OPEN ACCESS

Citation: Srimani S, Saha I, Chaudhuri D (2017) Prevalence and association of metabolic syndrome and vitamin D deficiency among postmenopausal women in a rural block of West Bengal, India. PLoS ONE 12(11): e0188331. https://doi.org/10.1371/
journal.pone. 0188331
Editor: Andrzej T. Slominski, University of Alabama at Birmingham, UNITED STATES

Received: August 20, 2017
Accepted: November 3, 2017
Published: November 30, 2017
Copyright: © 2017 Srimani et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: All relevant data are within the paper and its Supporting Information files.

Funding: This work was supported by the Indian Council of Medical Research 3/1/3/JRF-2012/HRD/ 40967 (Receiver: Soumi Srimani). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Prevalence and association of metabolic syndrome and vitamin D deficiency among postmenopausal women in a rural block of West Bengal, India

Soumi Srimani ${ }^{1 ®}$, Indranil Saha ${ }^{2 ®}$, Debnath Chaudhuri ${ }^{10}$ *
1 Department of Biochemistry and Nutrition, All India Institute of Hygiene and Public Health, Kolkata, West Bengal, India, 2 Department of Community Medicine, IQ City Medical College and Narayana Hrudayalaya Hospital, Durgapur, West Bengal, India
- These authors contributed equally to this work
* dchaudhuri_bn@rediffmail.com

Abstract

\section*{Background}

Prevalence of metabolic syndrome (MS) and vitamin D deficiency was reported among postmenopausal women (PMW) in India. However, no report is available regarding the association of MS and 25 -hydroxyvitamin D [25(OH)D] among PMW in India. This study aimed to find out the prevalence of MS and 25(OH)D status as well as their association among rural PMW of West Bengal, India.

\section*{Materials and methods}

This cross-sectional study was conducted among 222 randomly selected rural PMW in Singur Block, West Bengal, India. Serum 25(OH)D, Blood pressure (BP), waist circumference (WC), fasting blood glucose (FBG), triglycerides (TG) and high density lipoprotein cholesterol (HDL-C) were measured using standard procedures. MS was defined as per International Diabetes Federation, 2005 (for Asian-Indians) criteria. Statistical tests were done using SPSS software.

\section*{Results}

Prevalence of metabolic syndrome was 46%. 51% and 19% PMW were vitamin D insufficient and deficient, respectively. 22% and 53% women having MS were vitamin D insufficient and deficient, respectively. Among the PMW, 21% and 47% with WC $\geq 80 \mathrm{~cm} ; 22 \%$ and 62% with $F B G \geq 110 \mathrm{mg} / \mathrm{dl} ; 21 \%$ and 54% with $T G \geq 150 \mathrm{mg} / \mathrm{dl} ; 23 \%$ and 51% with HDL$C<50 \mathrm{mg} / \mathrm{dll}, 15 \%$ and 55% with $B P \geq 130 / 85 \mathrm{~mm}$ of Hg were vitamin D insufficient and deficient, respectively. Significant statistical association between FBG and 25(OH)D status existed ($p=0.01$). Significant positive correlation between WC and 25(OH)D level ($p=$ 0.004) and significant negative correlation between FBG and 25(OH)D level observed ($p=$

Competing interests: All the co-authors are aware that the manuscript is submitted in PLOS ONE and we declare that no competing interests exist.
0.02). WC was the only statistically significant predictor of the dependent variable. Odds of non-sufficient 25(OH)D level increased with decrease in WC.

Conclusion

High prevalence of MS as well as vitamin D insufficiency and deficiency existed among PMW of Singur block, West Bengal, India. 25(OH)D had significant inverse and direct relationship with FBG and WC. Low 25(OH)D may be one of the potential risk factors for developing MS in PMW or vice-versa.

Introduction

Metabolic syndrome (MS), a constellation of the most dangerous heart attack risk factors: diabetes and raised fasting plasma glucose, abdominal obesity, high cholesterol and high blood pressure, is becoming pandemic among the non-communicable diseases (NCD) in today's world [1-5]. The prevalence of the MS increases with menopause and may partially explain the apparent acceleration in cardio vascular diseases (CVD) after menopause [6]. Prevalence of MS varies in India and different countries [7-12]. Socioeconomic status, increasing urbanization, genetic predisposition, low physical activity, vitamin D deficiency (VDD) and use of high fat, refined sugar and processed foods in diet are the important determinants of MS [1316]. Low 25-hydroxyvitamin $D[25(\mathrm{OH}) \mathrm{D}]$ level is associated with obesity, hypertension, diabetes, MS and chronic vascular inflammation, all of which are risk factors for CVD [17-20]. Several studies from many parts of India have established that VDD is widespread among Indians of all age and sex groups including postmenopausal women (PMW), residing in both rural and urban areas [21-24]. Prevalence of vitamin D deficiency and insufficiency among PMW residing in North and South India was reported [25-27]. Only one report is available on the 25 $(\mathrm{OH}) \mathrm{D}$ status among geriatric PMW of West Bengal [28]. However, no community based study report is available regarding the association of MS and $25(\mathrm{OH})$ Dlevel among the PMW in India.

