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Genes do not work in isolation, but rather as part of networks that have many
feedback and redundancy mechanisms. Studying the properties of genetic networks
and how individual genes contribute to overall network functions can provide insight into
genetically-mediated disease processes. Most analytical techniques assume a network
topology based on normal state networks. However, gene perturbations often lead to the
rewiring of relevant networks and impact relationships among other genes. We apply a
suite of analysis methodologies to assess the degree of transcriptional network rewiring
observed in different sets of melanoma cell lines using whole genome gene expression
microarray profiles. We assess evidence for network rewiring in melanoma patient tumor
samples using RNA-sequence data available from The Cancer Genome Atlas. We make
a distinction between “unsupervised” and “supervised” network-based methods and
contrast their use in identifying consistent differences in networks between subsets of
cell lines and tumor samples. We find that different genes play more central roles within
subsets of genes within a broader network and hence are likely to be better drug targets
in a disease state. Ultimately, we argue that our results have important implications for
understanding the molecular pathology of melanoma as well as the choice of treatments
to combat that pathology.

Keywords: network rewiring, melanoma, pathway analysis, bioinformatics and computational biology, machine
learning, drug interactions, simulation models, data science

INTRODUCTION

Many studies leveraging genomic assays explore associations between genes and diseases. If any
associations are found then strategies to make broader claims about genetically-mediated processes,
networks, and pathways that influence those diseases are pursued; for example, by studying
the expression levels or protein function of disease-associated genes. Identifying genetically-
mediated molecular physiologic processes underlying a disease could lead to insights into how
to combat or treat the disease. One strategy for identifying molecular physiologic processes
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responsible for a disease is to measure gene expression levels in
diseased and non-diseased tissues. Differentially expressed genes
could then be extracted to determine if all, or some subset,
of those genes participate in a coherent network or contribute
to particular processes affecting disease pathogenesis. Although
intuitive, gene expression analyses like this are complicated. For
example, one strategy for making claims about whether or not
the differentially expressed genes (DEGs) all participate in a
particular network is to compare a list of DEGs to databases,
such as Kyoto Encyclopedia of Genes and Genomes (Kanehisa
and Goto, 2000) (KEGG) or WikiPathways (Pico et al., 2008;
Kelder et al., 2012; Kutmon et al., 2016), which provide network,
function, or pathway information associated with each gene. If
the DEGs match lists of genes in, e.g., known networks, then it
can be inferred that those networks are likely to be contributing
to the pathogenesis of the disease (Costanzo et al., 2010; Blomen
et al., 2015).

Such strategies do not address crucial questions about the
relationships between the genes, i.e., their correlations, which
might be necessary to determine the potential effect of a drug on
a network of genes, however defined. For example, it might be
necessary to know if the inhibition of one gene in the network
will lead to the inhibition (or excitation) of another. In order
to assess the relationships between the genes, and whether those
relationships are themselves different in the diseased or normal
state, one could pursue either a “bottom-up” approach or “top-
down” approach. In the bottom-up approach, a single gene is
taken as central and a network of associated genes, based on
their correlations with the central gene, is constructed. This is
done in the context of both the diseased state and non-diseased
state and differences between the networks are assessed (Gorban
etal., 2010; Censi et al., 2011). In order to assess these differences
one could take advantage of a number of statistical methods
such as those associated with the analysis of complex network
invariants (Chang et al., 2013). In the top-down approach, a basal
“wiring” diagram or topology describing connections between
genes in the network is exploited. The genes whose expression
levels are assessed are overlaid on this network to see which
genes, or correlation levels between genes, appear to be disrupted
in the context of this network. Unfortunately, most network
topologies or wiring diagrams have been devised from studying
genes in the normal (i.e., non-diseased) state (Califano, 2011;
Ideker and Krogan, 2012; Snider et al., 2015). This is problematic
if the networks have become “rewired” (i.e., the topology or
connections between the genes is fundamentally different) in the
disease state, since important differences between the networks
would not be captured by having the expression levels of the
genes overlaid over a network that simply doesn’t apply in the
disease state. That is, differences at the more holistic or broader
network level, and the choice of which specific genes to explore in
further studies that is guided by the network topology obtained in
the normal state may not point out crucial relationships unique
to the disease state.

As an example of this problem, consider the fact that many
drug target identification and modulation studies focus on how
drugs impact levels of gene expression or protein expression in
wild-type, normal, or conveniently available, cell lines (St Onge

et al.,, 2007). If the information flow and connections between
genes are fundamentally different in the diseased state, then
extrapolating a drug’s effects on genes or protein levels in the
normal state to that of the diseased state may be problematic
(see Figure 1A for simple hypothetical example). Another issue
with the characterization of the relationships between genes is
that there may be many genes in a given network, creating a large
number of relationships to consider (Hofree et al., 2013). This
creates computational and inferential challenges. In addition,
such analyses require that one pre-specify the groups of genes
whose pairwise gene relationships are to be contrasted (e.g.,
BRAF mutant positive tumors vs. BRAF wild-type tumors in
melanoma) and choosing those groups may reveal connections
very specific to those groups, which may be limiting if broader
connections between genes are of interest.

