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interactions include the much stronger effect of sunlight exposure on 
skin cancer risk in fair-skinned humans compared to dark-skinned 
individuals. Other well-described examples where gene-environment 
interactions affect the susceptibility to common human diseases include 
diabetes13 and cancer.14

Gene-environment interactions can be exploited to improve 
human health. A  well-known example of this relates to a rare 
autosomal recessive mutation in the gene encoding the hepatic 
enzyme phenylalanine hydroxylase, which leads to the metabolic 
disease phenylketonuria. Under normal dietary conditions, carriers of 
the phenylketonuria mutation suffer severe impairment in cognitive 
development, but a phenylalanine-deficient diet substantially improves 
their prognosis. Another example is illustrated by the influence of 
smoking and alcohol intake on the impact of polymorphisms in the 
genes encoding apoE and alcohol dehydrogenase, respectively, on 
coronary heart disease (reviewed by Talmud15).

Identifying and validating gene-environment interactions will 
further increase our understanding of how specific environmental 
exposures cause disease by pinpointing genes through which the 
environmental effects are conveyed. Since mechanisms through which 
most endocrine disrupting chemicals (EDCs) affect reproductive health 
are largely unknown, it is of interest to investigate whether adverse 
environmental effects on reproductive health are modified by genetic 
predisposition. Among all EDCs, the mechanism through which dioxins 

INTRODUCTION
In 1992, a meta-analysis indicated falling sperm counts in otherwise 
normal men over a 50-year period.1 At the same time, the incidence 
of testicular cancer had risen dramatically in some western countries.2 
There are also reports on increasing frequency of genital malformations 
such as cryptorchidism and hypospadias in newborn boys.3

Since these trends have emerged over a relatively short time 
span, they have been proposed to be caused by exposure to 
environmental antiandrogens or lifestyle factors with adverse effects 
on the male reproductive system. In support of this, epidemiological 
studies on testicular cancer have shown that first generation Nordic 
immigrants to Sweden had a prevalence of testicular cancer similar 
to the one found in their country of origin, whereas their offspring, 
who were born and raised in Sweden, had a frequency of testicular 
cancer similar to the prevalence found in Swedish men.4 Ethnic 
differences in the incidence of reproductive disorders, such as 
cryptorchidism,5 hypospadias,6 testicular cancer7,8 and prostate 
cancer,9,10 illustrate that genetic components that contribute to the 
susceptibility are also operating. This is also observed in animal 
models, where certain rodent strains differ in their response to 
xenobiotics.11,12

It is increasingly recognized that the etiology of most common 
diseases involves not only discrete genetic and environmental factors, 
but also interactions between the two. Obvious gene-environment 
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and dioxin-like chemicals exert their biological and toxicological effects 
has been characterized best. Moreover, several crosstalk mechanisms 
between dioxin-induced signaling pathways and reproductive signaling 
pathways have been described. Therefore, this review aims to examine 
whether genetic variation in genes involved in dioxin-induced signaling 
contribute to an individual’s susceptibility to the adverse effects of 
dioxins and dioxin-like EDCs on male reproductive health.

AROMATIC HYDROCARBONS
EDCs form a highly heterogeneous group of compounds, of which 
aromatic hydrocarbons, also known as arenes or aryl hydrocarbons, 
are among the most significant groups of persistent EDCs. Aromatic 
hydrocarbons can be monocyclic, e.g. benzene, furan and pyridine, or 
polycyclic, also called polyaromatic hydrocarbons (PAHs), with two 
to seven fused benzene rings, e.g. naphthalene and benzo[a]pyrene. 
Halogenated PAHs like 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) 
and dioxin-like compounds such as some polychlorinated biphenyls 
(PCBs) are released from household sources as well as from industrial 
and natural emissions. Some of them, such as benzo[a]pyrene, also 
occur as by-products of cigarette smoking.