This study aimed to find out the prevalence of MS and $25(\mathrm{OH}) \mathrm{D}$ status as well as their association among rural postmenopausal women of West Bengal, India.

Subjects \& methods

This cross-sectional study was conducted among 222 postmenopausal women, aged 45-70 years, selected randomly from 30 villages of Singur block, the rural field practice area of All India Institute of Hygiene and Public Health (AIIH\&PH), West Bengal, India from $27^{\text {th }}$ March, 2014 to $1^{\text {st }}$ August, 2016. Women having history of thyroid dysfunction, on hormonal replacement therapy, amenorrhea due to any pathological cause or surgery, on vitamin D supplementation, physically or mentally challenged and non-cooperative in nature were excluded from the study. Ethical clearance was obtained from the Ethics Committee of AIIH\&PH, Kolkata. Informed written consent was obtained prior to the study. Serum $25(\mathrm{OH}) \mathrm{D}$ was measured by enzymatic immunoassay [29]. Precision of the estimation was determined by intra assay and inter assay variability. Intra assay (within run variation) was determined by replicate (16 x) of the measurement of three different sera in one assay and the variability was $\leq 6.4 \%$. Inter assay (between run variation) was determined by replicate (10x) of three different control sera in different lots of kit and the variability was $\leq 6.95 \%$ [29]. VDD, insufficiency and
sufficiency was defined as $<20 \mathrm{ng} / \mathrm{ml}, 21-29 \mathrm{ng} / \mathrm{ml}$ and $30-100 \mathrm{ng} / \mathrm{ml}$ of $25(\mathrm{OH})$ D in human blood, respectively [30]. Blood pressure (BP), waist circumference (WC), fasting blood glucose (FBG), serum triglycerides (TG) and high density lipoprotein cholesterol (HDL-C) were measured using standard procedures [31-35]. MS was defined as per International Diabetes Federation (IDF), 2005 (for Asian-Indians) criteria [4].

Data were put in Microsoft Excel worksheet (Microsoft, Redwoods, WA, USA) (S1 File) and checked for accuracy. Association between two attributes was calculated by Pearson's Chisquare test. Continuous data was first checked for normality distribution by Kolmogarov Smirnov Test. Significant P value indicated skewed distribution. Because of skewed distribution, non-parametric tests were performed. Difference between distributions of two continuous variables was determined by Mann Whitney U test (Z value). Correlation was calculated by Spearman's correlation coefficient (rho). Binary logistic regression was calculated using SPSS software, Version 20.0 (Statistical Package for the Social Sciences Inc, Chicago, IL, USA), by keeping non-sufficient vitamin D level (yes/no) as dependent variable. P value less than 0.05 was considered as statistically significant.

Results

Out of 222 postmenopausal women, prevalence of MS was found among $46 \% .51 \%$ and 19% of them were having vitamin D deficiency and insufficiency, respectively.

Out of all the study subjects having MS, 22% and 53% were vitamin D insufficient and deficient, respectively. Among the postmenopausal women, 21% and 47% with $\mathrm{WC} \geq 80 \mathrm{~cm}$; 22% and 62% with $\mathrm{FBG} \geq 110 \mathrm{mg} / \mathrm{dl} ; 21 \%$ and 54% with $\mathrm{TG} \geq 150 \mathrm{mg} / \mathrm{dl} ; 23 \%$ and 51% with HDL-C $<50 \mathrm{mg} / \mathrm{dl}, 15 \%$ and 55% with $\mathrm{BP} \geq 130 / 85 \mathrm{~mm}$ of Hg had vitamin D insufficiency and deficiency, respectively. Significant statistical association was found between FBG with 25 $(\mathrm{OH}) \mathrm{D}$ status using chi-square $\left(\chi^{2}\right)$ test $(\mathrm{p}=0.01)$ (Table 1).

Table 1. Distribution of postmenopausal women according to $25(\mathrm{OH}) \mathrm{D}$ status in relation with metabolic syndrome, waist circumference, fasting blood glucose, triglyceride, HDL cholesterol and blood pressure ($\mathrm{N}=\mathbf{2 2 2 \text {). }}$