To identify differences in network architecture within a given
data set, one could pursue a “supervised” or “unsupervised”
approach. Supervised approaches, such as Evaluation of
Dependency DifferentialitY (Jung and Kim, 2014) (EDDY)
analysis, Gene Set Enrichment Analysis (Mootha et al., 2003;
Subramanian et al., 2005) (GSEA), and Gene Set Co-expression
Analysis (Choi and Kendziorski, 2009) (GSCA), focus on
groups defined a priori, and as a result are limited to the
group definitions. Unsupervised methods do not require that
the groups be specified a priori, but rather take all the, e.g.,
cells, under study and seek to identify groups that may or
may not recapitulate groups defined by known factors, such
as the presence of mutations, and therefore often generate
results that might be difficult to interpret or reconcile with the
results of other unsupervised methods (Getz et al., 2000). In
addition, most available unsupervised genetic analysis methods
focus on exploring differences in the means, or mean vectors,
of the factors being studied within and among groups (e.g.,
gene expression values, protein abundances, etc.) as a way of
determining which factors may be contributing to differences
between them. However, if, as noted, the rewiring of the
genetic networks among the groups upsets the relationships
or correlations between the genes (i.e., and not the just mean
or average differences between them), then focusing on mean
gene expression levels will not identify the group differences,
although this effect might be resolved using various methods that
allow for an understanding of identifiable sources of variation in
expression levels, such principal components (Censi et al., 2011).

We consider the value of both supervised and unsupervised
approaches in the analysis of network data (Chang et al,
2013; Yang et al, 2014; Klein et al, 2016). We assessed
evidence for network rewiring in a variety of melanoma drug
screen data as well as data from The Cancer Genome Atlas
(Weinstein et al., 2013) (TCGA) tumor profile data sets.
We further consider the implications such rewiring might
have for making claims about cell line responses to drugs.
Specifically, we pursued supervised analyses of genetic networks
by stratifying melanoma cell lines into groups defined by
BRAF and/or KRAS mutation status and then evaluating
differences in the overall network structure (i.e., relationships
between genes). Using this strategy, we sought to identify
genes that appeared to have a more central role in those
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FIGURE 1 | (A) Example of network rewiring that could occur. Under ideal conditions, Gene A is co-regulated with Gene D through gene B. When gene B is inhibited,
there could be a compensatory mechanism for which gene A communicates with gene D-in this example, that is potentially gene C. (B) Mutation status of 33
melanoma cell lines and HeMnLP processed with whole genome microarray gene chips at the Translational Genomics Research Institute. TCGA type calls are based
on known pathogenic hotspots for BRAF and RAS (e.g., BRAF V600 mutations), but are more open-ended for NF1. Point mutations are provided for BRAF, RAS, and
NF1. Cell lines are ordered by TCGA mutation type, point mutation, and then cell line number.

networks. We then performed network analyses with patient
samples from TCGA melanoma data. We observed that the
cell lines exhibited a greater degree of network rewiring or
differences than the patient samples and therefore leveraged
unsupervised methods to explore the variation in network
behavior. These analyses allowed us to identify potential drug
targets. In addition, we also show that these analyses could
shed light on how to match patient genetic profiles to specific
treatments by exploiting the Drug Gene Interaction database
(Wagner et al, 2016) (DGIdb). Ultimately, our proposed
methods provide a strategy for identifying unique network
features among the expression levels of genes in tumors and
how one could exploit those unique features for drug targeting
purposes.

RESULTS

Unsupervised Multivariate Mixture Model
Analysis of the Transcriptomes of

Melanoma Cell Lines

As noted in the Methods section, we extracted genes from the
WikiPathway version of the MAPK pathway (n = 224). These
224 genes were then mapped to the probesets used in the
Affymetrix gene expression chips applied to the CCLE and TGen
celllines at our disposal for these analyses based on the maximum
average intensity for each gene (Supplemental Table2). We

also obtained gene expression levels for these genes from
the RNA-seq data available on the TCGA melanoma samples.
However, only 216 or these 224 genes could be confidently
mapped to the TCGA RNAseq data. We applied mixture model
analysis as implemented in the flexmix R module (see Materials
and Methods) to identify gene expression-based clusters in
the SU2C melanoma cell lines. Across the different datasets,
two groups of cell lines consistently emerged. For the SU2C
cell lines the two groups emerging from this analysis were
made up of 27 and 7 cell lines. In applying it to the CCLE
melanoma cell line group sizes of 39 and 19 were identified
(Table 1). Moreover, for the TCGA data, the two groups were
made up of 401 and 72 tumors. When all the CCLE cell lines,
including the melanoma cell lines, were considered together
the groups emerging had 375 and 542 cell lines. Density plots
for the posterior probability of the flexmix-identified groups
revealed that the clusters were most distinct in the SU2C
melanoma cell lines (Figures 2A,B). This is also evident when
viewing the number of edges present in comparing graphs with
identical nodes (Supplemental Figures 3, 4). Interestingly, when
we used permutation tests to assess the statistical significance
of the mean gene expression levels between the two groups
we found that mean equality tests did not reveal statistically
significant differences. However, tests of the equality of the
correlation matrices between the two groups yielded statistically
significant p-values for the TCGA melanoma patients and for
the CCLE cell lines when all cell lines were considered, and
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TABLE 1 | Comparing a priori called clusters within SU2C melanoma cell lines
(MCL), CCLE MCL, CCLE all cell lines (ACL), and TCGA melanoma patients.

