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High content screening (HCS) experiments create a classic data management challenge—multiple, large
sets of heterogeneous structured and unstructured data, that must be integrated and linked to produce
a set of ‘‘final” results. These different data include images, reagents, protocols, analytic output, and phe-
notypes, all of which must be stored, linked and made accessible for users, scientists, collaborators and
where appropriate the wider community. The OME Consortium has built several open source tools for
managing, linking and sharing these different types of data. The OME Data Model is a metadata specifi-
cation that supports the image data and metadata recorded in HCS experiments. Bio-Formats is a Java
library that reads recorded image data and metadata and includes support for several HCS screening sys-
tems. OMERO is an enterprise data management application that integrates image data, experimental and
analytic metadata and makes them accessible for visualization, mining, sharing and downstream analy-
sis. We discuss how Bio-Formats and OMERO handle these different data types, and how they can be used
to integrate, link and share HCS experiments in facilities and public data repositories. OME specifications
and software are open source and are available at https://www.openmicroscopy.org.

� 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

High content screening (HCS) experiments inevitably combine
several types of experimental information that must be linked,
integrated, and processed into a set of interpretable results, share-
able in a report or scientific paper. These related, but distinct sets
of data—experimental metadata describing protocols, reagents
and data acquisition; images recording the structure and dynamics
of the cells and/or tissues being assayed; and downstream analytic
output converting image-derived phenotypes into qualitative or
quantitative metadata—all comprise a single ‘‘experiment” or ‘‘as-
say”. They must be linked and integrated to enable understanding
and interpretation of an HCS experiment. Data management func-
tions—software tools that deliver data linkage and integration—are
therefore a critical component of HCS experiments.

In many scientific applications, data management is imple-
mented using a file-based approach. Experimental metadata,
binary data (in HCS experiments, this is the image data) and ana-
lytic metadata are stored in files on a filesystem. Experimental
and analytic metadata stored in spreadsheets is relatively simple
to read and write, and linkages to image data files (names and loca-
tions of files, etc.) can be stored alongside metadata. This approach
is used quite often in small labs—it is simple to implement and
easy to understand. However, as data volumes grow in size and
complexity, more sophisticated systems are required to query, pro-
cess and access complex, highly integrated and linked datasets.
Metadata must be stored in a database that allows querying and
processing by large, distributed computational resources. In many
cases, coordinated access to metadata and binary data are
necessary.

Since 2000, the Open Microscopy Environment (OME) has been
building and releasing open specifications and software that pro-
vide data management resources for biological and biomedical
imaging. OME has three components—an open data model and file
formats for biological imaging (OME Data Model and OME-TIFF),
software libraries for data file conversion (Bio-Formats), and soft-
ware tools for image data management and analysis (OMERO). In
2008, we presented our first overview of using OMERO for HCS
data [1]. In this paper, we present an update on the usage of
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Bio-Formats and OMERO for HCS data, and focus on the latest
strategies available in OMERO for storing and managing the many
different types of metadata recorded and used in modern HCS
experiments.

2. Methods

2.1. Software

Bio-Formats is developed and released in Java, with single jar
files available for download (https://downloads.openmicroscopy.
org). The software is built by reverse engineering datasets submit-
ted by the scientific community. Once a reader for a specific file
format is built, it is tested daily against submitted files (https://
ci.openmicroscopy.org). As of this writing (July 2015), >31,000
datasets made up of >600,000 files totaling >5.2 TB are used for
developing and testing Bio-Formats. A detailed description of the
design and architecture of Bio-Formats has been published [2].