Parameter	25-hydroxyvitamin D status						Total		Statistical test	
	Deficient		Insufficient		Sufficient		Number	Percentage	Chi-square statistics	p value
	Number	Percentage	Number	Percentage	Number	Percentage				
Metabolic syndrome present (IDF)										
Yes	54	53	22	22	26	25	102	100	2.23	0.32
No	59	49	20	17	41	34	120	100		
Waist Circumference										
$<80 \mathrm{~cm}$	73	47	33	21	51	32	157	100	4.23	0.12
$\geq 80 \mathrm{~cm}$	40	61	9	14	16	25	65	100		
Fasting blood glucose										
<100mg/dl	36	62	13	22	9	16	58	100	8.02	0.01
$\geq 100 \mathrm{mg} / \mathrm{dl}$	77	47	28	18	58	35	164	100		
Triglyceride										
<150mg/dl	54	54	21	21	25	25	100	100	2.38	0.3
$\geq 150 \mathrm{mg} / \mathrm{dl}$	59	49	21	17	42	34	122	100		
HDL cholesterol										
<50mg/dl	40	51	18	23	20	26	78	100	1.92	0.38
$\geq 50 \mathrm{mg} / \mathrm{dl}$	73	51	24	16	47	33	144	100		
Blood pressure										
$\geq 130 / 85 \mathrm{~mm}$ of Hg	77	55	21	15	42	30	140	100	4.33	0.11
<130/85mm of Hg	36	44	21	26	25	30	82	100		

https://doi.org/10.1371/journal.pone.0188331.t001

Median 25(OH)D was found to be 20 with a range from 1.4 to $93 \mathrm{ng} / \mathrm{ml}$. Median $25(\mathrm{OH}) \mathrm{D}$ level varied from 18 to 27 among the PMW having or not having MS. Subjects having MS had significantly lower $25(\mathrm{OH}) \mathrm{D}$ level compared to subjects without MS, as revealed by MannWhitney U test. A negative correlation was found between 25(OH)Dand MS status; though it was not significant $(\mathrm{p}=0.65)$. Median 25(OH)D level had increased significantly ($\mathrm{p}=0.0001$) in Mann-Whitney U test) from 16 to 23 in subjects having $\mathrm{WC}<80 \mathrm{~cm}$ to ≥ 80. There was significant positive correlation between WC and 25(OH)D level (rho $=0.19, \mathrm{p}=0.004$). There had been significant negative correlation ($\mathrm{rho}=-0.15, \mathrm{p}=0.02$) between FBG and 25(OH)D level, where median $25(\mathrm{OH})$ D level significantly decreased (22 to 18) with increase in blood glucose level ($<100 \mathrm{mg} / \mathrm{dl}$ to $\geq 100 \mathrm{mg} / \mathrm{dl}$) ($\mathrm{p}=0.0001$ in Mann-Whitney U test). Median 25 $(\mathrm{OH}) \mathrm{D}$ level decreased (23 to 20) with increase in triglyceride level ($<150 \mathrm{mg} / \mathrm{dl}$ to $\geq 150 \mathrm{mg}$ / dl), while median $25(\mathrm{OH})$ D level increased (20 to 21) with increase in HDL cholesterol level ($<50 \mathrm{mg} / \mathrm{dl}$ to $\geq 50 \mathrm{mg} / \mathrm{dl}$); and there had been significant difference between these groups in Mann-Whitney U test but no relationship was observed between either of them ($p=0.82$ and $p=0.28$ respectively) in Spearman test. As per Mann-Whitney U test, median 25(OH)D level significantly decreased from 22 to 19 in both cases with increase in both SBP ($<130 \mathrm{~mm}$ of Hg to $\geq 130 \mathrm{~mm}$ of Hg) and DBP ($<85 \mathrm{~mm}$ of Hg to $\geq 85 \mathrm{~mm}$ of Hg), respectively but without any significant correlation ($\mathrm{p}=0.11$ and $\mathrm{p}=0.26$ respectively) (Table 2).

The binary logistic regression model is significant as evident from significant Omnibus Chi-square statistic ($\mathrm{P}=0.01$) and non-significant Hosmer-Lemeshow statistics (0.20). Independent variables can explain 7\%-9.9\% variance of dependent variable from Cox \& Snell R square and Nagelkerke R square values. The model correctly predicted 4.5% of sufficient 25

Table 2. Relationship between waist circumference, fasting blood glucose, triglyceride, HDL cholesterol and blood pressure with 25(OH)D level among postmenopausal women ($\mathrm{N}=222$).

Parameter	25-hydroxyvitamin D		Statistical tests			
	Median	IQR	Mann Whitney U test		Spearman's correlation test	
			Z value	p value	rho	p value
Metabolic syndrome present (IDF)						
Yes	18	12-31	-18.23	0.0001	-0.03	0.65
No	27	12-39				
Waist circumference						
<80cm	16	10-29	-16.58	0.0001	0.19	0.004
$\geq 80 \mathrm{~cm}$	23	14-37				
Fasting blood glucose						
<100mg/dl	22	13-38	-16.06	0.0001	-0.15	0.02
$\geq 100 \mathrm{mg} / \mathrm{dl}$	18	11-27				
Triglyceride						
<150mg/dl	23	11-37	-17.89	0.0001	0.15	0.82
$\geq 150 \mathrm{mg} / \mathrm{dl}$	20	13-30				
HDL cholesterol						
<50mg/dl	20	12-30	-14.66	0.0001	0.07	0.28
$\geq 50 \mathrm{mg} / \mathrm{dl}$	21	12-39				
Blood pressure						
SBP<130mm of Hg	22	13-31	-18.23	0.0001	-0.1	0.11
$S B P \geq 130 \mathrm{~mm}$ of Hg	19	12-34				
DBP<85mm of Hg	22	13-31	-17.54	0.0001	-0.07	0.26
DBP $\geq 85 \mathrm{~mm}$ of Hg	19	12-37				

https://doi.org/10.1371/journal.pone.0188331.t002

Table 3. Binary logistic multivariable regression model analysis of 25(OH)D level.

