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Abstract: The novel coronavirus SARS-CoV-2 has spread across the world since 2019, causing a global
pandemic. The pathogenesis of the viral infection and the associated clinical presentations depend
primarily on host factors such as age and immunity, rather than the viral load or its genetic variations.
A growing number of omics studies have been conducted to characterize the host immune and
metabolic responses underlying the disease progression. Meta-analyses of these datasets have great
potential to identify robust molecular signatures to inform clinical care and to facilitate therapeutics
development. In this study, we performed a comprehensive meta-analysis of publicly available global
metabolomics datasets obtained from three countries (United States, China and Brazil). To overcome
high heterogeneity inherent in these datasets, we have (a) implemented a computational pipeline to
perform consistent raw spectra processing; (b) conducted meta-analyses at pathway levels instead
of individual feature levels; and (c) performed visual data mining on consistent patterns of change
between disease severities for individual studies. Our analyses have yielded several key metabolic
signatures characterizing disease progression and clinical outcomes. Their biological interpretations
were discussed within the context of the current literature. To the best of our knowledge, this is the
first comprehensive meta-analysis of global metabolomics datasets of COVID-19.
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1. Introduction

COVID-19 is an unprecedented health emergency driven by the severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) [1]. This disease had led to over 1.2 million
deaths globally by 5 November 2020 according to the WHO [2]. A broad spectrum of
clinical presentations has been observed, ranging from asymptomatic, mild, moderate, or
severe symptoms, to fatal illness. Such diverse trajectories are believed to be the result of
the differences in individual immune responses to COVID-19 [1,3,4]. A comprehensive
understanding of the molecular events underlying different clinical courses is urgently
needed to help improve patient management and to accelerate the development of thera-
peutic strategies.

Metabolism fuels all biological processes in the human body, including immune
responses. Blood metabolites are the end products of many systematic processes and are
informative indictors of biochemical activities or diseases’ phenotypes [5,6]. Powered by
the growing applications of high-resolution mass spectrometry (MS), metabolomics has
become a key member of the omics toolkit in biomedical research. Multiple metabolomics
studies have been recently conducted across the world to study COVID-19, revealing key
metabolic dysregulations during the disease’s progression [7–16]. For instance, several
amino acids have been observed to be positively correlated with the severity of COVID-19
as key indicators of clinical prognosis of the disease [8,9,12–14]. Perturbations in energy
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metabolisms such as glycolysis and pentose phosphate pathway, TCA and urea cycle have
also been reported [7,9,12]. The changes in lipid metabolites such as fatty acid, arachidonic
acid, glycerophospholipid and sphingolipids are now considered important hallmarks
in the pathogenesis of COVID-19 [17,18]. To help to accelerate diagnostics, prognostics,
and treatment of the disease, the COVID-19 MS Coalition has been recently launched as a
collective community effort to combat the pandemic [19].

Meta-analysis of the available datasets is a promising approach to gain a comprehen-
sive understanding of the pathogenesis of the disease [20,21], as well as to help to identify
robust biomarkers to inform better clinical care and to facilitate therapeutics development.
Indeed, meta-analyses of the COVID-19 transcriptomics datasets are quickly emerging and
have produced important insights into common and unique gene expression patterns of
the disease [22–24]. However, to the best of our knowledge, meta-analyses of COVID-19
metabolomics datasets have not been conducted so far. This could be due to a much smaller
number of metabolomics studies reported so far or even more likely, due to the practical
challenges in dealing with the high levels of heterogeneity inherent in global metabolomics
datasets. Unlike transcriptomics in which genes or transcripts can be reliably identified
and quantified directly from sequencing data, the features reported by liquid chromatogra-
phy (LC)-MS-based global metabolomics are peaks characterized by their retention times
and m/z values, which are insufficient for metabolite identification in general. Moreover,
spectral peaks are not usually comparable across different studies due to differences in
chromatographic and/or MS conditions.

To address this research gap and to gain a better understanding of the metabolic changes
underlying the disease, we systematically collected the COVID-19 global metabolomics
datasets that were publicly available as of 5 November 2020 and implemented a com-
putational pipeline for spectra processing, visual exploration and meta-analysis. In this
manuscript, we report our findings and discuss their implications within the context of the
current understanding of the disease.

2. Results
2.1. Summary of Different Datasets and Their Clinical Characteristics

A total of 175 COVID-19 papers were identified in our initial search. After filtering
these studies based on our inclusion/exclusion criteria, six studies from the USA, China
and Brazil were finally included in this meta-analysis (Figure 1). One study from the
USA generated two datasets using two different metabolomic platforms. As a result,
seven datasets were finally included in this meta-analysis. Among them, five datasets
were obtained as raw spectra, including two from MetaboLights [25], one from MassIVE
(https://massive.ucsd.edu/) and two directly from the authors. The remaining two
datasets were annotated metabolite intensity tables obtained from the Supplementary
Materials of the original publications. In total, 438 samples from 337 subjects were in-
cluded. Table 1 summarizes the key information about these datasets. More details on the
patient classification criteria, technical information on experimental conditions and the
demographic characteristics of all subjects are provided in Tables S1–S3, respectively.

2.2. Processing and Overview of Individual Datasets

The five raw spectra datasets were processed using our MetaboAnalystR 3.0 pipeline
for optimized peak detection, quantification and alignment (with peak numbers ranging
from 2553 to 11,665). The final optimized parameters are provided in Table S4. The resulting
peak intensity tables from both positive and negative ion modes were combined, median
normalized and log transformed for an initial data quality check and visual inspection. The
two annotated peak tables were directly used to perform multivariate analysis. Figure 2
shows the results from Principal Component Analysis (PCA) of samples between COVID-19
and healthy controls (HCs). No clear batch effects were observed in the normalized datasets.
The first two PCs showed the clear patterns of separation for all datasets (except the C1).
The relative low variances explained by the top two PCs could be due to the very high
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dimensionality of the global metabolomics data, similar to PCA of transcriptomics data.
We further analyzed C1 using Orthogonal Projections to Latent Structures Discriminant
Analysis (OPLS-DA), which showed a significant separation. The model was evaluated
with cross validations (Q2 0.964 and R2 0.803) and permutation tests (p-value < 0.001).
Overall, these results indicated overall significant metabolic perturbations in COVID-
19 patients across all study populations. For two randomly selected datasets, we also
compared the results from our spectra processing pipeline against those from two other
public spectra processing tools [27,28] and observed that the PCA from our pipeline
produced better separation patterns (data not shown).
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Figure 1. The workflow diagram of our data curation process and analysis strategy. The six studies contain seven datasets,
five as raw spectra and two as putatively annotated peak tables.