The aryl hydrocarbon receptor
Both PAHs and halogenated PAHs exert their biological and toxic 
effects through activation of the aryl hydrocarbon receptor (AHR), 
also known as the dioxin receptor. Although the human AHR 
was discovered almost 4 decades ago,16 its physiological role and 
endogenous ligand initially remained unknown and it was therefore 
designated as an orphan receptor. Several candidate activators have 
since been presented, including the heme metabolites indirubin and 
bilirubin,17,18 the arachidonic acid metabolite lipoxin 4A19 and most 
recently the tryptophan metabolite kynurenine.20,21

The AHR is evolutionary well-conserved and ubiquitously expressed 
in mammalian tissues.22 AHR knockout mice are characterized by 
liver fibrosis23 as well as hampered embryonic development of a wide 
range of organs,24,25 reduced xenobiotic metabolism, immune system 
defects26–28 and regulation of hematopoiesis.29 These animal studies 
also revealed that the AHR is essential in the reproductive system, for 
example for testosterone synthesis and sperm production30 as well as 
for normal prostate and seminal vesicle development.31 Knocking out 
the AHR gene in a prostate cancer mouse model (TRAMP) inhibited 
prostatic carcinogenesis, while treating TRAMP mice with an AHR 
modulator inhibited metastasis.32

Mice with constitutively active AHR on the other hand, had a 
reduced life span and spontaneously developed liver 33 and stomach 
tumors.34 In three independent founder lines of the mice, heterozygous 
mice showed less severe stomach tumors than homozygous mice, 
indicating a gene-dosage effect. Furthermore, the severity of the gastric 
tumors increased with age, and males were affected more severely 
and died earlier than females further illustrating a sex difference in 
susceptibility to dioxin.

Molecular function of the AHR
The AHR is a ligand-activated transcription factor that belongs 
to a family of signal transduction proteins that contain a basic 
helix-loop-helix motif,35 which is a conserved region in many 
transcription factors, and in addition a Per/AHR nuclear 
translocator  (ARNT)/Sim  (PAS) domain. Based on sequence 
similarity, these basic helix-loop-helix/PAS proteins can be divided 
into two phylogenetic groups; the ARNT group containing: ARNT, 
ARNT2, ARNT3 and Per, and the AHR group containing: AHR, Sim 
and hypoxia-inducible factor 1a.36–40

The unliganded AHR resides in the cytosol associated with HSP90 
and AHR-interacting protein (AIP), also known as hepatitis B virus 
X-associated protein (XAP2) or AHR activator 9 (ARA9). Upon ligand 
binding at the PAS domain, the receptor undergoes a conformational 
change and migrates to the nucleus, where it heterodimerizes with 
the ARNT protein41 and the complex subsequently interacts with 
consensus dioxin or xenobiotic responsive elements in enhancers/
promoters of specific target genes including the genes for the enzymes 
CYP1A1 (cytochrome P450, subfamily I, polypeptide 1, also known as 
aryl hydrocarbon hydroxylase) and CYP1B1,42 resulting in the activation 
of several metabolic and detoxification pathways (Figure 1). Whereas 
the AHR-mediated transcription is modulated by nuclear coactivators 
and corepressors, AHR signaling is abrogated through a negative 
feedback mechanism, in which the AHR/ARNT heterodimer stimulates 
the expression of AHR repressor (AHRR) that competes with ARNT 
for binding to AHR.43 Alternatively, AHR may undergo nuclear export, 
ubiquitination and subsequent degradation by the 26S proteasome.44

EFFECTS OF DIOXIN EXPOSURE ON MALE REPRODUCTIVE 
HEALTH
Data on the effects of exposure to dioxins and dioxin-like compounds 
on male reproductive health have mainly been obtained from a few 
large-scale accidental human exposures including the one in Seveso, 
Italy, in a herbicide production plant in 1976,45 contaminated rice 
oil consumption in Japan (Yusho incident) in 196846 and in Taiwan 
region (Yucheng incident) in 197947 as well as US Air Force veterans 
who handled Agent Orange, a mixture of herbicides contaminated with 
TCDD, that was sprayed during operation Ranch Hand in Vietnam 
between 1962 and 1972.48