Variables in the Equation										
Parameter		B	S. E.	Wald	df	Sig.	Exp (B)	95\% C. I. for $\operatorname{Exp}(\mathrm{B})$		
		Lower						Upper		
$\text { Step } 1^{\mathrm{a}}$	SBP		0.02	0.01	0.61	1.00	0.43	1.01	0.99	1.03
	DBP	0.000	0.02	0.000	1.00	0.98	1.00	0.96	1.04	
	HDL	0.007	0.01	0.44	1.00	0.51	0.99	0.97	1.01	
	TG	0.004	0.002	3.01	1.00	0.08	1.004	1.00	1.008	
	WC	0.03	0.01	5.77	1.00	0.02	0.97	0.94	0.99	
	FBS	0.008	0.005	2.83	1.00	0.09	1.01	0.99	1.02	
	Constant	1.49	1.54	0.93	1.00	0.34	4.42			

${ }^{\text {a }}$ Variable(s) entered on Step 1: SBP, DBP, HDL, TG, WC, FBS.
https://doi.org/10.1371/journal.pone.0188331.t003
$(\mathrm{OH}) \mathrm{D}$ level and 94.8% of non-sufficient $25(\mathrm{OH}) \mathrm{D}$ level from classification table. Only WC became the significant predictor of the dependent variable. Odds of non-sufficient 25(OH)D level increased with decrease in WC (Table 3).

Discussion

Our study revealed that almost half (46%) of the PMW under investigation were having MS. Prevalence of MS varies in India and different countries; 55\% in urban Western India, 64.3\%in Iran, 49.8% in Brazil, 16.9% in Thailand and 29% in Puerto Rico [7, 10, 11, 36, 37]. We have found that among 51% and 19% PMW, in the study area, were suffering from vitamin D deficiency and insufficiency, respectively. VDD was thought to be rare in India due to their exposure to sunshine which is supported by the results of earlier epidemiological studies of the frequencies of rickets and osteomalacia in Indian sub-continent [38]. Earlier studies reported that 70% and 23% of South Indian and 53.35% and 19.48% of North Indian PMW had $<20 \mathrm{ng}$ / ml and $21-29 \mathrm{ng} / \mathrm{ml}$ of $25(\mathrm{OH}) \mathrm{D}$ respectively $[25,39]$. Only one study from West Bengal among 65 geriatric PMW reported that 37, 9 and 19 women had deficient, insufficient and normal serum 25(OH)D3 level [28]. Data from other studies on PMW revealed that, 42% and 92% of Brazilian women [40] and South Korean women [41] had $<30 \mathrm{ng} / \mathrm{mL}$ of 25 -hydroxy cholecalciferol, respectively. Severe deficiency ($\leq 10 \mathrm{ng} / \mathrm{mL}$) was most prevalent in South Asia and the Middle East [42]. Earlier studies therefore revealed existence of country wise variations of both MS and serum 25(OH)D level. Considering deficiency of vitamin D as one of the factors for developing MS, it is pertinent to determine the association between MS as well as its components and serum $25(\mathrm{OH}) \mathrm{D}$ level.

We have found significant difference in median $25(\mathrm{OH})$ D level between the groups (normal and abnormal) of each parameter of MS including itself. Significant association between 25 $(\mathrm{OH}) \mathrm{D}$ and FBG was observed. However, no significant association between $25(\mathrm{OH})$ Dstatus with MS and its other parameters was observed. FBG was inversely correlated with serum 25 $(\mathrm{OH}) \mathrm{D}$ level and this relation was found to be statistically significant. Though, inverse relationship between 25(OH)D level with MS, SBP and DBP was observed, it was not statistically significant. Significant positive correlation was observed between 25(OH)D and WC; however, the relationship with TG and HDL-C, though positive, but non-significant.

Various epidemiological studies have shown that patients with type 2 diabetes mellitus (T2DM), one of the components of MS, had significantly lower circulating concentrations of $25(\mathrm{OH}) \mathrm{D}$, compared to healthy controls [43-46].Studies conducted by Pittas, et al. in 2007 and Chowdhury, et al. in 2009 concluded that low levels of $25(\mathrm{OH})$ D may negatively influence
glycaemia [47,48]. Several other epidemiological studies, conducted in different countries reported that low circulating vitamin D concentration may be associated with an increased prevalence of hyperglycaemia, MS, WC, serum TG [20, 44-46, 48-56] and increased risk for cardiac events [56-60]. In a meta-analysis of ten observational studies and nine randomised control trials, associations between 25(OH)D levels and BP was found [60]. Eight observational studies and three randomised control trials supported an inverse association between vitamin D and BP [60]. All these reports as well as findings from the present study indicate that the cause of MS and the abnormalities of its components was due to low circulating 25 $(\mathrm{OH}) \mathrm{D}$ but it will be of interest to explore whether MS and its components, particularly WC, are responsible for lowering circulating $25(\mathrm{OH}) \mathrm{D}$ or not.