Table 1. Summary of the seven datasets and the corresponding COVID-19 patient classifications.

Datasets Chromatogram MS
Patient Classification

Country
Total HC MM Severe Fatal

A1 [12] UPLC-C18 Q/E 49 16 27 6 0 USA

A2 * [13] UPLC-HILIC
Q/TOF 59 20 39 0 0 USA

A3 * [13] UPLC-C18

B1 [26] HPLC- C18 micrOTOF 28 13 6 3 6 Brazil

C1 [8] UPLC-C18 Triple TOF 76 26 37 11 2 China

C2 ** [9] UPLC-C18 QE-HF 71 25 37 28 0 China

C3 ** [7] UPLC- C30 Q/TRAP 96 10 14 11 9 China
HC: healthy control; MM: mild-to-moderate. * A2 and A3 are generated from the same samples using two different ultra-performance liquid
chromatography (UPLC) columns. ** annotated peak tables.
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2.3. Metabolic Pathways Changes in COVID-19 Patients 

Figure 2. Overview of the separation patterns between COVID-19 and healthy controls (HCs) across the seven datasets. The
1st and 2nd rows are the principal component analysis (PCA) results of datasets A1, A2, A3, B1, C2 and C3, respectively.
For C1 (3rd row), we performed PCA, followed by Orthogonal Projections to Latent Structures Discriminant Analysis
(OPLS-DA) and its validation by permutations (n = 1000).

2.3. Metabolic Pathways Changes in COVID-19 Patients

For each raw spectral dataset, we performed metabolic pathway activity predictions
using the Mummichog approach [29] in MetaboAnalystR 3.0. For the two annotated peak
tables, we performed pathway analysis using the quantitative enrichment method based on
their annotations. The human Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
database was used in both cases. The pathway-level p-values were further integrated to
produce a final ranked list of perturbed pathways (Figure 3). Four common pathways were
significantly changed between COVID-19 patients and HCs (p-value < 0.05). Despite the
ambiguities in individual compound assignments, we also attempted to extract the peaks
underlying these four perturbed pathways from individual studies. The correlations between
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these peaks with the symptom onset days were then statistically evaluated. Nine peaks were
significant (p-value < 0.05), with one negative and eight positive associations (Figure S1).
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2.4. Identification of Metabolic Hot Spots in COVID-19

In order to gain a high-level overview of the changes in metabolic activities caused by
COVID-19, we mapped all significant metabolites (based on putative peak annotations)
onto the KEGG global metabolic network (Figure 4). Network visualizations could reveal
coordinated metabolic activities as clusters of metabolites distributed both within and
across pathway boundaries. A total of 65 compounds have been reported by at least two
datasets within these pathways. The five colored areas indicate the top five pathways
identified in Figure 3. Other metabolic pathways also contain many metabolites that
have received hits from multiple datasets. For instance, cholesterol, d-Mannose, Tyrosine,
L-phenylalanine and Bilirubin are the top five most common compounds identified in our
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meta-analysis, which indicates their potentials as metabolic biomarkers. To complement the
meta-analysis, we performed cluster heatmap analysis at feature levels for each dataset. We
were able to identify clusters with consistently upregulated or downregulated metabolic
patterns between the two conditions in six out of the seven datasets (Figures S2–S7). The
pathway analyses based on these patterns reported similar results to those in Figure 3.
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The top five pathways ranked by their integrated p-values are shown here. The top part is the KEGG global metabolic map,
with nodes in brown showing the matched metabolites whose sizes are based on the total number of hits from different
datasets. Different colored areas represent different pathways. At the bottom are the five extracted pathways corresponding
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from different datasets.

2.5. Metabolic Changes between Mild-to-Moderate (MM) and Severe COVID-19

Four datasets contain samples from patients classified as MM and severe COVID-19.
The patients with fatal outcomes were also included in the severe group for this comparison
based on their clinical status. We first aimed to identify commonly perturbed metabolic
pathways across the four datasets. As summarized in Figure 5A, six pathways were ranked
as the top changed metabolic pathways between MM and severe groups. Similarly, we
also mapped the significant metabolites onto the KEGG global metabolic map and noticed
that only a few metabolites (L-Alanine, Uridine and Uracil) were shared across the four
datasets (Figure S8). We then performed cluster heatmap analysis on individual datasets
and visually examined the cluster patterns to identify consistent changes between MM and
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severe COVID-19. As shown in Figure 5B,C, there are some regions that show a general
decrease in abundance in the Severe group of A1. A total of eight metabolic pathways were
significantly downregulated in this group. Similarly, a consistent metabolic pattern was
also found in dataset C3 (Figure S9), but not in C1 and C2 (Figure S10).
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Figure 5. Metabolic pathway analysis and cluster heatmap analysis between mild-to-moderate (MM) and severe groups.
(A) Summary of pathway analysis and meta-analysis result. (B) Enrichment analysis on a pattern of interest identified
in dataset A1 (negative ion mode). P0: Caffeine metabolism; P1: Glyoxylate and dicarboxylate metabolism; P2: Citrate
cycle (TCA cycle); P3: Purine metabolism; P4: Lysine degradation. The vertical dashed line in the bar plot is the threshold
of p = 0.05. (C) Enrichment analysis on a pattern of interest in A1 (positive ion mode). P0: Glycine, serine and threonine
metabolism; P1: Glyoxylate and dicarboxylate metabolism; P2: Cysteine and methionine metabolism; P3: Citrate cycle
(TCA cycle); P4: Selenocompound metabolism.