Boys that were exposed to TCDD in Seveso during infancy or 
puberty exhibited permanently reduced estradiol and increased 
follicle-stimulating hormone  (FSH) levels,49 whereas boys born to 

Figure 1: Schematic representation of ligand‑activated AHR signaling. In the 
unliganded form, AHR resides in the cytoplasm as a complex with several 
chaperone proteins including heat shock protein 90 (HSP90). Ligand binding 
induces a conformational change in the AHR, revealing a nuclear localization 
signal that targets the AHR for nuclear translocation. In the nucleus, the AHR 
dimerizes with ARNT and interacts with the xenobiotic response element (XRE) 
in regulatory regions of specific target genes including AHRR and CYP1A1. 
In turn, AHRR acts as a repressor by competing for the dimerization with 
ARNT or directly at the XRE. AHR: aryl hydrocarbon receptor; AHRR: AHR 
repressor; ARNT, AHR nuclear translocator
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Yucheng mothers showed decreased serum testosterone and increased 
serum estradiol and FSH at the age of puberty.50 An inverse relationship 
between dioxins and testosterone was also observed in Ranch Hand 
veterans51 and in men from the general population in Belgium.52 Results 
from the latter study further suggested that decreased testosterone 
levels may interfere with the secretory function of the prostate and 
seminal vesicles without affecting spermatogenesis. Exposure data 
from general populations are sparse, but in a study on Greenlandic 
Inuit and three European populations, inconsistent relationships were 
seen with gonadotropin, sex hormone binding globulin, estradiol and 
testosterone levels, where positive associations of PCB 153 were seen 
with sex hormone binding globulin and luteinizing hormone in some 
but not all groups.53

Widespread expression of AHR in the human testis may explain 
why dioxins and dioxin-like chemicals interfere with spermatogenesis 
and male fertility.54 Studies on reproductive function in sons of the 
exposed mothers from Seveso have shown that in utero and lactational 
exposure to relatively low dioxin doses can permanently reduce sperm 
quality, manifested as reductions in sperm concentration, total count, 
progressive motility and total motile count.45 Increased abnormal sperm 
morphology and decreased motility were also observed in a small 
cohort of young men born to Yucheng victims compared to controls, 
whereas semen volume and sperm count were not affected.55 Negative 
correlations between dioxin-like compounds and sperm quality have 
been supported by several relatively small studies,56–58 although a larger 
study that included 798 European men that were exposed to much 
lower levels did not confirm these associations.53 A recent study on 135 
men from Seveso, who were exposed to TCDD during infancy, showed 
reduced sperm concentration and motility, whereas it had the opposite 
effect in men exposed during puberty and no effect in an older group 
with a mean age at exposure of 21.5 years.49 This indicates that exposure 
during the fetal or early life period is the most sensitive window of 
exposure. Indeed, studies on Agent Orange veterans, who were exposed 
during adult life, have also not shown associations between serum 
TCDD concentrations and sperm parameters.59 Reduced androgen 
levels during the period when Sertoli cells are most dependent on 
androgens could explain the permanently decreased sperm counts in 
adults who were exposed to TCDD before puberty.

The proportions of male births has slightly, but significantly, 
decreased in industrialized countries.60,61 Additionally, sharper 
changes in sex ratios have been observed in regions with demonstrated 
exposure to EDCs. For example, lower proportions of male offspring 
have been observed after paternal exposure to dioxin-like compounds 
in Seveso62 and Japan63 as well as in Russian pesticide producers.64 In 
the Yucheng cohort, birth sex ratio was not affected according to one 
study,65 whereas in another study exposed men had a lower proportion 
of male offspring than unexposed men when exposed before 20 years 
of age.66 Birth sex ratio was also not affected in US veterans who were 
exposed during adulthood.67

Interestingly, Taylor et al.68 reported that the proportion of male 
births was increased in women with higher estrogenic PCB levels, 
whereas it was decreased in women with higher levels of antiestrogenic 
PCBs.