In recent times, a previously unrecognized alternative pathway of vitamin D activation, initiated by C20-hydroxylation of vitamin D by CYP11A1, has been confirmed to operate in vivo, generating novel D3-hydroxyderivatives different from $25(\mathrm{OH}) \mathrm{D}$ and $1,25(\mathrm{OH})_{2} \mathrm{D}[61,62]$. Slominski AT et. al. detected the predominant metabolite $20(\mathrm{OH})$ D of this novel pathway in human serum with a relative concentration ~ 20 times lower than 25(OH)D [61]. Further studies detected CYP11A1-derived secosteroids, including $20(\mathrm{OH}) \mathrm{D}$, of this alternative pathway, in the human serum and epidermis whose biological activity suggest that they act as hormones in vivo [63]. Therefore, future studies may explore to find out the possible relationship of MS with $20(\mathrm{OH}) \mathrm{D}$ and other secosteriods of this alternative pathway.

Thus, it can be concluded that, high prevalence of metabolic syndrome as well as vitamin D deficiency or insufficiency existed among postmenopausal women of Singur block, West Bengal, India. $25(\mathrm{OH}) \mathrm{D}$ level has significant inverse relationship with blood glucose level and direct relationship with waist circumference. Vitamin D deficiency or insufficiency, therefore, may be one of the potential risk factors for developing MS in the studied population or vice versa.

Supporting information

S1 File. Data sheet.
(XLSX)

Acknowledgments

Our sincerest acknowledgment to all the participants of this study, Officer in Charge, other supportive staffs and health workers of the villages in the service area of Rural Health Unit \& Training Centre, Singur, AIIH\&PH Kolkata and the West Bengal University of Health Sciences.

Author Contributions

Conceptualization: Debnath Chaudhuri.
Data curation: Soumi Srimani.
Formal analysis: Soumi Srimani, Indranil Saha, Debnath Chaudhuri.
Funding acquisition: Soumi Srimani.
Investigation: Soumi Srimani.
Methodology: Soumi Srimani, Indranil Saha, Debnath Chaudhuri.
Project administration: Debnath Chaudhuri.

Supervision: Debnath Chaudhuri.
Writing - original draft: Soumi Srimani.
Writing - review \& editing: Indranil Saha, Debnath Chaudhuri.

