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Abstract

Background: The mitotic figure recognition contest at the 2012 International 
Conference on Pattern Recognition (ICPR) challenges a system to identify all mitotic 
figures in a region of interest of hematoxylin and eosin stained tissue, using each of 
three scanners  (Aperio, Hamamatsu, and multispectral). Methods: Our approach 
combines manually designed nuclear features with the learned features extracted by 
convolutional neural networks (CNN).  The nuclear features capture color, texture, and 
shape information of segmented regions around a nucleus.  The use of a CNN handles 
the variety of appearances of mitotic figures and decreases sensitivity to the manually 
crafted features and thresholds. Results: On the test set provided by the contest, 
the trained system achieves F1 scores up to 0.659 on color scanners and 0.589 on 
multispectral scanner. Conclusions:  We demonstrate a powerful technique combining 
segmentation‑based features with CNN, identifying the majority of mitotic figures with 
a fair precision. Further, we show that the approach accommodates information from 
the additional focal planes and spectral bands from a multi‑spectral scanner without 
major redesign.
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INTRODUCTION

Virtual microscopy promises to simplify management of 
slide data, enable telepathology, and facilitate automatic 
image analysis of stained tissue specimens. Automatic 
analysis could reduce pathologist labor or improve the 
quality of diagnosis by providing a more consistent 
result. Achieving these goals requires pattern recognition 
techniques capable of performing precise detection and 
classification in large images.

A mitotic figure index is one of the three components of 
the widely‑used Nottingham–Bloom–Richardson grade,[1] 

which aims to quantify the locality and prognosis of a 
breast tumor. The mitotic grade is determined by counting 
mitotic figures, with cutoffs at 10 and 20 figures per 10 
high power fields for a microscope with a field area of 
0.274  mm. Despite the importance of the mitotic count, 
agreement between pathologists on the grade has been 
found to be only moderate (κ = 0.45‑0.67),[2] with only fair 
agreement on individual mitotic figures (κ = 0.38). Figure 1 
illustrates three quite different appearances of mitotic 
figures (disconnected in telophase, annular, and light).

Many pattern recognition methods for cell‑sized objects 
in histopathology images rely on segmentation for the 
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measurement of features. The proper definition of the 
segmentation is laborious, and the feature results may be 
highly sensitive to the segmentation. Nevertheless, shape 
features can be more precisely defined if segmentation 
is attempted. We reduce sensitivity to segmentation 
by complementing manually crafted features with a 
convolutional neural network  (CNN). We apply our 
method to data from a Hamamatsu Nanozoomer scanner, 
an Aperio XT scanner, and a multispectral scanner as 
provided in the International Conference on Pattern 
Recognition (ICPR) 2012 contest.

Automatic mitotic figure recognition has been more 
widely studied in other media than in fixed specimens 
stained with hematoxylin and eosin  (H  and  E), which 
are inexpensive, nonspecific stains. In phase contrast 
microscopy, hidden conditional random fields have been 
applied to time lapse images.[3] Simpler techniques based 
on a cell connection graph[4] have also been applied to 
time series data. Without temporal data, Tao[5] analyzed 
cells in a liquid preparation to determine the phase of 
figures already given to be mitotic; the stains included 
PH3, a dye that is specific for mitotic activity.

In 2011, two systems were announced that recognize 
mitosis in H  and  E biopsy samples. Besides the system 
from the authors,[6] the system of Elie, et al.,[7] claimed to 
have prognostic significance.

Multispectral, multifocal scanner data is only now becoming 
available. Some practitioners[8] have argued that the ability 
to jump focal planes can give clarity to ambiguous decisions 
about cell classification. Others[9,10] have argued that z‑axis 
imaging has little impact on the classification.