OMERO is an enterprise data management application that
combines mechanisms for storing and accessing image metadata,
binary pixel data, text-based tag and file annotations, and analytic
output [3]. OMERO is built as a Java-based middleware application
that links a PostgreSQL relational database, a Lucene-based search
index, a filesystem-based image repository and an HDF-based tab-
ular data store [3]. OMERO’s client–server architecture enables
remote access to the data it holds. OMERO’s permissions system
controls access to that data ensuring that each dataset, image,
annotation or analytic result is only retrievable by those with cor-
rect permissions to do so [4]. A Python-based scripting engine pro-
vides an interface for data processing and supports processing and
analysis applications. Several examples of integrating analysis
tools into OMERO have been published [3,5–7].

Bio-Formats and OMERO are built upon the OME Data Model, a
specification for metadata related to imaging [8,9]. They use the
OME Data Model to natively support 5D imaging (space, time
and channel) [10] and have extension points for reagents, multiple
illumination paths (e.g., fluorescence recovery after photobleach-
ing (FRAP), or photo activation or photoconversion), and spe-
cialised multi-dimensional imaging modalities like fluorescence
lifetime imaging (FLIM) and optical projection tomography (OPT)
[5].

This model-based approach allows Bio-Formats and OMERO to
progressively support new metadata types and imaging domains,
without a complete re-engineering of the software. OMERO uses
the Ice library (http://zeroc.com) to provide an application pro-
gramming interface (API) that supports client environments built
in HTML, Python, Java, C++, and several frameworks, including
Matlab. With Bio-Formats providing access to >140 image file for-
mats [2] and OMERO providing support for most major data visu-
alisation and processing environments, this platform provides
access for most modern software tools and imaging modalities in
use in the life and biomedical sciences. OMERO has been recently
updated (Feb 2014) to read data directly from image data files in
their proprietary file formats using a substantially enhanced Bio-
Formats library [11].

2.2. Process

The OME codebase is stored and accessed on Github (https://
github.com/openmicroscopy). Code fixes, updates and new func-
tions are submitted by a member of the OME team or the wider
community and then reviewed by another member of the team
(https://www.openmicroscopy.org/site/support/contributing/). If
approved, they are checked for adherence to code style and format-
ting guidelines by an automatic tool (SCC; (https://github.com/
openmicroscopy/snoopycrimecop)), merged with the rest of the
code base and automatically run through a series of tests using
OME’s continuous integration system (https://ci.openmicroscopy.
org). Any failing tests are reported and corrected. In preparation
for a release, the software is manually run through a series of test-
ing scenarios that exercise most of the known use cases and user
workflows. Once all tests pass, the software is released for down-
load (https://downloads.openmicroscopy.org).
3. Results

3.1. Data import and access: OMERO and Bio-Formats 5

Starting with OMERO 5.0 (released February 2014) we have
implemented a new approach for data access. From this release
forward, image data are read directly from native files via Bio-
Formats. The OMERO.server is connected to a filesystem containing
image data and all relevant metadata is imported into OMERO’s
database. Access to binary image data is achieved in real time by
using Bio-Formats to read pixel data directly from the original
image data formats. This approach substantially accelerates data
import—it eliminates lengthy transfers of large binary pixel data
into OMERO and prevents unnecessary data duplication. The tech-
nical details of this new data access strategy have been recently
published [11].

For HCS data—large datasets comprised of 103–106 individual
images—this approach substantially improves OMERO’s perfor-
mance and utility. In addition, OMERO 5’s import strategy also
allows users and sysadmins to access data from multiple sources,
thereby providing more flexibility and adaptability to individual
institutions’ storage strategies.

In Bio-Formats and OMERO 5.1 (released April 2015), we again
delivered on improved performance for Bio-Formats, especially for
networked file systems. We reduced the overhead of file opening
and improved caching of image metadata in Bio-Formats. For pro-
duction data acquisition facilities, we also expanded the ability for
one user (e.g., a facility manager) to import data for another (e.g.,
a scientist user of the facility’s resources).