References

1. Alberti KG, Zimmet P, Shaw J (2005) IDF Epidemiology Task Force Consensus Group. The metabolic syndrome new worldwide definition. Lancet 366:1059-62. https://doi.org/10.1016/S0140-6736(05) 67402-8 PMID: 16182882
2. Alberti KG, Zimmet P, Shaw J (2006) Metabolic syndrome-a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet Med 23(5):469-80. https://doi.org/10. 1111/j.1464-5491.2006.01858.x PMID: 16681555
3. www.idf.org/metabolic_syndrome, website of the International Diabetes Federation. Last seen on 16.08.2017.
4. The metabolic syndrome, Diabetes Voice special issue, May 2006, 51.
5. Stern M, Williams K, Gonzalez-Villalpando C, Hunt KJ, Haffner SM (2004) Does the metabolic syndrome improve identification of individuals at risk of type 2 diabetes and/or cardiovascular disease? Diabetes Care 27(11):2676-81. PMID: 15505004
6. Carr MC (2003) The Emergence of the Metabolic Syndrome with Menopause. The Journal of Clinical Endocrinology \& Metabolism 88 (6): 2404-2411.
7. Pandey S, Srinivas M, Agashe S, Joshi J, Galvankar P, Prakasam CP, et al. (2010) Menopause and metabolic syndrome: A study of 498 urban women from western India.J Midlife Health 1(2): 63-69. https://doi.org/10.4103/0976-7800.76214 PMID: 21716770
8. Singh J, Rajput M, Rajput R, Bairwa M (2016) Prevalence and Predictors of Metabolic Syndrome in a North Indian Rural Population: A Community Based Study. Journal of Global Diabetes and Clinical Metabolism 1:1-4.
9. Heidari R, Sadeghi M, Talaei M, Rabiei K, Mohammadifard N, Sarrafzadegan N (2010) Metabolic syndrome in menopausal transition: Isfahan Healthy Heart Program, a population based study. DiabetolMetabSyndr 2:59.
10. Figueiredo-Neto AA, Figuerêdo ED, Barbosa JB, Barbosa FF, Costa GRC, Nina VJdS, et al. (2010) Síndromemetabólica e menopausa: estudo transversal emambulatório de ginecologia. Arq Bras Cardiol 91:1-23.
11. Indhavivadhana S, Rattanachaiyanont M, Wongvananurak T, Kanboon M, Techatraisak K, Leerasiri P, et al. (2011) Predictors for metabolic syndrome in perimenopausal and postmenopausal Thai women. Climacteric 14:58-65. https://doi.org/10.3109/13697137.2010.481735 PMID: 20450411
12. Romaguera J, Ortiz AP, Roca FJ, Cólon G, Suárez E (2010) Factors associated with metabolic syndrome in a sample of women in Puerto Rico. Menopause 17:388-92. https://doi.org/10.1097/gme. 0b013e3181bd5393 PMID: 19884863
13. O'Keefe E. L, DiNicolantonio J. J, Patil H, Helzberg J. H, Lavie C. J (2016) Lifestyle Choices Fuel Epidemics of Diabetes and Cardiovascular Disease Among Asian Indians. ProgCardiovasc Dis. 58 (5):505-13.
14. Deedwania P. C, Gupta R, Sharma K. K, Achari V, Gupta B, Maheshwari A, et al. (2014) High prevalence of metabolic syndrome among urban subjects in India: a multisite study.Diabetes MetabSyndr. 8 (3):156-61.
15. Kaur J (2014) A comprehensive review on metabolic syndrome.Cardiol Res Pract. 2014:943162. https://doi.org/10.1155/2014/943162 PMID: 24711954
16. Mishra A, Bharadwaj S (2014) Obesity and the metabolic syndrome in developing countries: focus on South Asians. NestleNutrInst Workshop Ser. 78:133-40.
17. Liel Y, Ulmer E, Shary J, Hollis B. W, and Bell N. H. (1988) Low circulating vitamin D in obesity. Calcified Tissue International 43(4):199-201. PMID: 3145124
18. Hyldstrup L, Andersen T, McNair P, Breum L, and Transbol I (1993) Bone metabolism in obesity: changes related to severe overweight and dietary weight reduction. ActaEndocrinologica 129(5):393398.
19. Wortsman J, Matsuoka L. Y, Chen T. C, Lu Z, and Holick M. F (2000) Decreased bioavailability of vitamin D in obesity. The American Journal of Clinical Nutrition 72(3):690-693. PMID: 10966885
20. Thomas GN, Hartaigh Bó, Bosch JA, Pilz S, Loerbroks A, Kleber ME,et al. (2012) Vitamin D levels predict all-cause and cardiovascular disease mortality in subjects with the metabolic syndrome: the