SU2CMCL CCLEMCL CCLEACL TCGA Mel
MEAN EQUALITY TEST
T-Test Statistic 4.99 6.14 6.60 4.31
df 223.00 223.00 223.00 216.00
p-value 1.23E-06 3.66E—09 3.08E-10 2.44E-05
Simulation p-value 3.09E-01 4.33E-01 3.45E-01 3.58E—-01
CORRELATION EQUALITY TEST
Chi-sq Statistic 1320.27 1915.88 66408.10 76275.79
df 561.00 1653.00 22791.00 22366.00
p-value 4.30E-63 6.50E—06 0.00E+00 0.00E+00
Simulation p-value 8.89E—-02 4.60E—-02 9.99E-04 9.99E-04
FLEXMIX 2 GROUPS VS. 1 GROUP
LLR Statistic 9.35 0.44 9.48 34.40
LLR Permuted 8.99E-03 3.79E-01 1.30E-02 9.99E-04
P-Value
Delta AIC Statistic —-3.35 5.56 —3.48 —28.40
Delta AIC 8.99E-03 3.80E-01 1.30E-02 9.99E-04
Permuted P-Value
Delta BIC Statistic 1.23 11.74 10.98 —-15.92
Delta BIC 9.99E—-04 2.90E—02 3.20E—-02 9.99E-04
Permuted P-Value
FLEXMIX 3 GROUPS VS. 1 GROUP
LLR Statistic 9.35 0.51 9.56 39.45
LLR Permuted 2.80E—02 4.83E-01 3.00E—-02 9.99E-04
P-Value
Delta AIC Statistic 2.65 11.49 2.44 —27.45
Delta AIC 2.80E-02 4.83E-01 3.00E—-02 9.99E-04
Permuted P-Value
Delta BIC Statistic 11.80 23.85 31.37 —2.50
Delta BIC 9.99E-04 9.99E-03 1.05E-01 9.99E-04

Permuted P-Value

Performed mean vector and covariance equality tests within groups and used log-
likelihood ratio permutation-based tests to evaluate strength of one, two, or three
groups.

moderately significant p-values for only the CCLE melanoma
cell lines were considered, but a non-significant p-value for the
SU2C melanoma cell lines. However, we found that in each
cohort, the groups identified from the mixture model analyses
had statistically significant differences in expression profiles
based on at least one statistic of the omnibus statistics used
(i.e., either the LLR, delta AIC, or delta BIC statistics; see
Table 1).

In order to visualize the relationships between the genes
based on their expression levels, and assess their consistency
across the two groups identified in each data set, we extracted
pairwise spearman correlation coefficients from the correlation
matrices and then generated heatmaps associated with those
matrices in which the entries above the diagonal were from one
group set and those below the diagonal were from the other
(Figures 2C,D, Supplemental Figures 5,6). If the correlations
were the same the heatmap matrices would be completely
symmetric. Clearly, however, the heatmaps suggest differences

between the flexmix analysis-based clusters in each of the
data sets, although the differences were more pronounced
in the SU2C melanoma cell lines and the CCLE melanoma
cell lines.

Does Mutation Status Explain the

Clustering?

To assess whether common factors in melanoma cell lines and
tumors explain the mixture model clustering, we performed
logistic regression using BRAF and KRAS mutation status as
predictors of cluster membership; BRAF and NRAS mutation
status for the CCLE melanoma cell line cluster membership;
and the BRAF V600E mutation status for the TCGA patient
samples cluster membership. In each analysis, we found that
the mutation status was not a significant predictor of the
cluster membership (Table 2). For the CCLE cell lines, we also
performed logistic regression with copy number variation,
mutation, insertion, and deletion status as predictors of cluster
membership. Interestingly, for the subset of melanoma cell lines
in the CCLE data, the QQ-plots and FDR-adjusted p-values did
not indicate any significant predictors of the cluster membership
(Supplemental Figure 3C), although over the entire set of
CCLE cell lines, the QQ-plots and FDR-adjusted p-values did
suggest that genetic variations could predict or explain the
two groups that were identified (Supplemental Figure 3D).
These results were similarly observed in an analysis in
which copy number variations (CNVs) were used as
predictors of cluster membership (Supplemental Figure 7),
suggesting that the gene expression differences identified
across the entire CCLE cohort potentially arose
from CNVs.

Degree Centrality Analysis

For each group or cluster identified from the multivariate
mixture model (flexmix) analysis (for k = 2 groups), we assessed
the statistical significance of the differences in pairwise gene

expression correlations (where edges were kept if p (ri) <

05). We then removed all edges (i.e., gene pairs) whose
correlation in expression levels was not statistically significant.
We calculated the degree centrality statistics for those genes
whose pairwise correlation strengths were statistically significant.
The more connected or central genes were then extracted based
on each degree centrality statistic and mapped to the Drug
Gene Interaction Database (Table 3). This analysis suggested
Bortezomib and Carfilzomib as potential drug targets in one of
the clusters identified for each of the SU2C, CCLE melanoma,
and all CCLE all cell lines. However, this same analysis applied
to the second cluster for each of these data sets suggested
that different drugs (Tofacitinib, AT9283, AZD1480, Pacritinib,
Tofacitinib, and Citrate) would be better candidates, as least
based on the connectedness or centrality of the genes given the
identified transcriptional correlation strengths or networks. For
the CCLE melanoma cell lines and the TCGA tumors, no drugs
were identified based on this analysis for the second group.
Finally, we compared the overall degree centrality statistics
across all the data sets to assess their consistency (Figure 3).
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Golor Key

FIGURE 2 | Pairwise correlation between MAPK Pathway genes from the identified clusters using flexmix were used to generate heatmaps. Upper right hand half of
matrix were correlation coefficients from cluster 1, whereas lower left hand half of matrix were correlation coefficients from cluster 2. Hierarchical clustering was
subsequently performed using either distances from cluster 1 coefficients (A,C) or cluster 2 coefficients (B,D). (A,B) are from flexmix derived clusters on SU2C
melanoma cell lines (C,D) are flexmix derived clusters on CCLE melanoma cell lines.