These changes substantially improve and enhance OMERO’s
performance and utility for large-scale data processing. For calcu-
lations distributed across a multi-node cluster, access to metadata
and annotations is achieved through the OMERO API, whereas
access to binary image data is achieved directly using Bio-
Formats, from image data files stored on a clustered file system
(e.g., GPFS, Lustre, etc.). This flexibility is important regardless of
the size or complexity of the image processing calculations. Even
simple calculations can be a major challenge for an HCS data man-
agement system. Examples are the calculation of thumbnails or of
basic image metadata parameters (minimum, maximum, mean,
median intensity), and the re-calculation of thumbnails with new
rendering settings. Since each image has to be read before a
thumbnail can be calculated, performance is limited by access to
binary image data. For these large calculations, the OMERO API
can be used for metadata and result handling capabilities (see
below, 3.3) and a distributed calculation can take advantage of
an appropriate filesystem to avoid I/O bottlenecks. The same con-
cept applies for more complex calculations like object segmenta-
tion or multi-parametric feature calculation that also depend on
access to binary image data.
3.2. HCS data sharing and publication

Most scientific enterprises have a critical need to securely share
large datasets between colleagues or collaborators, regardless of
location. In some cases, data sharing may be limited to read-only
access, where data can only be viewed. In other cases, full interactive
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access is required, for example, where data collected in an imaging
facility is analysed or mined by a collaborator or other resource.
Finally, some subsets of data, including specific annotations or ana-
lytic results may be published on-line for public access. OMERO
supports all these use cases, even for large HCS datasets. A detailed
description of OMERO’s data sharing and publication facilities has
been published recently [4].

3.3. Metadata management for HCS datasets

In HCS experiments, the term ‘‘metadata” refers to different
types of experimental parameters and analytic outputs. These take
different forms, are on different scales and are used for different
purposes. For this reason, OMERO provides multiple ways of stor-
ing, linking and querying HCS metadata. Each strategy for storing
metadata delivers a compromise between, on the one hand, strict
typing and querying and on the other, data format flexibility. This
allows developers and users to choose the approach that matches
the requirements for their experiment.

Fig. 1 summarizes the different data access and storage strate-
gies available within OMERO. Different data types are stored in dif-
ferent ways, maximizing performance and flexibility. Regardless,
all these data are accessible through the OMERO API, allowing a
wide range of data analysis and visualization applications access
to a wide range of data types and structures that comprise an
HCS experiment. The different data types supported by OMERO
are detailed in the following sections.

3.3.1. Storing experimental metadata
Experimental descriptors like plate format, well position, and

most common imaging parameters—fluorescence channel, expo-
sure time, objective lens, and imaging detector—are all specified
in the OME Data Model [8] and represented in OMERO’s database.
Wherever possible, these metadata are read during import from
proprietary image file formats using Bio-Formats and stored in
OMERO’s database. They are then searchable and queryable
through the OMERO API. These basic metadata are critical for prop-
erly recording an experiment, but usually miss essential experi-
ment descriptors such as small molecules, siRNAs or other
reagent details, and even essential details of the experimental pro-
tocol—cell types, incubation times and temperatures, etc. To sup-
port these metadata, we originally enabled custom extensions of
the OME Data Model, supporting concepts like ‘‘Reagents”, etc.
which we could not express in a completely generic way [8]. How-
ever, data model extensions require substantial technical expertise
and are not accessible to most users. Therefore, starting in OMERO
5.1, we have introduced support for ‘‘map annotations”, or user-
defined key-value pairs (e.g., ‘‘Temperature”:‘‘37” or ‘‘Cell line”:‘‘U2
OS”). In addition, we extended the OME Data Model and the OMERO
database to include support for scientific units, so that all quantities,
including map annotations can be expressed in appropriate units
(e.g., ‘‘Temperature”:‘‘37”:‘‘�C”; https://www.openmicroscopy.org/
site/support/ome-model/developers/ome-units.html). Map annota-
tions can be defined for metadata that are specific to each installa-
tion, OMERO group or user, and can therefore be used to define and
record specific sets of metadata for an experiment or group. They
are easily extensible, queryable from the OMERO API and the
default OMERO Java and web clients provide support for displaying
map annotations where they are available. As described below, we
have created several scripts to load metadata stored as spreadsheet
(i.e., tab delimited or CSV) files into OMERO as map annotations,
making them accessible to most users.