In short, from these studies it is apparent that although exposure 
to dioxins or dioxin-like compounds may have a suppressive effect 
on testosterone levels throughout life, it only seems to affect male 
reproduction when exposed during reproductive development, 
i.e.,  either in utero or in the period up to puberty. Interestingly, 
increased PCB concentrations have been shown in mothers of men 
with testicular cancer but not in the men themselves.69

Crosstalk mechanisms between aryl hydrocarbon receptor and AR 
signaling pathways
Dioxins and dioxin-like compounds exert their biological and 
toxicological effects by activation of the AHR signaling pathway. 
The importance of the AHR signaling pathway in dioxin toxicity 
was independently demonstrated by three groups who developed 
Ahr-null mice that were highly resistant to diverse manifestations of 
dioxin toxicity.70–72 Similarly, mice that express low levels of ARNT 
from an engineered hypomorphic Arnt allele are highly resistant to 
hepatic toxicity of TCDD.73 But actions of the direct target genes of 
AHR alone do not fully explain its toxicological and physiological 
effects and it has become clear that AHR exhibits additional regulatory 
functions by modulating the activity of other signaling pathways. 
Proposed crosstalk occurs via mechanisms including competition for 
cofactors, protein-protein interaction, competition for DNA binding 
and proteasomal degradation. Crosstalk with the AHR signaling 
pathway has been demonstrated for estrogen receptor (ER) a,74 
ER β75, hypoxia-inducible factor 1a,76 thyroid hormone receptor/
retinoblastoma-interacting protein 230,77 nuclear factor erythroid 
2-related factor 2,78 specificity protein 179 and nulcear factor-kB.80

AHR signaling may interfere with the male reproductive system 
through several mechanisms, for example by directly affecting steroid 
hormone levels via induction of CYP1A1 and CYP1B1, which are 
representative phase I drug metabolizing enzymes that catalyze the 
conversion of steroid hormones.81

Activation of AHR may also alter the transcriptional 
activity of steroid hormone receptors. TCDD has been shown 
to inhibit testosterone-dependent transcriptional activity and 
testosterone-regulated prostate specific antigen expression82 and to 
block androgen-dependent proliferation of prostate cancer cells.83 
These in vitro findings are supported by a prospective cohort study 
of Vietnam veterans where an inverse relationship between TCDD 
body burden and risk of benign prostate hyperplasia was observed.51

The AHR has been shown to directly bind to a large number of 
coactivators and other nuclear proteins, including p300, cyclic AMP 
response element-binding (CREB)-binding protein, steroid receptor 
coactivators 1/2 and receptor-interacting protein 140.84,85 Many of these 
also interact with other nuclear receptors such as ER and the androgen 
receptor (AR), and as a result AHR and AR may compete with each 
other to recruit shared cofactors such as steroid receptor coactivators 1 
and p300.86,87 Similar mechanisms have indeed been shown to account 
for the interaction between AHR and ER.88,89 It has been suggested that 
competition for the shared coactivator nuclear receptor coactivator 
4, also known as AR associated protein 70, provides the basis for 
the bilateral transcriptional interference and that AHR modulation 
of AR activity is differentially altered by the level of four and a half 
LIM domain 2 protein and the amount of AHR present in the cell.90 
Furthermore, PAHs have been shown to stimulate c-jun and c-fos 
expression in prostate cancer LNCaP cells.91 Since activator protein-1, 
a heterodimer of c-jun and c-fos, is known to inhibit binding of AR to 
androgen responsive elements by protein-protein interaction with AR, 
this suggests the involvement of AHR-induced activator protein-1 in 
the antiandrogenic effects of PAHs. Recently, Bjork and Giwercman 
reported that the suppressive effect of TCDD on AR activity depends 
on the polymorphic glutamine repeat in the transactivating domain 
of AR,92 lending further support that crosstalk between AR and AHR 
signaling is mediated at the level of cofactor binding.