Density plots based on these statistics suggest that network  that the differences in identified networks were again not as
rewiring was more pronounced in the SU2C melanoma cell ~ pronounced (Supplemental Figures 9,10). This is likely due to
lines and the CCLE melanoma cell lines, as there was a more  the heterogeneity between TCGA patient samples and cross-
obvious mixture of densities in these cohorts in the plots. The  tissue pan-CCLE analysis (i.e., the cell lines are from different
density plots for the TCGA samples and the complete set of  tissues, thus likely have very different underlying baseline
cell lines for the CCLE data set were very similar and indicated ~ networks).
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TABLE 2 | Table of association test results between a priori called clusters and common factors in melanoma.

SU2C MAPK pathway cluster

TCGA MAPK pathway cluster

CCLE melanoma cell lines

MAPK pathway cluster

Mutation Estimate Std.error z-value Pr(>|z]) Estimate Std.error z-value Pr(>|z]) Estimate Std.error z-value Pr(>|z|)

BRAF+/- 0.2136 0.8554 0.25 0.8028 —0.2231 0.8878 —0.251 0.8016

KRAS+/- 0.3365 0.9562 0.352 0.72492

BRAFv600e +/— —-0.1234 0.2786 —0.443 0.658

NRAS+/- —0.6522 0.9289 —0.594 0.552

We test against available mutation status TCGA melanoma patients, SU2C melanoma cell lines, and CCLE melanoma cell lines.

TABLE 3 | Network node centrality statistics identified central nodes for each parameter.

Dataset Centrality Closeness Betweenness Eigenvector Consensus Predicted drug targets

SU2C K1 201274 _at (PSMA5) 201274 _at (PSMA5) 201274 _at (PSMA5)  201532_at (PSMAB) PSMA5 BORTEZOMIB,
CARFILZOMIB

SU2C K2 227677_at (JAK3) 227677_at (JAK3) 201648_at (JAK1) 227677 _at (JAK3) JAK3 TOFACITINIB, AT9283,
AZD1480, PACRITINIB,
TOFACITINIB CITRATE

CCLE Mel K1 201388_at (PSMD3) 201979_s_at (PPP5C) 201388_at (PSMD3) 201388_at (PSMD3) PSMD3 BORTEZOMIB,
CARFILZOMIB

CCLE Mel K2 226163_at (SYNGAP1, 226163_at (SYNGAP1, 207243_s_at (CALM2) 226163_at (SYNGAP1, SYNGAP1, NA

ZBTB9) ZBTB9) ZBTB9) ZBTB9

CCLE AllK1  201274_at (PSMA5) 201274 _at (PSMAb) 201274_at (PSMA5)  201274_at (PSMA5) PSMA5 BORTEZOMIB,
CARFILZOMIB

CCLE Allk2 208799 _at (PSMB5) 208799_at (PSMB5) 208799 _at (PSMB5) 201400_at (PSMBJ) PSMB5 BORTEZOMIB,
CARFILZOMIB,
OPROZOMIB

TCGA Mel K1 x819 (APBB1IP) x14671 (RASGRF1) x14671 (RASGRF1)  x819 (APBB1IP) APBB1IP, NA

RASGRF1
TCGA Mel K2 x819 (APBB1IP) x14632 (RAP1A) x14632 (RAP1A) x819 (APBB1IP) APBB1IP, NA
RAP1A

Consensus-based approach was used to genes to match to DGIdb to identify candidate therapeutic agents.

Are the Networks Equivalent for Mutation
Status Defined Groups Against Normal

Controls?
We tested the possibility that network rewiring occurs as the
consequence of mutation (i.e., the subgroups identified with
supervised clustering were associated with the presence of a
specific mutation in relevant cell lines). We first tested the
equality of the correlation matrices derived from groups defined
by mutation status for each data set defined by: BRAF+, BRAF—,
KRAS+, and KRAS— against correlation matrices derived from
skin fibroblast control gene expression data (as described in
the Material and Methods section). Based on these matrix
equivalency tests, we found evidence for statistically significant
rewiring when comparing BRAF+, BRAF—, and KRAS— defined
cell lines against skin fibroblast data (Table 4). However, when
testing the KRAS+ against the control groups, the correlation
matrix differences was not statistically significant from that
derived from the skin fibroblast data (this may have been a result
of the small sample size for the KRAS+ cell lines; n = 8).

When we tested the equivalence of correlation matrices
across BRAF and KRAS mutation status-defined groups within

each data set, we found evidence for statistically significant
differences based on tests that involved permuting mutation
status (Table 4). We used differential correlations between
mutant-defined and wild type-defined groups to assess the
overall degree of rewiring. For the BRAF—associated genes,
we found strong correlation differences between BRAF+ and
BRAF— groups within a small set of gene pairs. However,
for the KRAS—associated genes, roughly half of the genes
pairs exhibited statistically significant correlation changes when
assessing differences between KRAS+ and KRAS— groups
(Figures 4A,B). Interestingly, when we considered the genes
defined in the BRAF network for the TCGA melanoma samples,
we also observed differences when comparing BRAF+/BRAF—
derived correlation matrices as well as BRAF V600E+4-/BRAF—
derived correlation matrices (Jennrich method significant, p <
0.027 and p < 0.032, respectively; Table 4). However, when
we used VarScan to call the somatic mutation status and
assign mutation status to the patient tumor samples, the signal
from the matrix equivalence test was lost, suggesting that the
network equivalence changes were only observable in the filtered
samples.
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TABLE 4 | Table of correlation equality tests for the genes in the specified networks.