3.3.2. Storing analytic metadata
Analytic outputs are another form of metadata that must be

supported in any HCS data management system. These include
regions of interest (ROIs) that delineate objects such as cells and
are often stored as masks or boundaries, and measurements such
as intensities, areas, and spatial statistics. Features may be
obtained at multiple scales ranging from single ROIs to aggregated
images, and may be further processed to obtain a phenotypic label,
with machine learning algorithms often used to identify interest-
ing patterns in the data, perhaps in conjunction with external
bioinformatics databases (for reviews, see [12,13]). A final require-
ment is the storage and recall of the parameters used for any anal-
ysis algorithms, with the flexibility to accommodate differences in
implementations between different scientists and laboratories, and
the evolution of parameters used for different runs of any algo-
rithm. An HCS data management system must support the storage
and accurate linking of all these complex data and also include as
much querying capabilities as possible.

OMERO provides two mechanisms to support storage of ana-
lytic parameters and outputs. The first is well-established, and
amounts to a mechanism for storing analysis metadata files,
regardless of format (e.g., .txt, .xls, .doc, .m, .pdf, etc. are all sup-
ported) as annotations on an image, plate or screen, as required
by the analysis. These metadata files are given a defined names-
pace, making the files accessible for future download and linkage.
No direct querying of metadata stored as annotations is supported,
although text-based metadata is indexed by OMERO’s Lucene
search engine, so a text-based search will return the files and their
contents. This approach provides maximum flexibility, but pro-
vides only marginally more structure and query capability than a
filesystem.

A more structured approach for storing analytic metadata, but
with enough flexibility to support the great diversity in analytic
outputs generated in HCS experiments is an HDF-based tabular
data store, called OMERO.tables [3]. This data management mech-
anism targets large tabular arrays, like those generated in the anal-
ysis of cell-based HCS experiments. As an example, the analytic
output from a single 384-well plate with 5 images/well, 3 chan-
nels/image, 50 cells/image and 25 calculated feature parameters/
channel/cell requires a table with at least 53 columns (enough to
represent the well, the image in the well, the ROIs and all features
for all channels) and 7.2 million rows. In OMERO, metadata related
to wells, images and ROIs can be stored in the OMERO database,
but the feature parameters can be stored via the OMERO API in a
tabular array stored in an HDF5 file, allowing fast writes and reads
of large arrays (writing datasets like the 384-well example
described above requires 10–15 s on standard hardware). The API
supports writing of rows and naming of columns, allowing support
for the different types of analytic metadata recorded in different
assays. Each feature table row can be linked back to its source
object by a unique ID. Recalling whole or parts of columns is sup-
ported by the API, but full SQL-like querying is not possible. The
approach provides less structure and definition than a fully-
typed database, but much better performance and more querying
capabilities than a CSV file on a file system.
3.3.3. Using OMERO for HCS metadata management
Given the scale of HCS experiments, experimental and analytic

metadata will be entered into OMERO automatically, either during
import of data, or during or after analysis runs. For data import, the
OMERO.insight desktop Java client and the OMERO.cli command
line importer use Bio-Formats to recognize and translate experi-
mental metadata into OMERO. In cases where analytic metadata
or large metadata collections are recorded in spreadsheets, cus-
tomizable scripts can be used for loading into OMERO. They can
be run at data import, or at a later time, to link analytic metadata
that is calculated outside of OMERO with an HCS screen or other
large dataset.
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Fig. 1. Metadata storage and retrieval in OMERO. The drawing shows the different types of metadata supported within OMERO and how they are stored. All these metadata
are accessible in OMERO clients through the API presented by the OMERO server.
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For analysis functions using Matlab, a fully developed Matlab
API is available for reading from and writing to OMERO (see for
example [5]). Python data analysis tools (e.g., http://pydata.org/)
can work directly with the OMERO Python API. Results can be
stored as file annotations, map annotations, or via the OMERO
API in HDF5-based tabular stores.