Conversely, testosterone has been reported to repress TCDD-induced 
transcription of AHR-regulated CYP1A1 gene and CYP1A1 enzymatic 
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activity in LNCaP cells.82,93 Furthermore, 5a-dihydrotestosterone was 
shown to suppress transcription of AHR-regulated genes by facilitating 
complex formation between AR and AHR, which results in reduced 
transcriptional activity.94

Crosstalk between AHR and AR signaling pathways could also 
occur by direct competition for DNA binding sites in the promoter 
of androgen-responsive genes, as has been shown for ER-regulated 
genes.95 TCDD treatment blocked ER binding to estrogen responsive 
elements and, conversely, estradiol blocked TCDD mediated CYP1A1 
enzymatic activity by decreasing AHR binding to dioxin responsive 
elements in breast cancer cells.

Finally, AR signaling can be abrogated by the ability of the AHR to 
assemble an ubiquitin ligase complex, which subsequently promotes 
proteasomal degradation of the AR protein.96,97

Genetic polymorphisms
Polymorphisms in the AHR gene, enzymes that are transcriptionally 
regulated by AHR, or other genes involved in the AHR signaling 
pathway, may not only cause variations in the individual susceptibility 
to dioxin-like compounds, but may also affect the cross talk between 
AHR signaling and other signaling pathways as described above. As 
such, these polymorphisms may determine to what extent dioxins 
and dioxin-like compounds disrupt for example androgen signaling. 
Details of the polymorphisms discussed in this paper are provided 
in Table 1.

Genetic variations in the rodent AHR have been shown to 
dramatically alter ligand binding and transactivation by the receptor. 
For example, a single nucleotide change at codon 375 in the ligand 
binding domain of the murine AHR reduces the binding affinity 
for TCDD approximately 10-fold in the resistant DBA/2 strain as 
compared to the sensitive C57BL/6J strain.11,98 Correspondingly, 
the latter shows higher CYP1A1 induction and a greater sensitivity 
to TCDD.99 Due to a deletion in the transactivation domain of the 
rat AHR, the Han/Wistar rat strain is a 1000-fold more resistant 
to TCDD than the sensitive Long-Evans rat strain.12,100 The most 
dioxin-sensitive species is the Guinea pig, while the hamster, which 
has a modified transactivation domain similar to the resistant Han/
Wistar rat, tolerates a 1000-fold higher dose.101,102 Interestingly, 
although humans are considered to be relatively insensitive to 
dioxins, the human AHR is highly homologous to the guinea pig 
AHR.103 Besides important implications for testing of pollutants in 

animal models, these inter- and intraspecies differences indicate 
that genetic polymorphisms in the AHR structure can have 
profound effects on the individual sensitivity to polycyclic and 
halogenated aromatic hydrocarbons.

In humans, genetic polymorphisms have been identified in the 
coding regions of the genes encoding AHR, ARNT and AHRR. 
The first identified and most widely studied single-nucleotide 
polymorphism (SNP) in the human AHR gene is a G > A substitution 
in exon 10, which causes an arginine to lysine change at codon 
554 (Arg554Lys) in the transactivating domain of the receptor.104 Its 
functional significance is currently unclear as both upregulation105 as 
well as loss106 of transactivational activity have been reported for the 
lysine variant. Conflicting associations of this SNP with human cancer 
risk exist, but in a recent systematic meta-analysis Luo et al.107 concluded 
that this SNP does not contribute to the development of cancer.