2.6. Exploration of Metabolic Perturbations in Fatal COVID-19

Three datasets (C1, C3 and B1) contained COVID-19 patients with mortality infor-
mation. The C1 dataset was excluded because it contained only two cases to perform
meaningful statistical analysis. Metabolic differences between the severe and fatal patients
were evaluated with the remaining two datasets (Figure 6). Several common metabolic
pathway changes were identified from these two datasets (Figure 6A). Six metabolites were
found as the common hits after mapping to the KEGG global metabolic map (Figure S11).
From the cluster heatmap of the B1 dataset (positive ion mode), we identified a consis-
tent pattern of change showing five enriched metabolic pathways (Figure 6B). From the
cluster heatmap of C3, we combined two regions of interest and identified three enriched
metabolic pathways (Figure 6C).
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analysis and meta-analysis result. (B) Enrichment analysis on a metabolic pattern of interest in dataset B1 (positive ion
mode). P0: Primary bile acid biosynthesis; P1: D-Glutamine and D-glutamate metabolism; P2: Steroid biosynthesis; P3:
Ubiquinone and other terpenoid-quinone biosynthesis; P4: Alanine, aspartate and glutamate metabolism. The vertical
dashed line in the bar plot is the threshold of p = 0.05. (C) Enrichment analysis on the combined metabolic patterns
of interest in dataset C3. P0: Arginine biosynthesis; P1: Tyrosine metabolism; and P2: Pantothenate and Coenzyme A
(CoA) biosynthesis.

3. Discussion

Patients with SARS-CoV-2 infection manifest a classical respiratory virus-like clinical
course with activated innate and adaptive immune responses [3,30]. Multiple metabolic
pathways, such as amino acid metabolism, energy metabolism and lipid metabolism, are
involved in the initiation and maintenance of the immune responses in COVID-19. Our
meta-analysis has not only confirmed the dysregulations of these pathways as reported
by original studies, but also observed novel patterns of metabolic changes underlying the
pathogenesis of COVID-19.

Several common metabolic pathways were identified by comparing COVID-19 pa-
tients with healthy subjects. The most significantly perturbed pathway is Porphyrin
metabolism or Heme biosynthesis, which is consistent with previous reports [31,32]. The
SARS-CoV-2 virus could capture hemoglobin, displace iron and decrease the ability of
carrying oxygen, thus causing respiratory distress and coagulation reactions, damaging
multi-organs [33]. The hijacking of the cellular amino acid metabolism to fuel viral prolifer-
ation might be a critical mechanism underlying the COVID-19 pathogenesis [34]. Arachi-
donic acid is an endogenous bioactive antiviral lipid, and this metabolic pathway has been
suggested to play an important role in susceptibility to COVID-19 [35,36]. The elevated
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levels of free poly-unsaturated fatty acids are characteristics of COVID-19 patients [10,37].
However, their roles are still controversial [38–40] and warrant further studies.

The heterogeneity of COVID-19 patients shows a wide spectrum of symptoms as
well as disease severity. The risk categorization of COVID-19 is difficult because of the
complexity of the pathophysiological status of the patients. Therefore, understanding
the molecular underpinnings of the disease severities is important to help to reduce
the mortality.

Patients with mild-to-moderate (MM) cases of COVID-19 typically have an optimistic
prognosis and can recover very quickly. Pathway analysis between MM and severe COVID-
19 showed six common perturbed pathways. Most of them were amino acids pathways.
Our analysis identified propanoate as a novel pathway in the progression of COVID-19.
Propanoate metabolism usually starts with the gut microbiota and enters into immune cells
such as macrophages, thereby modulating the biological process [41]. The glyoxylate and
dicarboxylate metabolism pathway has been reported to be decreased after infection [42].
We observed that this pathway was downregulated in severe compared to MM. Downreg-
ulation of the TCA might be related to the high energy consumption of SARS-CoV-2 [7].
Decreased TCA metabolism would cause an imbalance of anti-oxidization and inflam-
matory damage [43,44]. Finally, selenocompound is an ex vivo compound originating
mainly from gut microbiota [45], and the biological effect of its decrease needs further
investigation. Both propanoate metabolism and selenocompound metabolism suggest
potential roles played by gut microbiota in the progression of COVID-19, a topic which has
gained increasing attention recently [41,46].

SARS-CoV-2 infection can not only cause pathogenic changes in the respiratory sys-
tem but can also lead to systematic multi-organ damages and death [47]. Preventing fatal
COVID-19 is the most important objective in current clinical care. In addition to the obser-
vation of extensive dysregulations in amino acid metabolism, our analysis also detected
other energy-related pathways such as mannose metabolism as reported previously [9].
The change in glutathione metabolism was observed in fatal COVID-19, providing direct
evidence for a recent clinical hypothesis that glutathione deficiency could lead to seri-
ous manifestation and death in COVID-19 [48]. This metabolic pattern also reveals other
interesting metabolic signatures. For instance, biosynthesis of bile acid might be a key
clinical manifestation of liver damage by SARS-CoV-2 infection [7,49]. The inhibition of
its synthesis might accelerate the deterioration of COVID-19 to death [50]. Endogenous
steroid biosynthesis was found to be decreased, although it could have been caused by
medical treatments. Ubiquinone has been reported to alleviate the cytokine storm and
restore exhausted T cells in COVID-19 [51]. The suppression of its biosynthesis could
worsen the disease condition. The role of vitamin B5 biosynthesis on the deterioration of
COVID-19 remains unclear, but vitamin B6 has been proposed to ameliorate the severity of
COVID-19 [52].

The high level of heterogeneity inherent in global metabolomics datasets poses tremen-
dous challenges to conduct metabolomics meta-analysis at the feature (MS peaks) level. In
this study, we utilized the well-established Mummichog method to first compute pathway
activities from MS peaks and performed meta-analysis at the pathway level. There are how-
ever, several limitations to this analysis method. The potential bias caused by differences
in the extraction procedures and analytical platforms at pathway level remains an open
question. Due to the nature of putative annotations, the significant metabolites reported in
this study need to be further validated using more targeted approaches. Although the po-
tential confounding factors (diet, ethnicity, medical treatment, etc.) were controlled within
each study, they were not considered in the current meta-analysis because most meta-data
are incomplete or missing from the original studies. We intend to address this issue by
expanding this analysis to include multiple-cohorts-based metabolomics studies when
more datasets become available in the coming year. In addition, many signatures are likely
to reflect general immune and inflammatory responses. We plan to include studies on other
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viral infections (such as SARS-CoV and influenza) to identify unique metabolic signatures
of this disease as illustrated in a recent meta-analysis based on transcriptomics [53].