3.4. HCS data repositories

There is increasing interest in including datasets and metadata
alongside traditional scientific publication to support scientific
integrity and, where appropriate, data reuse. This is particularly
important for HCS data as the scale of the experiments provide
opportunities for re-analysis and validation of published results.
Published HCS datasets also provide benchmark datasets that
support the development of new analysis tools by members of
the scientific community. In these cases, linkage of experimental
and analytic metadata is again critical, to ensure that anyone
who accesses published HCS datasets can easily assess the proto-
cols, acquired data and derived results without having to manually
reconstruct the original linkages between metadata and binary
image data.

At the time of this writing, there are several first generation HCS
data repositories available. Data Dryad, a non-profit scientific data
repository, hosts HCS datasets from published studies [14,15],
although these resources only make files available for download
and do not provide any direct linkage of metadata and binary data.
The ASCB Cell Image Library, an OMERO-based repository also
holds images related to HCS screens, but again provides no explicit
metadata linkage [16]. The Broad Benchmark Bioimage Collection
provides a series of public, annotated images from screens
from several species and provides metadata search [17]. The JCB
DataViewer, another OMERO-based image data repository linked
to the Journal of Cell Biology, has published nine genome-wide

http://pydata.org/
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knockout or knockdown screens that include linkage and display of
experimental and analytic metadata (http://jcb-dataviewer.ru-
press.org/?view=hcs). The Library of Integrated Cellular Signatures
(LINCS) has used OMERO to publish the phenotypes of cell lines
treated with a standard compound library [18]. These resources,
along with several individual projects (see Table 1) all serve as
examples of efforts to publish individual HCS studies. Two
resources have been built that integrate data from more than one
HCS dataset. Mitocheck (http://mitocheck.org) publishes several
different screens and allows gene and phenotypic querying across
them. A follow-on application, the Cellular Phenotype Database
[19] integrates the Mitocheck datasets with several others and
delivers a first attempt at systematic phenotypic search using a
defined cell phenotype ontology, the Cell Microscopy Phenotype
Ontology (http://www.ebi.ac.uk/cmpo/). The GenomeRNAi
database provides access to experimental and analytic metadata
for >400 screens, but publishes no images [20].

By analogy to early genome resources, these published datasets
are valuable and serve the twin goals of validation and re-use.
Moving forward, the data in these resources need to be combined
with others, allowing HCS data aggregation and querying of results
from studies across orthologous genes or classes of small mole-
cules, and the exploration of genetic perturbations and/or small
molecules that are linked to similar phenotypes. OMERO’s meta-
data storage and retrieval capabilities and broad support for many
Table 1
Published HCS datasets. A list of HCS studies that have published full datasets—metadata