Dataset Samples Network St Chi-sq Sim Mut St p-value JR Chi-sq Sim Mut JR p-value Sig in 1 model?
TGen cell line BRAF+/— BRAF GM 2.09E+02 1.90E-02 8.02E+02 7.54E-01 *
BRAF+/control BRAF GM 3.17E+02 9.10E-03 9.73E+02 2.68E—-01 *
BRAF—/Control BRAF GM 3.34E+02 3.10E-03 6.71E402 8.98E-01 *
KRAS+/Control BRAF GM 2.28E+02 1.33E-01 1.09E+03 6.02E—01
KRAS—/Control BRAF GM 3.73E+02 5.00E-04 7.93E402 3.41E-01 *
KRAS+/—- KRAS GM 1.58E+02 4.37E-01 6.78E+402 4.20E-02 *
BRAF+/control KRAS GM 3.11E+02 6.30E—03 7.22E402 8.20E—01 *
BRAF—/Control KRAS GM 2.86E+02 1.48E-02 7.07E402 9.10E—01 *
KRAS+/Control KRAS GM 2.08E+02 2.41E-01 1.08E+03 7.45E—01
KRAS—/Control KRAS GM 3.39E+02 8.00E-04 5.36E+402 9.53E-01 *
TCGA samples BRAF+/— BRAF GM 6.73E+02 1.81E-01 1.33E4-03 2.69E-02 *
BRAF VB0OE +/BRAFwt BRAF GM 6.58E+02 2.26E—01 1.33E+03 3.19E-02 *
TCGA (WT somatic calls) BRAF+/— (add somatic called) BRAF GM 6.36E+02 3.11E-01 1.20E+4-03 3.59E-01
BRAF V60OE +/BRAFwt BRAF GM 6.25E+02 3.64E-01 1.24E+03 3.00E-01
BRAF V600E +/BRAFwt 26 DEGs GM  1.95E+04 1.89E-02 9.24E404 9.99E-01 *

Tests are between mutant and wild type samples. Asterisks represent at least one significant test within comparison (Stieger or Jennrich).

Bold values have an FDR adjusted p-value < 0.05.

BRAF V600E+/- Differentially Expressed
Genes Analysis With the Melanoma TCGA

Tumor Data

We identified genes that exhibited average gene expression
level differences between BRAF V600E+ and BRAF— tumor
samples in the entire TCGA data using DESeq (FDR adjusted
p <0.05) and edgeR (FDR < 0.01) between and identified 26
differentially expressed genes (DEGs) (Table 4). These genes were
then used to extract a new gene network from geneMANIA.
As anticipated, when we compared the correlation matrices
based on the genes in this new network between BRAF+ and
BRAF— groups, we observed statistically significant network
changes. However, an analysis of the GO networks derived
from these genes produced mostly non-significant differences
between the BRAF V600E+ and BRAF— patient samples. These
results indicate that the patient-specific network rewiring may
have been isolated to specific nodes and were less pronounced
than comparisons to the melanoma cell lines. To further
investigate the overall differences in the correlations among
gene expression levels between the TCGA BRAF V600E+/-
samples, we calculated the spearman correlation between 348
DEGs (edgeR FDR < 0.01 and DESeq FDR-adjusted p <
0.05) and all other genes we had expression level data on.
Using a strict Bonferroni-adjusted significance threshold, we
observed 63,118 (0.88%) significant gene correlations in BRAF
V600E+ patients, 81,765 (1.14%) significant gene correlations
in BRAF— samples, and 21,844 (0.31%) significant gene pairs
in common. Overall, we found that the majority of the
significant gene pair correlations were significant in only one
of the groups (Supplemental Figure 8), further indicating that
the correlation strengths and overall transcriptional networks
between TCGA BRAF V600E+ and BRAF— tumor samples are
unique.

Network Centrality Tests for the TGen

Melanoma Cell Lines

To investigate the importance of individual genes or pairs of
genes in the transcriptional correlation networks we observed
in our analyses of the TGen melanoma cell line data, we
calculated the node centrality statistics for each network. These
analyses suggested that the most important genes associated
with BRAF+ cell lines for all genes in the BRAF network
were ARAE, RAF1, and OIPS; whereas the most central or
connected genes in the BRAF— cell lines were RAFI and
HRAS (Figures 5A,B, and Table 5). For the genes in the BRAF
geneMANIA-derived network, the average correlation across all
node centrality statistics was 0.1121 for BRAF+/— and 0.0001
for KRAS+/- indicating the existence of different central nodes
(Tables 5, 6) for the networks. For the KRAS geneMANIA
network, we observed negative correlations when comparing
them across KRAS+-/- cell lines for all node centrality statistics
(Table 6), which indicates that extensive transcriptional rewiring
is occurring in the networks. Additionally, based on the genes
that appeared as most central to the identified networks, DGIdb
analysis suggested different drug targets. For the BRAF+ cell
lines, the most central or connected genes in the networks
indicated that MEK inhibitors would be likely candidate drugs
(Table 5). However, for the BRAF— cell lines, mTOR inhibitors
were predicted as best targets.