The Arg554Lys SNP is in linkage disequilibrium with two other 
non-synonymous SNPs in exon 10 (Pro517Ser and Val570Ile), which 
are very rare except in African ancestry.105,106,108 Combinations of 
Lys554/Ile570 or Lys554/Ile570/Ser517 variant alleles are unable to 
drive the CYP1A1 gene expression in vitro.106 This could be beneficial to 
individuals who are carriers of these nonresponsive genotypes and who 
are exposed to AHR inducing chemicals. This is supported by the nearly 
total resistance to tumor formation in benzo[a]pyrene-exposed AHR 
knockout mice, also displaying loss of the ability to induce CYP1A1.109 
A recent study confirmed that lower AHR, ARNT and CYP1B1 mRNA 
expression was associated with the homozygous variant Lys554 genotype 
of the AHR,110 but it remains to be seen whether humans who carry 
the variant codons at 570 and 517 will have a lower cancer risk as well.

Four additional human AHR variants  (Lys17Thr, Lys401Arg, 
Asn487Asp and Ile514Thr) have been described.111 Reduced transcriptional 
activity was reported in the Lys401Arg and Asn487Asp variants, but so 
far the phenotypic consequences of these variants remain unknown.

The AHRR gene harbors a missense mutation leading to a Pro185Ala 
amino acid change in exon 6.112,113 Although the functional properties 
of this variant are unclear, it has been linked with endometriosis in 
women114 and infertility in men,115–117 possibly through a reduced 
negative feedback on dioxin-induced AHR signaling.118 Since this SNP 
influences CYP1A2 activation in vivo, with carriers of the Ala-genotype 
being the most inducible,119 the 185Ala is suggested to have a lower 
repressor activity towards the AHR. Recently, in a candidate association 

Table 1: Details of polymorphisms discussed in the text according to dbSNP build 137

rsID Gene Chromosome Location Chromosomal position Nucleotide change Amino acid change MAFa

NA AHR 7 Exon 10 17338938 50A>C Lys17Thr NA

rs2158041 AHR 7 Intron 17368420 450+948T>C T=0.192

NA AHR 7 Exon 10 17378651 1202A>G Lys401Arg NA

rs75519181 AHR 7 Exon 10 17378908 1459A>G Asn487Asp G=0.003

NA AHR 7 Exon 10 17378990 1541T>C Ile514Thr NA

rs72552768 AHR 7 Exon 10 17378998 1549C>T Pro517Ser T=0.001

rs2066853 AHR 7 Exon 10 17379110 1661G>A Arg554Lys A=0.274

rs4986826 AHR 7 Exon 10 17379157 1708G>A Val570Ile A=0.022

rs2292596 AHRR 5 Exon 6 422955 565C>G Pro185Ala G=0.308

rs10305741 ARNT 1 Exon 16 150789864 1551T>G Asp517Glu C=0.009

rs1805133 ARNT 1 Exon 16 150789884 1486G>A Asp511Asn T=0.003

rs2228099 ARNT 1 Exon 7 150808889 522G>C Val189= G=0.428

rs2278705 ARNT2 15 near 5’‑UTR 80694630 C>T T=0.077

rs5000770 ARNT2 15 intron 80716483 31+19595G>A A=0.322

AHR: aryl hydrocarbon receptor; AHRR: AHR repressor; ARNT: AHR nuclear translocator; NA: not available; UTR: untranslated region; aMAF: minor allele frequency according to 1000 
genome phase 1 genotype data from 1094 worldwide individuals, released in the May 2011 dataset
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study on testicular cancer in a combined Swedish and Danish cohort, 
it was shown that the risk of disseminated TGCC was associated with 
four different SNPs that tag two haplotypes in the AHRR, whereas no 
association was found with SNPs in the AHR.120

In the ARNT gene (also known as ARNT1 and HIF1β), a silent 
mutation at codon 189 in exon 7 has been identified.121 The functional 
significance of this SNP is unknown; in smokers it did not affect 
CYP1A1 activity.122 Two other variants, Asp511Asn and Asp517Glu, 
have also been identified in the ARNT gene, but since both are located 
in exon 16, which does not contain a known functional domain, 
the significance of these SNPs has not been determined to date. 
Taken together, known variations in ARNT do probably not explain 
susceptibility to dioxins.123

In ARNT2 on the other hand, which is a close structural homologue 
of ARNT38 and expressed in parallel with ARNT in many tissues,124 a 
significant association was observed between two SNPs (rs2278705 and 
rs5000770) and having either cryptorchidism, hypospadias or both in 
Japanese boys, whereas, rs5000770 was linked to at least one genital 
malformation in Italian men.125 Studies in populations that have been 
exposed to significant dioxin levels may be needed to further confirm the 
possible role of ARNT or ANRT2 variants in male genital development.