4. Methods and Materials
4.1. Data Curation

This meta-analysis was strictly conducted based on the PRISMA guidelines [54].
All studies were searched for on PubMed, medRxiv (www.medrxiv.org/), and bioRxiv
(www.biorxiv.org/) using the search term “(COVID-19) AND (Metabolomics)” before
5 November 2020. The inclusion criteria for further processing were as below: (1) The
study should have had a matched healthy control for COVID-19 samples; (2) all raw
spectra data or original/annotated peak tables should have been available publicly or
upon request; (3) to ensure comparability, only LC-MS-based global metabolomics datasets
were included; other metabolomics datasets generated by gas chromatography (GC)-MS or
nuclear magnetic resonance (NMR) were excluded. The PRISMA 2009 Flow Diagram is
provided in Figure S12.

4.2. Patient Classification

All COVID-19 patients were diagnosed separately at their original hospitals or testing
centers. Their disease severities were classified according to a combined standard based
on the Guideline of Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (8th)
published by the National Health Commission of China [55], WHO R&D Blueprint novel
Coronavirus COVID-19 Therapeutic Trial Synopsis [56], and an inflammation correlated
cytokine, IL-6 as used in the original studies [12].

4.3. Raw Spectra Processing

Raw LC–MS spectra were first converted and centroided from vendor format to
mzML using ProteoWizard [57]. All centroided spectra were processed with an automated
pipeline with built-in parameter optimization procedures as described in MetaboAnalystR
3.0 [58]. For annotated peak tables, the names were standardized with the ID conversion
tool in MetaboAnalyst [59]. The remaining ambiguous compounds/peaks were manually
corrected based on HMDB [60].

4.4. Statistical Analysis

Chemometrics analysis (PCA and OLS-DA) was performed based on the normalized
peak tables using the corresponding functions in MetaboAnalystR 3.0. Spearman correla-
tions between the onset days of symptoms and metabolic features were calculated using
base R package (v4.0.2). The confidence interval of the significant correlation was set to 0.95.

4.5. Metabolic Pathway Analysis and Meta-Analysis

The pathways analysis on the datasets from raw spectra in this present study was per-
formed independently for every dataset using Mummichog [29] from the MetaboAnalystR
3.0 workflow [58]. The pathways analysis on the two annotated peak tables was completed
with the Pathway Analysis module based on the default quantitative enrichment analysis
method and the human KEGG database [61]. The meta-analysis was performed at the path-
way levels. The combined p-values were computed based on the vote counting method in
the metap package in R (v4.0.2) by counting the p-value from two directions and outputting
an integrated p-value based on the counting results. The enrichment ratio describes the
relative percentage of the empirical compound hits to the whole empirical pathway. The
enrichment ratio of the compounds from the annotated peak tables was calculated with the
average of the other empirical pathway size as the denominator.

4.6. Global Metabolic Network Visualization

The MS peaks from different studies were putatively annotated based on the Mum-
michog algorithm and mapped to the KEGG global metabolic network using the Peaks

www.medrxiv.org/
www.biorxiv.org/
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to Pathway module in MetaboAnalyst [59]. The sizes of the matched nodes (compounds)
corresponded to the number of hits received from different studies. For those highlighted
pathways, the corresponding compounds were extracted, with edges between compounds
representing direct interactions based on the KEGG global metabolic reaction network.

4.7. Cluster Heatmap Analysis

The peak intensity tables from the individual datasets were uploaded to the Peaks
to Pathway module in MetaboAnalyst 4.0 [59]. After normalization, the peak tables were
displayed as an interactive heatmap with different clustering options. From the Overview
on the left panel, we manually selected patterns of interest to be displayed on the Focus view
on the central panel. Pathway activity predictions were performed based on Mummichog
using the peaks in the current Focus view as significant peaks.

5. Conclusions

There are significant knowledge gaps in the systems biology of COVID-19. The
ongoing multi-omics investigations will continue to yield valuable insights to fill this gap
in the coming year. Global metabolomics can provide rich data that complement other
omics layers to inform the development of diagnostics, prognostics, and treatment of
COVID-19. In this study, we have systematically curated public metabolomics datasets and
performed comprehensive data processing, analysis and meta-analysis to identify common
as well as unique metabolic signatures underlying different clinical courses of COVID-19.
Our results suggest that extensive dysregulations of amino acids metabolism, damage
to the oxygen transport in red blood cells, exhaustion of endogenous immune bioactive
metabolites and the suppression of multiple physiological processes are the metabolic
characteristics underlying the progression of COVID-19. We will continue to improve
the computational workflow and expand the scale and scope of the current meta-analysis
when more metabolomics datasets become available in the coming year.

Supplementary Materials: The following are available online at https://www.mdpi.com/2218-1
989/11/1/44/s1. Table S1: Classification Standards for Different Severities of COVID-19; Table
S2: Technical information of all datasets included in this study; Table S3: Clinical demographics
characteristics of all subjects; Table S4: Optimized parameters of all datasets for raw spectral pro-
cessing. Figure S1: The Spearman correlation analysis on the onset time (days) with the metabolites
in the significantly perturbed pathways; Figure S2: Cluster heatmap analysis between COVID-19
and HC groups of Dataset A1; Figure S3: Cluster heatmap analysis between COVID-19 and HC
groups of Dataset A2; Figure S4: Cluster heatmap analysis between COVID-19 and HC groups of
Dataset A3; Figure S5: Cluster heatmap analysis between COVID-19 and HC groups of Dataset C1;
Figure S6: Cluster heatmap analysis between COVID-19 and HC groups of Dataset C2; Figure S7:
Cluster heatmap analysis between COVID-19 and HC groups of Dataset B1; Figure S8: Overview
of perturbed pathways in COVID-19 across datasets for comparison between mild-to-moderate
(MM) and severe COVID-19; Figure S9: The metabolic pattern between MM and severe of dataset
C3; Figure S10: The metabolic pattern between MM and severe of dataset C1 and C2; Figure S11:
Overview of perturbed pathways in COVID-19 across datasets for comparison between severe and
fatal COVID-19; Figure S12: PRISMA 2009 Flow Diagram.