Ludwigshafen Risk and Cardiovascular Health (LURIC) Study. Diabetes Care 35(5):1158-1164. https://doi.org/10.2337/dc11-1714 PMID: 22399697
21. Goswami R, Gupta N, Goswami D, Marwaha RK, Tandon N, and Kochupillai N. (2000) Prevalence and significance of low 25 -hydroxyvitamin D concentrations in healthy subjects in Delhi. The American Journal of Clinical Nutrition 72(2):472-475. PMID: 10919943
22. Arya V, Bhambri R, Godbole MM, and Mithal A (2004) Vitamin D status and its relationship with bone mineral density in healthy Asian Indians. Osteoporosis International. 15(1):56-61. https://doi.org/10. 1007/s00198-003-1491-3 PMID: 13680103
23. Sachan A, Gupta R, Das V, Agarwal A, Awasthi PK, and Bhatia V (2005) High prevalence of vitamin D deficiency among pregnant women and their newborns in northern India. The American Journal of Clinical Nutrition 81(5):1060-1064. PMID: 15883429
24. Harinarayan CV, Ramalakshmi T, Prasad UV, Sudhakar D, Srinivasarao PVLN, Sarma KVS, et al. (2007) High prevalence of low dietary calcium, high phytateconsumption, and vitamin D deficiency in healthy south Indians. The American Journal of Clinical Nutrition. 85(4):1062-1067. PMID: 17413106
25. Harinarayan CV, Sachan A, Reddy PA, Satish KM, Prasad UV and Srivani P (2011) Vitamin D status and bone mineral density in women of reproductive and postmenopausal age groups: A cross-sectional study from South India. J. assoc. Physicians India 59(11):695-701.
26. Jabbar Z, Aggarwal PK, Chandel N, Kohli HS, Gupta KL, Sakhuja V, et al. (2009)High prevalence of vitamin D deficiency in north Indian adults is exacerbated in those with chronic kidney disease. Nephrology (Carlton) 14(3):345-9.
27. Bachhel R, Singh NR, and Sidhu JS (2015) Prevalence of vitamin D deficiency in north-west Punjab population: A cross-sectional study. Int J Appl Basic Med Res. 5(1):7-11. https://doi.org/10.4103/2229516X. 149220 PMID: 25664260
28. Ghosh J, Chaudhuri AN, Chaudhuri $D(2016)$ Antimicrobial activity of Vitamin-D in human macrophages isolated from older adult women peripheral blood. IJAR 2(7):151-155.
29. http://www.diametra.com/products/details/314/25oh_vitamin_d.html. Last Accessed August 8, 2017.
30. Holick MF, Binkley CN, Bischoff-Ferrari HA, Gordon CM, Hanley AD, Heaney RP, et al. (2011) Evaluation, Treatment, and Prevention of Vitamin D Deficiency: an Endocrine Society Clinical Practice Guideline. J ClinEndocrinoIMetab 96(7):1911-1930.
31. https://wwwn.cdc.gov/nchs/data/nhanes3/manuals/pressure.pdf. Last accessed on 16.08.2017.
32. Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation Geneva, 8-11 December 2008. Available from http://apps.who.int/iris/bitstream/10665/44583/1/9789241501491_eng. pdf.Last accessed on 16.08.2017.
33. Jakobsen LK (1960) Quantitative Determination of Blood Glucose using Glucose Oxidase and Peroxidase. Scandinav.J.Clin.\&Lab. Investigation 12(1):76-79.
34. Mayne PD (1994) Clinical Chemistry in Diagnosis and treatment 11:224
35. Herrmann W, Schütz C, Reuter W (1983) Determination of HDL Cholesterol. Z Gesamte Inn Med. 38 (1):17-22. PMID: 6342279
36. Heidari R, Sadeghi M, Talaei M, Rabiei K, Mohammadifard N, Sarrafzadegan N. (2010) Metabolic syndrome in menopausal transition: Isfahan Healthy Heart Program, a population based study. DiabetolMetabSyndr. 2:59.
37. Romaguera J, Ortiz AP, Roca FJ, Cólon G, Suárez E. (2010) Factors associated with metabolic syndrome in a sample of women in Puerto Rico. Menopause 17:388-92. https://doi.org/10.1097/gme. 0b013e3181bd5393 PMID: 19884863
38. Hodgkin P, Kay GH, Hine PM, Lumb GA, Stanbury SW (1973) Vitamin D deficiency in Asians at home and in Britain. The Lancet 2(7822):167-171.
39. Tandon RV, Sharma S, Mahajan S, Raina K, Mahajan A, Khajuria V, et al. (2014) Prevalence of vitamin d deficiency among Indian menopausal women and its correlation with diabetes: A first Indian cross sectional data. J Midlife Health 5(3):121-125. https://doi.org/10.4103/0976-7800.141188 PMID: 25316997
40. Lips P, Hosking D, Lippuner K, Norquist JM, Wehren L, Maalouf G, et al. (2006) The prevalence of vita$\min \mathrm{D}$ inadequacy amongst women with osteoporosis: an international epidemiological investigation. Journal of Internal Medicine 260(3):245-254. https://doi.org/10.1111/j.1365-2796.2006.01685.x PMID: 16918822
41. Lim SK, Kung AWC, Sompongse S, Soontrapa S, and Tsai K. S. (2008) Vitamin D inadequacy in postmenopausal women in Eastern Asia. Current Medical Research and Opinion 24(1):99-106. https://doi. org/10.1185/030079908X253429 PMID: 18028585
42. Mithal A, Wahl DA, Bonjour JP, Burckhardt P, Dawson-Hughes B, Eisman JA, et al. (2009) Global vitamin D status and determinants of hypovitaminosis D. Osteoporosis International 20(11):1807-1820. https://doi.org/10.1007/s00198-009-0954-6 PMID: 19543765