Study Cell line/
organism

Phenotypes
measured

Perturbations

Mitocheck Human
HeLa

Cell division defects Genome-wide siRN

Yeast proteome
plasticity

S. cerevisiae Stress-based protein
localization changes

Oxidative stress;
starvation

Nuclear body
components

Human
HeLa

Nuclear body
localization

Genome-wide siRN
ORFeome 5.1

Cell–cell adhesion Drosophila
S2

Adherent cells Primary genome-w
siRNA

Cell–cell adhesion Canine
MDCK

Adherent cells Secondary siRNA

SUMO function S. cerevisiae Nuclear &
cytoplasmic
phenotypes

Non-essential muta
library

DNA damage response S. cerevisiae Rad52 localisation Non-essential muta
library

Cytoskeletal structure Drosophila
S2

Actin, microtubule
localization

Primary genome-w
siRNA

Cytoskeletal structure Human
Hela

Actin, microtubule
localization

Secondary siRNA

Sysgro S. pombe Cell shape,
microtubule defects

Non-essential muta
library

SH4 Protein targeting Human
HeLa

SH4 domain
membrane targeting

Genome-wide siRN

DNA damage response Human
HeLa;
U2OS

53BP1 foci formation Genome-wide siRN

ER->Plasma membrane
secretion

Human
HeLa

tsO45G localization Genome-wide siRN

Systems survey of
endocytosis

Human
HeLa

Transferrin & EGF
endocytosis

Genome-wide siRN
esiRNA

DNA damage-induced
histone
ubquintinylation

Human
U2OS

GFP-RNF168
localisation to
damage loci

Genome-wide siRN

LINCS Human
various

Apoptosis,
proliferation

Mitotic & mTOR inh

Broad Bioimage
Benchmark

Various Various Mutant and siRNA s

DNA damage response Human
Mac2a,
K299

Chromosome breaks,
translocations

hiBA-FISH; probes t
reveal chromosome
breaks

Cell painting Human
U2OS

Cell phenotype
marker localisation

30,000 compounds;
various sources
different image data formats and modalities make it an ideal plat-
form for next-generation HCS data repositories. Image acquisition
metadata are already supported by the OME Data Model; experi-
mental metadata covering small molecule or genetic perturbations
(e.g., siRNA, CRISPR/Cas9, etc) are well-suited to OMERO’s map
annotations; analytic outputs including ROIs and features are sup-
ported by the OME Data Model and OMERO.tables. Currently, the
OMERO API does not have explicit support for ontological annota-
tions, but a map annotation declaring an ontology name and ID
would provide sufficient information for a look-up of more detailed
info and subsumption queries on the Ontology Lookup Service [21].
We are currently attempting to build such a resource, based on an
aggregation of most of the datasets in Table 1.

4. Discussion

The size and complexity of HCS datasets requires enterprise-
level software tools that can be deployed in labs and institutes, that
can handle multi-terabyte file sets, and that support many
different types of image data and metadata. We have built two
open-source tools that provide foundations for enterprise HCS data
management. Bio-Formats reads image data and metadata from
>140 different file formats, making a large number of image files
and modalities available in a common model. OMERO uses
Bio-Formats and supports scaled data access and management
and binary image data—for browsing, query and potential download.

Dataset resource(s) References

A http://mitocheck.org [22]

http://jcb-dataviewer.rupress.org/jcb/browse/6203/ [23]

A; http://jcb-dataviewer.rupress.org/jcb/browse/6852/S152/ [24]

ide http://jcb-dataviewer.rupress.org/jcb/browse/7555/S202/ [25]

http://jcb-dataviewer.rupress.org/jcb/browse/7555/S252/ [25]

nt http://jcb-dataviewer.rupress.org/jcb/browse/6156/S52/ [26]

nt http://jcb-dataviewer.rupress.org/jcb/browse/4608/S1/ [27]

ide http://jcb-dataviewer.rupress.org/jcb/browse/4609/S2/ [28]

http://jcb-dataviewer.rupress.org/jcb/browse/4609/S3/;
http://jcb-dataviewer.rupress.org/jcb/browse/4609/S4/

[28]

nt http://sysgro.org [29]

A http://www.ebi.ac.uk/fg/sym/study/B1_SyM [30]

A http://mitocheck.org/cgi-bin/mtc; http://www.ebi.ac.uk/
fg/sym/study/C2_SyM

[31]

A http://mitocheck.org/cgi-bin/mtc; http://www.ebi.ac.uk/
fg/sym/study/E1_SyM

[32]

A/ http://endosomics.mpi-cbg.de/ [33]