One could argue that the human AHR is not likely to be 
polymorphic with respect to susceptibility for two reasons: (i) the 
human AHR already harbors the mutation that in the DBA/2-mouse 
reduces its affinity or CYP1A1 inducibility, which may not be 
overcome by additional mutations and (ii) the critical importance of 
the AHR during development may not allow additional deleterious 
mutations in this gene.126 However, a recent genetic association study 
in a Chinese cohort of 580 idiopathic infertile men and 580 fertile 
controls observed that men homozygous for the AHR rs2158041 AA 
genotype had lower sperm counts than carriers of the GG genotype.127 
Interestingly, the same polymorphism also associated with risk of lung 
cancer in a similarly-sized Chinese study.128 The molecular mechanism 
underlying these associations is currently not clear since the SNP is 
intronic and therefore not expected to have a functional consequence. 
However, intronic SNPs can affect transcription,129 produce alternative 
splice sites130 or be in linkage disequilibrium with other, causal genes.

Gene‑environment interactions
The concept of gene-environment interaction means that some people 
carry genetic factors that confer susceptibility or resistance to a 
certain disorder in a particular environment. Unfortunately, only few 
studies have been performed aiming at identifying gene-environment 
interactions with respect to male reproductive health. Animal studies 
have shown that daily sperm production is affected less by TCDD 
exposure in utero131 as well as during adulthood132 in resistant Han/
Wistar rats who carry a mutated transactivation domain of the AHR 
as compared to Long-Evans rats carrying the wildtype allele.

In humans, studies on gene-environment interactions related to 
environmental exposure and male reproductive health are still limited, 
and have recently been reviewed by Axelsson et al.133 For example, a 
polymorphism in CYP1A1 and hydroxysteroid 17β-dehydrogenase 
4 modifies the association between exposure levels to different PCB 
congeners and the risk of testicular cancer.134 Men with a shorter 
polymorphic trinucleotide CAG repeat length in AR have been observed 
to be more sensitive to the deleterious effects of exposure to PCB and p, 
p’-1,1-dichloro-2,2-bis (p-chlorophenyl) ethylene (DDE, a metabolite 
of the pesticide dichlorodiphenyltrichloroethane) on sperm DNA 
fragmentation and total sperm counts, respectively.135 Another study 
reported increased sperm DNA fragmentation in men with a variant of 

the detoxifying enzyme glutathione-S-transferase M1 when exposed to 
polycyclic aromatic hydrocarbon metabolites found in air pollution.136

Is there a case to be made for gene-environment interactions with 
respect to exposure to dioxins and dioxin-like compounds? On the one 
hand, exposure to these chemicals clearly has antiandrogenic effects on 
male reproductive health, especially when the exposure occurs during 
sensitive periods before adulthood, affecting reproductive hormone 
levels and ultimately sperm quality. On the other hand, polymorphisms 
in genes involved in AHR signaling pathway have been identified in 
humans, and in a limited number of studies these have been associated 
with male reproductive functions. Whether the antiandrogenic effects 
of dioxin-induced AHR signaling are mediated via cross talk with the 
AR, remains to be studied in more detail.

Although animals show large differences in sensitivity to dioxins 
due to these polymorphisms, the functional effects are less obvious in 
humans. One of the reasons for this discrepancy is that most genetic 
polymorphisms in AHR, ARNT or AHRR have first been identified 
by massive high-throughput screening, without known phenotypes, 
whereas it was the opposite in animal models, i.e. genotypic variation 
was studied as a consequence of differences in sensitivity in the different 
strains. Genetic analyses of these genes in populations that are exposed to 
wide range of exposure levels may identify yet unknown polymorphisms 
that to a larger extend explain variation in susceptibility to EDCs.