43. Zhao G, Ford ES, and Li C (2010) Associations of serum concentrations of 25-hydroxyvitamin D and parathyroid hormone with surrogate markers of insulin resistance among U.S. adults without physiciandiagnosed diabetes: NHANES, 2003-2006. Diabetes Care 33(2):344-347. https://doi.org/10.2337/ dc09-0924 PMID: 19846799
44. Dalgard C, Petersen MS, Weihe P, and Grandjean P (2011) Vitamin D status in relation to glucose metabolism in septuagenarians. Diabetes Care 34:1284-1288. https://doi.org/10.2337/dc10-2084 PMID: 21515843
45. Forouhi NG, Luan J, Cooper A, Boucher BJ, Wareham NJ (2008) Baseline serum 25 -hydroxy vitamin d is predictive of future glycemic status and insulin resistance the medical research council ely prospective study 1990-2000. Diabetes 57(10):2619-2625. https://doi.org/10.2337/db08-0593 PMID: 18591391
46. Knekt P, Laaksonen M, Mattila C, Härkänen T, Marniemi J, Heliövaara M, et al. (2008) Serum vitamin D and subsequent occurrence of type 2 diabetes. Epidemiology 19: 666-671. https://doi.org/10.1097/ EDE.0b013e318176b8ad PMID: 18496468
47. Pittas AG, Lau J, Frank HU, Hughes (2007) The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. J ClinEndocrinolMetab 92(6):2017-29.
48. Chowdhury TA, Boucher BJ, Hitman GA (2009) Vitamin D and type 2 diabetes: Is there a link? Prim Care Diabetes 3(2):115-6. https://doi.org/10.1016/j.pcd.2009.03.004 PMID: 19395331
49. Reis JP, Mühlen DV, Kritz-Silverstein D, Wingard DL, Barrett-Connor E (2007) Vitamin D, parathyroid hormone levels, and the prevalence of metabolic syndrome in community dwelling older adults. Diabetes Care 30(6):1549-55. https://doi.org/10.2337/dc06-2438 PMID: 17351276
50. Botella-Carretero JI, Alvarez-Blasco F, Villafruela JJ, Balsa JA, Vázquez C, Escobar-Morreale HF (2007) Vitamin D deficiency is associated with the metabolic syndrome in morbid obesity. ClinNutr 26 (5):573-80.
51. Hypponen E, Boucher BJ, Berry DJ, Power C (2008) 25 -hydroxyvitamin D, IGF-1, and metabolic syndrome at 45 years of age: a cross-sectional study in the 1958 British Birth Cohort. Diabetes 57(2):298305. https://doi.org/10.2337/db07-1122 PMID: 18003755
52. Lu L, Yu Z, Pan A, Hu FB, Franco OH, Li H, et al. (2009) Plasma 25-hydroxyvitamin D concentration and metabolic syndrome among middle-aged and elderly Chinese individuals. Diabetes Care 32 (7):1278-83. https://doi.org/10.2337/dc09-0209 PMID: 19366976
53. Pinelli NR, Jaber LA, Brown MB, Herman WH (2010) Serum 25-hydroxy vitamin d and insulin resistance, metabolic syndrome, and glucose intolerance among Arab Americans. Diabetes Care 33 (6):1373-5. https://doi.org/10.2337/dc09-2199 PMID: 20332348
54. Gagnon C, Lu ZX, Magliano DJ, Dunstan DW, Shaw JE, Zimmet PZ, et al. (2012) Low serum 25-hydroxyvitamin D is associated with increased risk of the development of the metabolic syndrome at five years: results from a national, population-based prospective study (The Australian Diabetes, Obesity and Lifestyle Study: AusDiab). Journal of Clinical Endocrinology and Metabolism 97(6):1953-1961. https://doi.org/10.1210/jc.2011-3187 PMID: 22442263
55. Penckofer S, Kouba J, Wallis DE, Emanuele MA (2008) Vitamin D and diabetes: let the sunshine in. Diabetes Educ 34(6):939-40, 942, 944 passim. https://doi.org/10.1177/0145721708326764 PMID: 19075078
56. Michos ED (2009) Vitamin D deficiency and the risk of incident Type 2 diabetes. Future Cardiol 5 (1):15-8. https://doi.org/10.2217/14796678.5.1.15 PMID: 19371198
57. Richart T, Thijs L, Nawrot T, Yu J, Kuznetsova T, Balkestein EJ, et al. (2011) The Metabolic Syndrome and Carotid Intima-Media Thickness in Relation to the Parathyroid Hormone to 25-OH-D(3) Ratio in a General Population. Am J Hypertens 24(1):102-109. https://doi.org/10.1038/ajh.2010.124 PMID: 20596035
58. Cigolini M, lagulli MP, Miconi V, Galiotto M, Lombardi S, Targher G (2006) Serum 25-hydroxyvitamin D3 concentrations and prevalence of cardiovascular disease among type 2 diabetic patients. Diabetes Care, 29(3):722-724. PMID: 16505539
59. Wang TJ, Pencina MJ, Booth SL, Jacques PF, Ingelsson E, Lanier K, et al. (2008) Vitamin D deficiency and risk of cardiovascular disease. Circulation 117(4):503-511. https://doi.org/10.1161/ CIRCULATIONAHA.107.706127 PMID: 18180395
60. Feneis JF, Arora RR (2010) Role of Vitamin D in Blood Pressure Homeostasis. Am J Ther. 17(6):e2219. https://doi.org/10.1097/MJT.0b013e3181d16999 PMID: 20216204
61. Slominski AT, Kim TK, Shehabi HZ, Semak I, Tang EK, Nguyen MN et. al. (2012) In vivo evidence for a novel pathway of vitamin D metabolism initiated by P450scc and modified by CYP27B1. FASEB J 26: 3901-15. https://doi.org/10.1096/fj.12-208975 PMID: 22683847
62. Slominski AT, Kim TK, Liw W, Tuckey RC (2016) Classical and non-classical metabolic transformation of vitamin D in dermal fibroblasts. ExpDermatol 25: 231-232.
63. Slominski AT, Kim TK, Li W, PostlethwaiteA, Tieu EW, Tang EKY et al. (2015) Detection of novel CYP11A1- derived secosteroids in the human epidermis and serum and pig adrenal gland. Scientific Reports 5, 14875 https://doi.org/10.1038/srep14875 PMID: 26445902