Network Centrality Tests for the TCGA

Data

Centrality and connection analysis of the TCGA patient
samples based on BRAF mutation status also identified distinct
central genes in transcriptional networks. Although there
was a strong positive correlation for each node centrality
statistic (r > 0.48) across BRAF+ and BRAF V600E+ when
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compared against BRAF—, the networks derived from the gene
expression-based correlation coefficients for BRAF+ patients had
CCDCB88A and CNKSRI as most central or connected genes,
whereas networks derived from BRAF V600E+ samples had
only CCDC88A as the most important node (Figures 5C,D,
and Table5). CCDC88A is a key modulator of the AKT-
mTOR signaling pathway (The UniProt Consortium, 2015)
and CNKSR1 promotes invasion of cancer cells through NFkB

dependent signaling (Fritz and Radziwill, 2010; Table 5). For
the BRAF— derived networks, the central node was found to
be RAP2C, which is a RAS-related protein in the MAPK/ERK
signaling pathway. The consensus central nodes for melanoma
cell lines with and without BRAF mutations were mapped to
candidate drugs using DGIdb. Interestingly, RAF and MEK
inhibitors (Sorafenib, Trametinib, Regorafenib, BMS-908662,
and Adenosine Triphosphate) were predicted to be the best drugs
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given the observed BRAF+ transcriptional network, whereas
the mTOR inhibitors (AZD8055, Everolimus, and DB08751)
were predicted to be the best drugs in the observed BRAF—
transcriptional network (Supplemental Figures 12-17, Table 5).

Are Strong Edges Present in Both Mutant
and Wild Type Groups?

To evaluate the strength of the correlation coefficients
obtained, we assessed the overall distribution of coefficients
(Supplemental Figure 18). We found that the distribution
of pairwise correlation for BRAF—associated genes were
approximately the same in both BRAF+ and BRAF— subgroups.
However, when evaluating the KRAS—associated genes, there
was an increased proportion of correlation coefficients near the
tail for KRAS+ subgroup when compared against the KRAS—
subgroup, which suggests a stronger network in the KRAS+
subgroup exists. This is further confirmed when assessing the
upper 5% tail in correlation coefficients (for BRAF—associated
genes, r 0.54 in both BRAF+4/BRAF— subgroups; for
KRAS—associated genes, r = 0.46 in KRAS— subgroup and r =
0.76 for KRAS+ subgroup).

To assess whether the strongest co-expression patterns were
observed in normal laboratory conditions, we extracted all

correlation coefficients <—0.7 or >0.7 (Supplemental Table 2).
We then used the resulting gene list as an input into
geneMANIA in order in order to calculate the proportion
of edges that were previously reported. We found that
a majority of the strong co-expression edges were not
previously identified (Supplemental Figure 19). Specifically, for
the BRAF— subgroup, RAP2B and RAP2C are co-localized
and share protein domains; for the BRAF+ subgroup, BRAF
and RHEB are in the same pathway and have physical
interactions; and for the KRAS+ subgroup, RALA and UBE2K
are co-expressed, KRAS and RASSF2 have physical interactions,
RGL2 and KRAS are in the same pathway and have physical
interactions, and RASSF2 and APBBIIP have shared protein
domains. Thus, only six of the 24 identified strong edges were
previously reported. This low number of replicated edges could
in fact be due, in part, to sampling and statistical artifacts having
to do with, e.g., the low expected correlation under equilibrium
states due to range restriction effects (Giuliani et al., 2004; Gorban
etal., 2010). In fact, the finding that the strongly correlated genes
are not observed under equilibrium states further indicates the
need for using unsupervised approaches since such approaches
would not require imposing assumptions about the factors or
network topology that drive disease pathogenesis.
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TABLE 5 | Assessing significant nodes by degree centrality parameters.

Dataset Samples Network DC BW CL EC Consensus Predicted drug targets (top
genes only)
TGen Cell Line BRAF+ BRAF GM ARAF ARAF RAF1, ARAF, ARAF ARAF Sorafenib, Trametinib,
OIPS Regorafenib, BMS-908662,
Adenosine Triphosphate
BRAF— BRAF GM HRAS RAF1, HRAS RAF1, HRAS HRAS HRAS AZD8055, Everolimus, DB08751
KRAS+ KRAS GM RASSF2, RGL2 RASSF2, RASSF2, RASSF2, RASSF2,
RGL2 RGL2 RGL2 RGL2
KRAS— KRAS GM NTF3 NTF3 NTF3 NTF3 NTF3
TCGA Samples ~ BRAF+ BRAF GM CCDCB88A CNKSR1 CNKSR1 CCDC88A  CCDC88A,
CNKSR1
BRAF BRAF GM CCDCB88A CNSKR1 RHEBL1 CCDC88A  CCDCB88A
V600E+
BRAF— BRAF GM RAP2C RHEBL1 RAP2C RAP2C RAP2C
BRAF 26 DEGs GM ATF1, CSTF3, GTG2E1, ~ BCAP29 CSTF3 BCAP29 BCAP29
V600E+ GFT2E2, GTF3A, PHTF2,
TFEC, TFPI, TF, BCL2L15,
FAM3C, PMCHL1
BRAF— 26 DEGs GM TFPI BCAP29 TFPI BCAP29 TFPI,
BCAP29

A consensus-based approach was used to genes to match to DGIdb to identify candidate therapeutic agents.

De Novo Network Reconstruction Analysis
We also considered reconstructing transcriptional networks
de novo using WCGNA (Gautier et al., 2004; Barrett et al,
2013) across mutation-status (supervised) groups on the TGen
melanoma cell lines and TCGA melanoma patient samples. For
the TGen melanoma cell lines, WGCNA modules were created
using BRAF and KRAS mutation groupings (Figure 6). For each
of the modules identified from the WCGNA assessment of the
wild-type cell lines, we identified the modules identified in the
mutation-bearing cell lines with the highest intersection of genes.
We then tested these intersecting genes for network rewiring
using network equivalence and permutation tests (although we
were unable to test for KRAS because of the limited number of
KRAS+ melanoma cell lines). Our results confirmed evidence for
network rewiring based on these de novo reconstructed networks
(Table 7). When creating 10 modules for the melanoma cell
lines, six out of the 10 networks had strong p-values; and when
creating 20 modules for the melanoma cell lines, seven out of
the 20 networks had strong p-values. Although the network
rewiring in the TCGA patients was not as extensive, there
were still some modules that had statistically significant p-values
(Supplemental Figure 17 and Table 7). We also found that there
was network rewiring in a small number of a priori created
modules in both BRAF+ vs. BRAF— and BRAFV600E+ vs.
BRAF—- melanoma cohorts.