While achieving near state of the art performance on 
benchmarks such as the Modified National Institute of 
Standards and Technology (MNIST) handwritten digit 
database,[11] CNN are popular in applications such as face 
detection in which objects are simultaneously localized and 
classified.[12,13] In medical imaging CNN have been applied 
to digital radiology of lung nodules;[14] however, we are not 
aware of other groups applying CNN to digital pathology.

METHODS

We first describe our method to recognize mitotic figures 
on red, green, and blue (RGB) color images obtained from 

Aperio and Hamamatsu scanners. For each scanner, our 
algorithm estimates colors representing the H and E dyes. 
We expect these dyes to explain most of the variance 
in color, so we sample all non‑white areas from each 
image in the training set, and apply principal component 
analysis  (PCA) to extract the top two eigenvectors from 
the RGB space. Projections onto these vectors give us 
signals that appear correlated with H and E densities.

Our method first establishes a set of candidate points 
to be classified, which ideally would exhaust all mitotic 
nuclei. This is carried out in two stages. A  first, 
aggressive, color threshold in the luminance channel 
identifies “seed” points. Much of a nucleus’s may 
be almost as light as the surrounding stroma, but at 
least some nuclear material generally responds highly 
to hematoxylin. The quantity of this dark material is 
subjected to a minimum size threshold. The second 
stage is a weaker color threshold, targeted at identifying 
the border of the nucleus. This threshold is applied to 
the hematoxylin channel. The connected component 
around the center of the seed which satisfies this color 
threshold is segmented as the blob corresponding to 
the candidate point. If the blob is too large or too 
small, segmentation is deemed unsuccessful, and the 
candidate is rejected immediately. Some mitotic figures 
may consist of multiple blobs, particularly if the nuclear 
wall is compromised. Therefore, candidates are defined 
as sets of nearby blobs. We train this candidate selector 
separately from the classifier. We select the best pair of 
thresholds for the two stages above via a grid search on 
the training set by the choosing an operating point that 
produces very few false negatives (i.e., the selector finds a 
candidate blob located within 5 microns of most labeled 
mitotic figures) while keeping the number of candidates 
to classify as low as possible and maximizing the pixel 
match  (as measured by the F1‑score) between candidate 
blobs and label blobs. On the Hamamatsu training set 
(35 regions of interest  (ROI)), the best selector found 
blobs within 5 microns of 214 of the 219 labeled mitotic 
figures with an 83% pixel match and generated an average 
of 616 additional candidate blobs per ROI. For the 
Aperio training set  (35 ROIs), the selector found blobs 
within 5 microns of 222 of the 226 labeled mitotic figures 
with an 81% pixel match and generated an average of 785 
additional candidate blobs per ROI. For the Multispectral 
training set  (35 ROIs), the selector found blobs within 
5 microns of 216 of the 224 labeled mitotic figures with 
an 78% pixel match and generated an average of 590 
additional candidate blobs per ROI.

Features are measured at all candidate blobs. The first 
set of features is based on the number of seeds and the 
total mass of the seeds and the blobs. This set contains 
the following features:  (1) number of seeds within the 
bounding box of the hematoxylin blobs;  (2) the total 
mass  (number of pixels) of the seed blobs;  (3) the 

Figure 1: Example mitotic figures. (a) Plates are disconnected in 
telophase, (b) Annular figure, (c) Lightly dyed mitotic figure
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total mass  (number of pixels) of the hematoxylin blobs; 
(4) the total mass of the seeds over the total mass of the 
hematoxylin blobs.

A second set of features is based on the largest 
hematoxylin blob of the candidate. Using this blob 
we calculate seven morphological features. We first 
obtain a vector representation of the contour of the 
blob, ignoring holes. From the contour, we also obtain a 
vector representation of the contour of the convex hull 
of the blob. From these two contours, we calculate the 
following values:  (1) symmetry: From the centroid of the 
blob, measuring the average radius difference of radially 
opposite points on the contour;  (2) circularity: 4

2

a
p
π , 

where a is the area and p is the perimeter;  (3) number 
of inflection points  (where the sign of the curvature 
changes);  (4) percentage of points on the contour 
that are inflection points;  (5) concavity: Proportion of 
points on the contour where the curvature is negative; 
(6)  peakiness: Proportion of points on the contour that 
have a high curvature  (above a threshold);  (7) density: 
Number of pixels bounded by the convex hull over the 
number of pixels in the blob.