CONCLUDING REMARKS
Virtually all human diseases result from the interaction between 
genetic susceptibility factors and modifiable environmental 
factors. Many environmental pollutants exert there biological 
effects through activation of the AHR signaling cascade and 
polymorphisms in the genes involved in this pathway may affect an 
individual’s response to these pollutants. It may not be likely that 
polymorphisms in the human AHR gene affect receptor function, 
but there is evidence to suggest that polymorphisms in AHRR 
may indeed affect an individual’s susceptibility to dioxin-related 
reproductive health effects. Whether these anti-androgenic effects 
are indeed mediated through cross talk between AHR and AR 
signaling, remains to be scrutinized. Whereas the mechanisms 
underlying the cross talk between ER and AHR signaling have 
been well-described, only a few studies have addressed similar 
mechanisms between AR and AHR.

When studying such complex mechanisms as gene-environment 
interactions, even relatively large-scale multicenter studies have a 
relatively low statistical power. Therefore, efforts should be made to 
establish international consortia merging different cohorts from which 
biological material for genetic as well as exposure analyses is available. 
To facilitate such collaboration, international standards regarding type 
of biological samples and questionnaire information to be collected as 
well should be developed. Furthermore, taking into consideration the 
limited availability of sufficiently sized study cohorts, efforts should 
be made to develop more efficient study designs and statistical models 
for studying gene-environment interactions.137,138

QUESTIONS FROM THE PANEL
Q1: What can we learn from animal studies?

A1: Genetic polymorphisms in animals have convincingly been 
shown to affect susceptibility to dioxin-like compounds. However, 
given the fact that AHR receptor signaling is crucially important 
during development, the human AHR which already harbors a 
polymorphism that in the mouse reduces its activity may not allow 
further compromising genetic modifications.
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Q2: Include gene-environment interaction studies with lifestyle 
factors as the “environment”.

A2: Smoking, which globally is an abundant lifestyle 
factor, has in a laboratory study been shown to affect men and 
women differently, so that women experienced greater abstinence 
induced anger than men, which could be an important factor for 
understanding and treating nicotine addiction in women.139 In a 
study on more than 15 000 adolescents, these were shown to smoke 
more cigarettes and consume more alcohol when attending schools 
with elevated rates of tobacco and alcohol use. More important, an 
individual’s susceptibility to school-level patterns of smoking or 
drinking is conditional on the number of short alleles he or she has 
in 5HTTLPR  (serotonin-transporter-linked polymorphic region), 
which is a polymorphic region in SLC6A4, the gene that codes for 
the serotonin transporter. Overall, the findings demonstrate the 
utility of the differential susceptibility framework by suggesting that 
health behaviors reflect interactions between genetic factors and the 
prevalence of these behaviors in a person’s context.140

Q3: What is known about the genetic background in the 
susceptibility to certain EDCs in animals and humans? Are there 
indications of more or less susceptible subpopulations?

A3: Genetic variations in AHR in different rodent strains, as well 
as between different species, have indeed been shown to dramatically 
alter ligand binding and transactivation by the receptor, as detailed in 
the text. For example, the DBA/2 mouse strain is more resistant than 
the sensitive C57BL/6J strain,11,98,99 and the Han/Wistar rat strain is a 
1000-fold more resistant to TCDD than the sensitive Long-Evans rat 
strain.12,100 The most dioxin-sensitive species is the guinea pig, while 
the hamster tolerates a 1000-fold higher dose.101,102

Studies in humans have shown that serum level of CB-153, 
a marker for PCB exposure, is positively associated with DNA 
fragmentation. Interestingly, this was only seen in Caucasian but not 
in Inuit men. 141,142 Whether this difference is solely due to difference in 
genetic background, or also related to other environmental exposures 
or lifestyle factors, remains to be seen.
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