Author Contributions: Conceptualization, J.X.; data curation, Z.P.; formal analysis, Z.P., G.Z. and
J.C.; funding acquisition, J.X.; methodology, Z.P., G.Z., J.C. and J.X.; supervision, J.X.; writing, original
draft, Z.P.; review and editing, J.X. and J.C. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by Genome Canada, Génome Québec, US National Institutes of
Health (U01 CA235493), Natural Sciences and Engineering Research Council of Canada (NSERC)
and Canada Research Chairs (CRC) Program.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

https://www.mdpi.com/2218-1989/11/1/44/s1
https://www.mdpi.com/2218-1989/11/1/44/s1


Metabolites 2021, 11, 44 12 of 14

Data Availability Statement: The data presented in this study are openly available from this link:
https://drive.google.com/drive/folders/1R_I_gu5D3SkD_9q_J93HOA9GuKxZiGNG.

Acknowledgments: The authors truly appreciate the support from original authors Angelo D’Alessandro
and Guanghou Shui for providing the raw spectra datasets.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lucas, C.; Wong, P.; Klein, J.; Castro, T.B.R.; Silva, J.; Sundaram, M.; Ellingson, M.K.; Mao, T.; Oh, J.E.; Israelow, B.; et al.

Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 2020, 584, 463–469. [CrossRef]
2. World Health Organization. Coronavirus Disease (COVID-19) Pandemic. Available online: https://www.who.int/emergencies/

diseases/novel-coronavirus-2019 (accessed on 5 November 2020).
3. Azkur, A.K.; Akdis, M.; Azkur, D.; Sokolowska, M.; Veen, W.; Brüggen, M.C.; O’Mahony, L.; Gao, Y.; Nadeau, K.;

Akdis, C.A. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy 2020,
75, 1564–1581. [CrossRef]

4. Grifoni, A.; Weiskopf, D.; Ramirez, S.I.; Mateus, J.; Dan, J.M.; Moderbacher, C.R.; Rawlings, S.A.; Sutherland, A.; Premkumar, L.;
Jadi, R.S.; et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed
Individuals. Cell 2020, 181, 1489–1501.e15. [CrossRef]

5. Pang, Z.; Wang, G.; Wang, C.; Zhang, W.; Liu, J.; Wang, F. Serum Metabolomics Analysis of Asthma in Different Inflammatory
Phenotypes: A Cross-Sectional Study in Northeast China. BioMed. Res. Int. 2018, 2018. [CrossRef]

6. Psychogios, N.; Hau, D.D.; Peng, J.; Guo, A.C.; Mandal, R.; Bouatra, S.; Sinelnikov, I.; Krishnamurthy, R.; Eisner, R.;
Gautam, B.; et al. The human serum metabolome. PLoS ONE 2011, 6, e16957. [CrossRef]

7. Wu, D.; Shu, T.; Yang, X.; Song, J.-X.; Zhang, M.; Yao, C.; Liu, W.; Huang, M.; Yu, Y.; Yang, Q.; et al. Plasma metabolomic and
lipidomic alterations associated with COVID-19. Natl. Sci. Rev. 2020, 7, 1157–1168. [CrossRef]

8. Song, J.-W.; Lam, S.M.; Fan, X.; Cao, W.-J.; Wang, S.-Y.; Tian, H.; Chua, G.H.; Zhang, C.; Meng, F.-P.; Xu, Z.; et al. Omics-Driven
Systems Interrogation of Metabolic Dysregulation in COVID-19 Pathogenesis. Cell Metab. 2020, 32, 188–202.e5. [CrossRef]

9. Shen, B.; Yi, X.; Sun, Y.; Bi, X.; Du, J.; Zhang, C.; Quan, S.; Zhang, F.; Sun, R.; Qian, L.; et al. Proteomic and Metabolomic
Characterization of COVID-19 Patient Sera. Cell 2020, 182, 59–72.e15. [CrossRef]

10. Maras, J.S.; Sharma, S.; Bhat, A.R.; Aggarwal, R.; Gupta, E.; Sarin, S.K. Multi-Omics integration analysis of respiratory specimen
characterizes baseline molecular determinants associated with COVID-19 diagnosis. MedRxiv 2020. [CrossRef]

11. Blasco, H.; Bessy, C.; Plantier, L.; Lefevre, A.; Piver, E.; Bernard, L.; Marlet, J.; Stefic, K.; Benz-De Bretagne, I.; Cannet, P.; et al.
The specific metabolome profiling of patients infected by SARS-COV-2 supports the key role of tryptophan-nicotinamide pathway
and cytosine metabolism. Sci. Rep. 2020, 10, 16824. [CrossRef]

12. Thomas, T.; Stefanoni, D.; Reisz, J.A.; Nemkov, T.; Bertolone, L.; Francis, R.O.; Hudson, K.E.; Zimring, J.C.; Hansen, K.C.;
Hod, E.A.; et al. COVID-19 infection alters kynurenine and fatty acid metabolism, correlating with IL-6 levels and renal status.
JCI Insight 2020, 5, e140327. [CrossRef]

13. Cai, Y.; Kim, D.J.; Takahashi, T.; Broadhurst, D.I.; Ma, S.; Rattray, N.J.W.; Casanovas-Massana, A.; Israelow, B.; Klein, J.; Lucas, C.;
et al. Kynurenic acidunderlies sex-specific immune responsestoCOVID-19. MedRxiv 2020. [CrossRef]

14. Su, Y.; Chen, D.; Lausted, C.; Yuan, D.; Choi, J.; Dai, C.; Voillet, V.; Scherler, K.; Troisch, P.; Duvvuri, V.R.; et al.
Multiomic Immunophenotyping of COVID-19 Patients Reveals Early Infection Trajectories. BioRxiv 2020. [CrossRef]