DISCUSSION

Although there has been a great deal of attention given to
the development and use of pathway and genetic network
analysis tools in understanding disease pathogenesis and drug
targeting, these tools often rely upon the use of pathway
and network information derived from analyses of genes in

normal and non-diseased cells, cell lines, and tissues (St Onge
et al., 2007; Califano, 2011; Ideker and Krogan, 2012; Hofree
et al., 2013). This compromises relevant analyses since pathways
and genetic networks are not static and are often perturbed
by various diseases of interest. This is especially true in the
study of cancer, where there are many stresses, including gene
perturbations, drugs and environmental influences, that all
impact the way genes interact and exploit, e.g., signaling or
regulatory relationships. This is not to say that researchers cannot
use information about the relationships among genes derived
from studies of normal cells and tissues as an initial starting point
for detecting differences in gene relationships in a disease state,
but it does suggest that a great deal of caution should be made in
making claims about the relationships between genes in a disease
state, i.e., their wiring or topology as reflected in the networks
they form.

We assessed evidence for network rewiring a posterori among
a set of melanoma cell lines and tumor profiles by leveraging
multivariate mixture models in the analysis of the relationships
among gene expression values. The mixture models allowed us
to identify subsets of cell lines and tumors that exhibit the most
evidence for rewiring (i.e., differences in the relationships among
genes based on their expression patterns) without having to
specify a priori which cell lines or tumors we wanted to contrast
for network differences. We focused on the MAPK pathway
in particular and found that, based on very robust simulation-
based tests, heterogeneity in networks reflective of rewiring did
indeed exist in our cell lines and tumor profiles. Furthermore,
we explored various factors that could explain the differences
between the identified cell lines, tumor profiles identified from
the mixture models, but found that, in the melanoma cell lines,
common melanoma gene alterations could not explain the group
differences we identified, suggesting that some other factor is
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TABLE 6 | A comparison between degree centrality parameters through correlations.

Dataset Samples Network DC cor BW cor CL cor EC cor Avg cor
TGen Cell Line BRAF+/- BRAF GM 0.05 0.15 0.10 0.14 0.11
TGen Cell Line KRAS+/- BRAF GM 0.10 0.03 0.00 -0.14 0.00
TGen Cell Line BRAF+/- KRAS GM —0.06 —-0.10 —0.36 -0.42 -0.23
TGen Cell Line KRAS+/- KRAS GM —0.50 —-0.19 —-0.59 —0.32 -0.40
TCGA Samples BRAF4/- BRAF GM 0.77 0.26 0.28 0.85 0.54
TCGA Samples BRAF V60OE +/BRAFwt BRAF GM 0.78 0.36 0.48 0.86 0.62
TCGA (WT somatic calls) BRAF+/- (add somatic called) BRAF GM 0.78 0.51 0.44 0.87 0.65
TCGA (WT somatic calls) BRAF V600E +/BRAFwt BRAF GM 0.79 0.68 0.65 0.85 0.74
TCGA (WT somatic calls) BRAF V600E +/BRAFwt 26 DEGs GM 0.24 0.81 0.35 0.46 0.47

DC, Degree Centrality; BW, Betweenness; CL, Closeness; EC, Eigenvector Centrality.
Bold values indicate negative average correlation.

responsible for the rewiring in these groups of cell lines and
tumors. We also applied degree centrality and other network
node importance statistics to the networks in the subgroups
of cell lines and tumors identified. These analyses suggested
that different genes played more central roles in the different
subgroup networks and hence are likely better drug targets. These
results suggest that the use of pathway and genetic network
information on a biologically relevant subset of cell lines or
tumors may reveal greater insights into drug candidates.

As a complement to using mixture models to identify novel
subgroups of melanoma cell lines and tumors exhibiting evidence
for genetic network rewiring, we also compared the genetic
networks based on correlations between expression levels of
genes in melanoma cell lines and patient samples across groups
defined by the presence of specific mutations in supervised
analyses. We found that there was evidence of network rewiring
when stratifying the cell lines based on mutation status. Although
network rewiring was also observed in the patient samples, it was
less pronounced. The cancer cell lines may have gone through
numerous passages, contributing to changes in genetic network
and gene expression patterns. Another potential explanation is
that cell lines represent a fairly homogeneous population with
chaotic genomes, while patient tumor samples are heterogeneous
with respect to the mutations they carry and are often comprised
of tumor, stroma, infiltrating immune cells, and other non-
tumor cells. It is likely that this heterogeneity makes it much
more difficult to clearly identify changes in the correlations in
the expression levels of genes. Tumor heterogeneity also makes
identifying consensus between-patient drug targets more difficult
since patient-specific rewirin” could affect the downstream drug
target identification.