A http://mitocheck.org/cgi-bin/mtc; http://www.ebi.ac.uk/
fg/sym/study/G1_SyM

[34]

ibitors http://lincs.hms.harvard.edu/db/ [18]

creens https://www.broadinstitute.org/bbbc/ [17]

hat http://dx.doi.org/10.5061/dryad.6h7nt [14]

http://www.cellimagelibrary.org/pages/project_20269 [16]

http://jcb-dataviewer.rupress.org/
http://jcb-dataviewer.rupress.org/
http://mitocheck.org
http://www.ebi.ac.uk/cmpo/
http://mitocheck.org
http://jcb-dataviewer.rupress.org/jcb/browse/6203/
http://jcb-dataviewer.rupress.org/jcb/browse/6852/S152/
http://jcb-dataviewer.rupress.org/jcb/browse/7555/S202/
http://jcb-dataviewer.rupress.org/jcb/browse/7555/S252/
http://jcb-dataviewer.rupress.org/jcb/browse/6156/S52/
http://jcb-dataviewer.rupress.org/jcb/browse/4608/S1/
http://jcb-dataviewer.rupress.org/jcb/browse/4609/S2/
http://jcb-dataviewer.rupress.org/jcb/browse/4609/S3/
http://jcb-dataviewer.rupress.org/jcb/browse/4609/S4/
http://sysgro.org
http://www.ebi.ac.uk/fg/sym/study/B1_SyM
http://mitocheck.org/cgi-bin/mtc
http://www.ebi.ac.uk/fg/sym/study/C2_SyM
http://www.ebi.ac.uk/fg/sym/study/C2_SyM
http://mitocheck.org/cgi-bin/mtc
http://www.ebi.ac.uk/fg/sym/study/E1_SyM
http://www.ebi.ac.uk/fg/sym/study/E1_SyM
http://endosomics.mpi-cbg.de/
http://mitocheck.org/cgi-bin/mtc
http://www.ebi.ac.uk/fg/sym/study/G1_SyM
http://www.ebi.ac.uk/fg/sym/study/G1_SyM
http://lincs.hms.harvard.edu/db/
https://www.broadinstitute.org/bbbc/
http://dx.doi.org/10.5061/dryad.6h7nt
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via a single API. It is a client–server application that provides sev-
eral different methods for storing metadata, ranging from strongly
typed and queryable to more flexible and indexed for search.
OMERO’s architecture recognises that there is not a single type of
HCS experiment, and that different approaches and assays require
different strategies for storing and managing image data and
metadata.

The challenges of HCS data management extend past the data-
sets collected in any single laboratory or screening facility. OMERO
includes support for defining data access for colleagues, so that
data can be held privately, shared with a defined group, and even
assigned to another user (in cases where data is acquired by one
user and then handled and analysed by another). The logical exten-
sion of this data sharing capability is full on-line publication of
specific datasets, which OMERO also supports. OMERO has already
been used to publish several HCS datasets as individual entities
(Table 1). A critical next step is enabling public querying across
datasets, so that genes, small molecules and phenotypes can be
systematically queried, and all components of any results, includ-
ing the images and analytic outputs can be viewed. Looking for-
ward, making public HCS datasets not only browseable and
queryable but also accessible for re-analysis is a critical next step.
This is important for ensuring that methods and conclusions can be
validated and for testing and benchmarking. Most importantly, the
spectrum of HCS experiments now publicly available represent a
very small sampling of possible experimental manipulations and
measured phenotypes. The similarity between phenotypes mea-
sured in a HeLa cell, a U2OS cell, an MCF10A cell, a Drosophila S2
cell, any number of human iPS cells or an S. pombe cell caused
by either gene product knockdown or small molecule inhibitor is
not known. An understanding of the basis for cell and tissue phe-
notypes in HCS experiments, and thus the basis for genetic and
therapeutic effects in living organisms will be the outcome of prop-
erly constructed, well-populated public HCS databases.
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