15. Zhao, Y.; Shang, Y.; Ren, Y.; Bie, Y.; Qiu, Y.; Yuan, Y.; Zhao, Y.; Zou, L.; Lin, S.H.; Zhou, X. Omics study reveals abnormal
alterations of breastmilk proteins and metabolites in puerperant women with COVID-19. Signal Transduct. Target. Ther. 2020,
5, 247. [CrossRef]

16. Delafiori, J.; Navarro, L.C.; Siciliano, R.F.; de Melo, G.C.; Busanello, E.N.B.; Nicolau, J.C.; Sales, G.M.; de Oliveira, A.N.;
Val, F.F.A.; de Oliveira, D.N.; et al. Covid-19 automated diagnosis and risk assessment through Metabolomics and Machine-
Learning. MedRxiv 2020. [CrossRef]

17. Hannun, Y.A.; Obeid, L.M. Principles of bioactive lipid signalling: Lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 2008,
9, 139–150. [CrossRef]

18. Chiurchiù, V.; Leuti, A.; Maccarrone, M. Bioactive Lipids and Chronic Inflammation: Managing the Fire Within. Front. Immunol.
2018, 9, 38. [CrossRef]

19. Struwe, W.; Emmott, E.; Bailey, M.; Sharon, M.; Sinz, A.; Corrales, F.J.; Thalassinos, K.; Braybrook, J.; Mills, C.; Barran, P.; et al.
The COVID-19 MS Coalition-accelerating diagnostics, prognostics, and treatment. Lancet 2020, 395, 1761–1762. [CrossRef]

20. Zaas, A.K.; Chen, M.; Varkey, J.; Veldman, T.; Hero, A.O., 3rd; Lucas, J.; Huang, Y.; Turner, R.; Gilbert, A.;
Lambkin-Williams, R.; et al. Gene expression signatures diagnose influenza and other symptomatic respiratory viral
infections in humans. Cell Host Microbe 2009, 6, 207–217. [CrossRef]

21. Zhou, G.; Stevenson, M.M.; Geary, T.G.; Xia, J. Comprehensive Transcriptome Meta-analysis to Characterize Host Immune
Responses in Helminth Infections. PLoS Negl. Trop. Dis. 2016, 10, e0004624. [CrossRef]

22. Gardinassi, L.G.; Souza, C.O.S.; Sales-Campos, H.; Fonseca, S.G. Immune and Metabolic Signatures of COVID-19 Revealed by
Transcriptomics Data Reuse. Front. Immunol. 2020, 11, 1636. [CrossRef]

https://drive.google.com/drive/folders/1R_I_gu5D3SkD_9q_J93HOA9GuKxZiGNG
https://drive.google.com/drive/folders/1R_I_gu5D3SkD_9q_J93HOA9GuKxZiGNG
http://doi.org/10.1038/s41586-020-2588-y
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
http://doi.org/10.1111/all.14364
http://doi.org/10.1016/j.cell.2020.05.015
http://doi.org/10.1155/2018/2860521
http://doi.org/10.1371/journal.pone.0016957
http://doi.org/10.1093/nsr/nwaa086
http://doi.org/10.1016/j.cmet.2020.06.016
http://doi.org/10.1016/j.cell.2020.05.032
http://doi.org/10.1101/2020.07.06.20147082
http://doi.org/10.1038/s41598-020-73966-5
http://doi.org/10.1172/jci.insight.140327
http://doi.org/10.1101/2020.09.06.20189159v2
http://doi.org/10.2139/ssrn.3659389
http://doi.org/10.1038/s41392-020-00362-w
http://doi.org/10.1101/2020.07.24.20161828
http://doi.org/10.1038/nrm2329
http://doi.org/10.3389/fimmu.2018.00038
http://doi.org/10.1016/S0140-6736(20)31211-3
http://doi.org/10.1016/j.chom.2009.07.006
http://doi.org/10.1371/journal.pntd.0004624
http://doi.org/10.3389/fimmu.2020.01636


Metabolites 2021, 11, 44 13 of 14

23. Cavalli, E.; Petralia, M.C.; Basile, M.S.; Bramanti, A.; Bramanti, P.; Nicoletti, F.; Spandidos, D.A.; Shoenfeld, Y.; Fagone, P.
Transcriptomic analysis of COVID19 lungs and bronchoalveolar lavage fluid samples reveals predominant B cell activation
responses to infection. Int. J. Mol. Med. 2020, 46, 1266–1273. [CrossRef]

24. Pinto, B.G.G.; Oliveira, A.E.R.; Singh, Y.; Jimenez, L.; Gonçalves, A.N.A.; Ogava, R.L.T.; Creighton, R.; Peron, J.P.S.; Nakaya, H.I.
ACE2 Expression is Increased in the Lungs of Patients with Comorbidities Associated with Severe COVID-19. MedRxiv Prepr.
Serv. Health Sci. 2020. [CrossRef]

25. Kale, N.S.; Haug, K.; Conesa, P.; Jayseelan, K.; Moreno, P.; Rocca-Serra, P.; Nainala, V.C.; Spicer, R.A.; Williams, M.; Li, X.; et al.
MetaboLights: An Open-Access Database Repository for Metabolomics Data. Curr. Protoc. Bioinform. 2016, 53. [CrossRef]

26. Gauglitz, J.M.; Bittremieux, W.; Williams, C.L.; Weldon, K.C.; Panitchpakdi, M.; Di Ottavio, F.; Aceves, C.M.; Brown, E.; Sikora,
N.C.; Jarmusch, A.K.; et al. Reference data based insights expand understanding of human metabolomes. BioRxiv 2020. [CrossRef]

27. Tautenhahn, R.; Patti, G.J.; Rinehart, D.; Siuzdak, G. XCMS Online: A web-based platform to process untargeted metabolomic
data. Anal. Chem. 2012, 84, 5035–5039. [CrossRef]

28. Yu, T.; Park, Y.; Johnson, J.M.; Jones, D.P. apLCMS–adaptive processing of high-resolution LC/MS data. Bioinformatics 2009,
25, 1930–1936. [CrossRef]

