bone is CHSY1. Mice lacking Chsy1 for homozygous 
mutations display chondrodysplasia and decreased bone density, 
but no such data are available for humans.
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Furthermore, IGF-1 also exerts an anabolic action on mus-
cle, increasing the protein synthesis and decreasing the protein 
breakdown (41, 42). In fact, IGF-1 elicits skeletal muscle cell 
proliferation and myocytes differentiation (42). These data 
may explain the poorly represented muscle component in our 
patient.

Finally, another interesting aspect is the role of the IGF-
system on glucose metabolism and the possible effects of IGF1R 
haploinsuficiency on carbohydrate homeostasis, as shown by our 
case report. The IGF1R gene has sequence homology with the 
insulin receptor gene; both are transmembrane tyrosine kinase 
receptors. IGF-I also has structural homology with pro-insulin 
and has insulin-like metabolic effects, while GH has some effects 
that are antagonistic to those of insulin (43). IGF-1 is important 
in maintaining beta-cell mass by stimulating their proliferation 
and can enhance peripheral insulin sensitivity (44). Mohn et al. 
studied four members of a family carrying a novel nonsense muta-
tion of the IGF1R gene. The defect was associated with a variable 
impairment of prenatal and postnatal growth. The authors also 
reported alterations in carbohydrate metabolism, ranging from 
normal glucose tolerance in the presence of insulin resistance to 

IGT and fasting hyperglycemia in association with both insulin 
resistance and impaired beta-cell function (4).

In conclusions, our study showed the presence of changes in 
bone architecture, quality, and metabolism in a heterozygous 
IGF1R deletion patient. The changes in bone metabolism due to 
the lack of action of IGF-1, a key in bone modeling and accrual, as 
occurring in a heterozygous IGF1R deletion patient, can be well 
evaluated through three different techniques (DXA, p-QCT, and 
QUS) assessing its effects on bone density and quality.
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