A third set of features is derived from the texture of 
both the nucleus pixels  (those bounded by the blob 
contour), and the cytoplasm pixels  (those bounded 
by the convex hull, radially extended by 3 microns, 
excluding the nucleus pixels). The following values are 
computed:  (1,2,3) a 3‑bin histogram of the hematoxylin 
colored pixels of the nucleus;  (4,5) the average and 
standard deviation of the hematoxylin‑colored cytoplasm 
pixels;  (5,6) the average and standard deviation of 
the eosin‑colored cytoplasm pixels;  (7,8) the average 
and standard deviation of high‑luminance cytoplasm 
pixels;  (9,10) the average and standard deviation of the 
luminance in the cytoplasm pixels.

A fourth set of features is obtained from the neighborhood 
of the candidate. The presence of other candidates within 
close range of the candidate provides three features: The 
number of candidates within 40 microns, 20 microns, and 
9 microns of the candidate’s centroid. Additionally, the 
average value of hematoxylin pixels and very light pixels 
within a radius of 15 microns of the candidate’s centroid 
is computed, providing two more features.

Expecting that the Aperio and Hamamatsu scanners 
have different imaging characteristics, we train a separate 
CNN for each. Each of these CNN classifies frames of 
72  ×  72 pixels around each candidate in the saturation 
and luminance channels.

Whereas connections in a typical artificial neural 
network run between scalar values, connections in a 
CNN run between two dimensional tensors. Rather 
than multiplication, typical connections may implement 
spatial convolution by a learned kernel, or subsampling 

by a learned weight. Instead of classifying a set of 
scalar inputs, the CNN classifies a set of input planes, 
each a 2D tensor. Because the same kernels are applied 
repeatedly, with a fixed stride, over an input, the spatial 
correlations between input pixels must affect the output 
in a way that is not guaranteed when a bitmap is given to 
a support vector machine (SVM).

Each layer of a CNN applies convolutional kernels, pooling 
operations, or transfer functions to the two dimensional 
tensors in the preceding layer. Our CNN architectures are 
based on LeNet 5,[11] with two hidden 2D convolutional 
layers. Traditionally, convolutional layers alternate with 
the subsampling layers to reduce the input frames to a 
number of 1 × 1 frames, which are combined in a learned 
linear combination to produce the final decision. We 
obtained slightly better performance by performing local 
normalization and then pooling by local maxima, in 
place of the subsampling layers, and inserting a spatial 
pyramid (local box averages at many positions and scales) 
at the end of the network, as in Lo et al.[15] Following Jarrett 
et  al.[16] we insert a weighted sigmoid layer  (hyperbolic 
tangent) after each convolution or pooling layer, which 
makes the decision function nonlinear in the input. The 
numbers of hidden units per layer and learning rate are 
chosen by hold‑out validation. Normalizing locally and 
pooling by local maxima allows each feature to vary more 
sharply than the global normalization would by itself. The 
original LeNet 5 is a deeper architecture, with further 
hidden convolutional layers, but given the shortage of 
training data it is effective to use the spatial pyramid 
instead of adding more convolutional layers.

The CNN have two outputs, labeled as δ0 = (1,0) and 
δ1 = (0,1) for negative and positive examples. For ground 
truth, the CNN is trained to minimize the loss:

L x
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Hence, the outputs of the neural network represent log 
likelihoods of class membership. The CNN was trained 
on all positive mitotic figures in the training set, against 
approximately 1000 randomly chosen negative candidates 
per ROI. Thus, negatives outnumbered positives by about 
16 to 1 in training. To make the CNN classifications 
more symmetrically invariant, we extended the data set 
by a factor of eight, by replicating each example flipped 
or rotated by multiples of 90°. An SVM was trained to 
classify feature vectors consisting of the features defined 
above along with the CNN output value. Linear, radial 
basis function, sigmoid, Laplace, and cubic polynomial 
models were considered. The model was chosen to 
maximize F1 score. For both scanners, a Laplace model 
was most successful.