29. Li, S.; Park, Y.; Duraisingham, S.; Strobel, F.H.; Khan, N.; Soltow, Q.A.; Jones, D.P.; Pulendran, B. Predicting Network Activity
from High Throughput Metabolomics. PLoS Comput. Biol. 2013, 9, e1003123. [CrossRef]

30. García, L.F. Immune Response, Inflammation, and the Clinical Spectrum of COVID-19. Front. Immunol. 2020, 11, 1441. [CrossRef]
31. San Juan, I.; Bruzzone, C.; Bizkarguenaga, M.; Bernardo-Seisdedos, G.; Laín, A.; Gil-Redondo, R.; Diercks, T.; Gil-Martínez, J.;

Urquiza, P.; Arana, E.; et al. Abnormal concentration of porphyrins in serum from COVID-19 patients. Br. J. Haematol. 2020,
190, e265–e267. [CrossRef]

32. Ponti, G.; Maccaferri, M.; Ruini, C.; Tomasi, A.; Ozben, T. Biomarkers associated with COVID-19 disease progression. Crit Rev.
Clin. Lab. Sci 2020, 57, 389–399. [CrossRef]

33. liu, w.; Li, h. COVID-19: Attacks the 1-Beta Chain of Hemoglobin and Captures the Porphyrin to Inhibit Human Heme
Metabolism. ChemRxiv 2020. [CrossRef]

34. Thaker, S.K.; Ch’ng, J.; Christofk, H.R. Viral hijacking of cellular metabolism. BMC Biol. 2019, 17, 59. [CrossRef] [PubMed]
35. Hoxha, M. What about COVID-19 and arachidonic acid pathway? Eur. J. Clin. Pharmacol. 2020, 76, 1501–1504.

[CrossRef] [PubMed]
36. Hammock, B.D.; Wang, W.; Gilligan, M.M.; Panigrahy, D. Eicosanoids: The Overlooked Storm in Coronavirus Disease 2019

(COVID-19)? Am. J. Pathol. 2020, 190, 1782–1788. [CrossRef] [PubMed]
37. Schwarz, B.; Sharma, L.; Roberts, L.; Peng, X.; Bermejo, S.; Leighton, I.; Massana, A.C.; Farhadian, S.; Ko, A.; DelaCruz, C.; et al.

Severe SARS-CoV-2 infection in humans is defined by a shift in the serum lipidome resulting in dysregulation of eicosanoid
immune mediators. MedRxiv 2020. [CrossRef]

38. Darwesh, A.M.; Bassiouni, W.; Sosnowski, D.K.; Seubert, J.M. Can N-3 polyunsaturated fatty acids be considered a potential
adjuvant therapy for COVID-19-associated cardiovascular complications? Pharm. Ther. 2020, 107703. [CrossRef] [PubMed]

39. Margină, D.; Ungurianu, A.; Purdel, C.; Tsoukalas, D.; Sarandi, E.; Thanasoula, M.; Tekos, F.; Mesnage, R.; Kouretas, D.; Tsatsakis,
A. Chronic Inflammation in the Context of Everyday Life: Dietary Changes as Mitigating Factors. Int. J. Environ. Res. Public Health
2020, 17, 4135. [CrossRef]

40. Iddir, M.; Brito, A.; Dingeo, G.; Fernandez Del Campo, S.S.; Samouda, H.; La Frano, M.R.; Bohn, T. Strengthening the Immune
System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19
Crisis. Nutrients 2020, 12, 1562. [CrossRef]

41. Dhar, D.; Mohanty, A. Gut microbiota and Covid-19-possible link and implications. Virus Res. 2020, 285, 198018. [CrossRef]
42. Gassen, N.C.; Papies, J.; Bajaj, T.; Dethloff, F.; Emanuel, J.; Weckmann, K.; Heinz, D.E.; Heinemann, N.; Lennarz, M.; Richter,

A.; et al. Analysis of SARS-CoV-2-controlled autophagy reveals spermidine, MK-2206, and niclosamide as putative antiviral
therapeutics. BioRxiv 2020. [CrossRef]

43. Li, Z.; Liu, G.; Wang, L.; Liang, Y.; Zhou, Q.; Wu, F.; Yao, J.; Chen, B. From the insight of glucose metabolism disorder: Oxygen
therapy and blood glucose monitoring are crucial for quarantined COVID-19 patients. Ecotoxicol. Environ. Saf. 2020, 197, 110614.
[CrossRef] [PubMed]

44. Williams, N.C.; O’Neill, L.A.J. A Role for the Krebs Cycle Intermediate Citrate in Metabolic Reprogramming in Innate Immunity
and Inflammation. Front. Immunol. 2018, 9, 141. [CrossRef] [PubMed]

45. Takahashi, K.; Suzuki, N.; Ogra, Y. Effect of gut microflora on nutritional availability of selenium. Food Chem. 2020, 319, 126537.
[CrossRef] [PubMed]

46. Kumar, P.; Chander, B. COVID 19 mortality: Probable role of microbiome to explain disparity. Med. Hypotheses 2020, 144, 110209.
[CrossRef] [PubMed]

47. Bradley, B.T.; Maioli, H.; Johnston, R.; Chaudhry, I.; Fink, S.L.; Xu, H.; Najafian, B.; Deutsch, G.; Lacy, J.M.; Williams, T.; et al.
Histopathology and ultrastructural findings of fatal COVID-19 infections in Washington State: A case series. Lancet 2020,
396, 320–332. [CrossRef]

48. Polonikov, A. Endogenous Deficiency of Glutathione as the Most Likely Cause of Serious Manifestations and Death in COVID-19
Patients. ACS Infect. Dis. 2020, 6, 1558–1562. [CrossRef]

http://doi.org/10.3892/ijmm.2020.4702
http://doi.org/10.1101/2020.03.21.20040261
http://doi.org/10.1002/0471250953.bi1413s53
http://doi.org/10.2139/ssrn.3661950
http://doi.org/10.1021/ac300698c
http://doi.org/10.1093/bioinformatics/btp291
http://doi.org/10.1371/journal.pcbi.1003123
http://doi.org/10.3389/fimmu.2020.01441
http://doi.org/10.1111/bjh.17060
http://doi.org/10.1080/10408363.2020.1770685
http://doi.org/10.26434/chemrxiv.11938173.v9
http://doi.org/10.1186/s12915-019-0678-9
http://www.ncbi.nlm.nih.gov/pubmed/31319842
http://doi.org/10.1007/s00228-020-02941-w
http://www.ncbi.nlm.nih.gov/pubmed/32583353
http://doi.org/10.1016/j.ajpath.2020.06.010
http://www.ncbi.nlm.nih.gov/pubmed/32650004
http://doi.org/10.1101/2020.07.09.20149849
http://doi.org/10.1016/j.pharmthera.2020.107703
http://www.ncbi.nlm.nih.gov/pubmed/33031856
http://doi.org/10.3390/ijerph17114135
http://doi.org/10.3390/nu12061562
http://doi.org/10.1016/j.virusres.2020.198018
http://doi.org/10.1101/2020.04.15.997254
http://doi.org/10.1016/j.ecoenv.2020.110614
http://www.ncbi.nlm.nih.gov/pubmed/32298856
http://doi.org/10.3389/fimmu.2018.00141
http://www.ncbi.nlm.nih.gov/pubmed/29459863
http://doi.org/10.1016/j.foodchem.2020.126537
http://www.ncbi.nlm.nih.gov/pubmed/32193059
http://doi.org/10.1016/j.mehy.2020.110209
http://www.ncbi.nlm.nih.gov/pubmed/33254516
http://doi.org/10.1016/S0140-6736(20)31305-2
http://doi.org/10.1021/acsinfecdis.0c00288


Metabolites 2021, 11, 44 14 of 14

49. Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138
Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [CrossRef]

50. Abdulrab, S.; Al-Maweri, S.; Halboub, E. Ursodeoxycholic acid as a candidate therapeutic to alleviate and/or prevent COVID-19-
associated cytokine storm. Med. Hypotheses 2020, 143, 109897. [CrossRef]

51. Ouyang, L.; Gong, J. Mitochondrial-targeted ubiquinone: A potential treatment for COVID-19. Med. Hypotheses 2020,
144, 110161. [CrossRef]

52. Kumrungsee, T.; Zhang, P.; Chartkul, M.; Yanaka, N.; Kato, N. Potential Role of Vitamin B6 in Ameliorating the Severity of
COVID-19 and Its Complications. Front. Nutr. 2020, 7, 562051. [CrossRef]

53. Thair, S.A.; He, Y.D.; Hasin-Brumshtein, Y.; Sakaram, S.; Pandya, R.; Toh, J.; Rawling, D.; Remmel, M.; Coyle, S.; Dalekos, G.N.;
et al. Transcriptomic similarities and differences in host response between SARS-CoV-2 and other viral infections. iScience 2021,
24, 101947. [CrossRef]

54. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The, P.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses:
The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [CrossRef] [PubMed]

55. National Health Commission of the People’s Republic of China. Diagnosis and Treatment Protocol for Novel Coronavirus
Pneumonia (8th). Available online: http://www.nhc.gov.cn/ (accessed on 5 November 2020).

56. WHO. WHO R&D Blueprint novel Coronavirus COVID-19 Therapeutic Trial Synopsis. Available online: https://www.who.int/
blueprint/priority-diseases/key-action/COVID-19_Treatment_Trial_Design_Master_Protocol_synopsis_Final_18022020.pdf
(accessed on 5 November 2020).

57. Chambers, M.C.; Maclean, B.; Burke, R.; Amodei, D.; Ruderman, D.L.; Neumann, S.; Gatto, L.; Fischer, B.; Pratt, B.; Egertson, J.;
et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 2012, 30, 918–920. [CrossRef] [PubMed]

58. Pang, Z.; Chong, J.; Li, S.; Xia, J. MetaboAnalystR 3.0: Toward an Optimized Workflow for Global Metabolomics. Metabolites 2020,
10, 186. [CrossRef] [PubMed]

59. Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis.
Curr. Protoc. Bioinform. 2019, 68, e86. [CrossRef]

60. Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vazquez-Fresno, R.; Sajed, T.; Johnson, D.; Li, C.; Karu, N.; et al.
HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res. 2018, 46, D608–D617. [CrossRef]

61. Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and
drugs. Nucleic Acids Res. 2017, 45, D353–D361. [CrossRef]

http://doi.org/10.1001/jama.2020.1585
http://doi.org/10.1016/j.mehy.2020.109897
http://doi.org/10.1016/j.mehy.2020.110161
http://doi.org/10.3389/fnut.2020.562051
http://doi.org/10.1016/j.isci.2020.101947
http://doi.org/10.1371/journal.pmed.1000097
http://www.ncbi.nlm.nih.gov/pubmed/19621072
http://www.nhc.gov.cn/
https://www.who.int/blueprint/priority-diseases/key-action/COVID-19_Treatment_Trial_Design_Master_Protocol_synopsis_Final_18022020.pdf
https://www.who.int/blueprint/priority-diseases/key-action/COVID-19_Treatment_Trial_Design_Master_Protocol_synopsis_Final_18022020.pdf
http://doi.org/10.1038/nbt.2377
http://www.ncbi.nlm.nih.gov/pubmed/23051804
http://doi.org/10.3390/metabo10050186
http://www.ncbi.nlm.nih.gov/pubmed/32392884
http://doi.org/10.1002/cpbi.86
http://doi.org/10.1093/nar/gkx1089
http://doi.org/10.1093/nar/gkw1092

	Introduction 
	Results 
	Summary of Different Datasets and Their Clinical Characteristics 
	Processing and Overview of Individual Datasets 
	Metabolic Pathways Changes in COVID-19 Patients 
	Identification of Metabolic Hot Spots in COVID-19 
	Metabolic Changes between Mild-to-Moderate (MM) and Severe COVID-19 
	Exploration of Metabolic Perturbations in Fatal COVID-19 

	Discussion 
	Methods and Materials 
	Data Curation 
	Patient Classification 
	Raw Spectra Processing 
	Statistical Analysis 
	Metabolic Pathway Analysis and Meta-Analysis 
	Global Metabolic Network Visualization 
	Cluster Heatmap Analysis 

	Conclusions 
	References