We now describe our method for extracting mitotic figures 
using a multispectral microscope affording images from 
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10 spectral bands and 17 focal planes, each separated by 
500 nm. Spectral band 1, which comprises the 410‑750 nm 
range of the spectrum, may be considered as luminance. 
The other spectral bands are narrower ranges within 
the visible spectrum. The 10 spectral bands effectively 
provide a 10‑dimensional color space in which PCA may 
be applied to obtain H  and  E, color directions, as before. 
The sequence of eigenvalues is 0.098, 0.016, 0.002,…, 
supporting the hypothesis that two color channels carry 
most of the information. Definition of candidate blob 
sets proceeds as before, using H  and  E, channels in a 
favored focal plane (plane 5). Thresholds are tuned for 
the multispectral scanner. Feature definitions are identical. 
A CNN is trained to classify 72 × 72 frames centered at the 
centroid of each candidate blob set. Such a CNN could 
be trained for any combination of spectral bands and focal 
planes. Focal planes before 04 and beyond 08 are clearly 
out of focus and are not considered. In the experiments, 
we trained CNN using the H  and  E channels in bands 
5‑8 (for a total of eight inputs), but observed no difference 
from training the CNN in band 7 alone. Each CNN 
resembles the CNN for the other scanners, with the same 
sequence of layers and kernel sizes. The search for the best 
number of units for each hidden layer is repeated, and a 
final SVM is trained on the CNN output and features of 
the candidate blob set.

RESULTS

The contest provided 35 ROI from 5 slides for use in 
development, each ROI measuring 512  ×  512 microns. 
A  total of 226 ground truth mitotic figures were to 
be detected in these ROI (224 for the multispectral 
microscope, due to alignment issues). We used 25 of 
these ROI for training and held out 10 for validation. In 
the test set, 100 mitotic figures (98 for multispectral) are 
hidden across 15 ROI.

Candidate selection produced a set of centers at which to 
query the CNN and SVM, as marked in blue in Figure 2.

The performance of the system on the test set, including 
the candidate selector, CNN, and SVM, is shown in Table 1. 
The results include the effect of losing mitotic figures in the 
candidate selection process (one lost for Aperio; two lost for 
Hamamatsu; three lost for the multi‑spectral scanner).

It is remarkable that the multi‑spectral results do not 
greatly surpass those attained on the single spectrum 
scanners, even if multi‑focal or multi‑spectral information 
is utilized. This could reflect the scanner’s image quality.

CONCLUSIONS

We have demonstrated a powerful technique combining 
segmentation‑based features with CNN, identifying the 
majority of mitotic figures with fair precision.

Through the use of dye color channels and the input 
flexibility of a CNN, little redefinition was needed to 
adapt the technique from a single‑spectrum, single‑focal 
scanner to a multi‑spectral, multi‑focal scanner.

CNN afford the possibility of co‑training the filters on 
an auxiliary task, in a supervised[17] or unsupervised 
fashion.[18] We did not take advantage of these 
possibilities but limited ourselves to the contest data, 
particularly to supervised training on the candidates.

The contest data set consists of data from only five 
distinct slides, with the labels by only one pathologist. 
We suspect that mitotic figures from the same slide are 
significantly correlated. Machine learning approaches 
that generalize well rely on information from identically, 
independently distributed examples. For a serious 
application, we recommend that similar techniques be 
applied to many more slides, with ground truth labels 
chosen by voting among pathologists, as in Malon et al.[6]
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