Our analyses also involved the use of various network
centrality statistics to identify candidate genes (i.e., nodes in the
networks) that might be ideal drug targets among both BRAF
mutant cell lines and BRAF wild-type cell lines, especially for
groups defined (in a supervised manner) by mutation status. As
expected, we found that MEK inhibitors were the most likely
drugs to affect BRAF mutant cell lines, whereas the mTOR
inhibitors were the most likely drugs to affect BRAF wild-type
cell lines. Ultimately, we feel that our analyses strongly suggest

that an understanding of how the relationships among genes or
other factors influencing, or associated with, disease pathogenesis
can facilitate treatment decisions. However, the identification of
these relationships requires a clear sensitivity to the fact that
those relationships change in the disease state in ways that cannot
be easily anticipated from, e.g., mutation status or average gene
expression levels alone.

MATERIALS AND METHODS

Transcriptional Profiles on Cell Lines

We leveraged a number of melanoma cell lines. Including the
UACC cell lines maintained at the Translational Genomics
Research Institute (TGen) in Phoenix, AZ. All the TGen UACC
cell lines were of low passage number (Figure 1B) and were
maintained according to the manufacturers or collaborator’s
instructions. All cell lines were stored and evaluated in media
with 10% FBS and 1% AA added. The low passage cell lines
were maintained in multiple aliquots as liquid nitrogen stocks to
reduce risk of phenotypic drift. All cells were cultured for less
than 3 months before reinitiating culture from the frozen stock
and routinely inspected for identity by morphology and growth
curve analysis and validated to be mycoplasma free. All cell lines
were free of contaminants.

The cell line samples were used for nucleic acid extraction,
verification, amplification, and hybridisation to Affymetrix
HG-U133 plus 2.0 arrays (54,675 probesets, Affymetrix, Santa
Clara, CA) using standard protocols for Affymetrix GeneChip
microarrays. Affymetrix HG-U133 Plus 2.0 microarrays
were normalized (background adjustment, interquartile
normalization, and median polish) using robust multichip
averaging (Irizarry et al., 2003) in R. To assess network rewiring
that occurs within melanoma cell lines against a control
group, we normalized expression profiles across melanoma cell
line and skin fibroblast samples (Supplemental Figure 1,
Supplemental Table 1).  All  subsequent analyses were
based on normalization only within melanoma cell lines
(Supplemental Figure 2).

We also obtained the SK-MEL-2 melanoma cell line from the
Cancer Cell Line Encyclopedia (Barretina et al., 2012) (CCLE),
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TABLE 7 | Correlation equality tests between WGCNA defined modules in BRAF+/— SU2C cell lines, BRAF+/— TCGA melanoma patients, and BRAFv600e+/— TCGA

melanoma patients.

SU2C cell lines: BRAF+

TCGA melanoma patients: BRAF+

TCGA melanoma patients:

vs. BRAF— vs. BRAF— BRAFv600e+ vs. BRAF—

WGCNA module Size St Chi-sq P-value WGCNA module Size St Chi-sq P-value WGCNA module Size St Chi-sq P-value
WGCNA 1 (k = 10) 177 21,137 0.003 WGCNA 1 (k = 10) 388 104,851 0.055 WGCNA 1 (k = 10) 375 90,565 0.125
WGCNA 2 (k = 10) 210 22,813 0.152 WGCNA 2 (k = 10) 374 80,097 0.251 WGCNA 2 (k = 10) 379 81,201 0.262
WGCNA 3 (k = 10) 363 NA WGCNA 3 (k = 10) 311 46,891 0.598 WGCNA 3 (k = 10) 304 46,141 0.512
WGCNA 4 (k = 10) 173 21,100 0.001 WGCNA 4 (k = 10) 2083 26,916 0.132 WGCNA 4 (k = 10) 289 59,361 0.125
WGCNA 5 (k = 10) 146 9,770 0.135 WGCNA 5 (k = 10) 375 103,329 0.130 WGCNA 5 (k = 10) 380 106,081 0.128
WGCNA 6 (k = 10) 151 12,584 0.042 WGCNA 6 (k = 10) 100 5,848 0.082 WGCNA 6 (k = 10) 100 7,580 0.002
WGCNA 7 (k = 10) 139 10,240 0.044 WGCNA 7 (k = 10) 432 110,980 0.228 WGCNA 7 (k = 10) 462 133,054 0.167
WGCNA 8 (k = 10) 106 6,058 0.002 WGCNA 8 (k = 10) 75 4,025 0.042 WGCNA 8 (k = 10) 73 4,256 0.024
WGCNA 9 (k = 10) 261 27,640 0.343 WGCNA 9 (k = 10) 282 54,269 0.042 WGCNA 9 (k = 10) 346 79,352 0.063
WGCNA 10 (k=10) 165 16,857 0.069 WGCNA 10 (k=10) 185 18,780 0.381 WGCNA 10 (k=10) 184 18,864 0.337
WGCNA 1 (k = 10) 115 6,637 0.183 WGCNA 1 (k = 20) 127 9,636 0.123 WGCNA 1 (k = 20) 128 10,610 0.067
WGCNA 2 (k = 20) 86 2,174 0.987 WGCNA 2 (k = 20) 161 13,476 0.500 WGCNA 2 (k = 20) 159 12,823 0.513
WGCNA 3 (k = 20) 41 868 0.121 WGCNA 3 (k = 20) 139 8,824 0.712 WGCNA 3 (k = 20) 136 8,577 0.712
WGCNA 4 (k = 20) 50 1,693 0.007 WGCNA 4 (k = 20) 160 12,930 0.457 WGCNA 4 (k = 20) 140 10,143 0.419
WGCNA 5 (k = 20) 38 731 0.089 WGCNA 5 (k = 20) 138 10,935 0.226 WGCNA 5 (k = 20) 118 8,565 0.206
WGCNA 6 (k = 20) 58 1,269 0.563 WGCNA 6 (k = 20) 405 112,288 0.142 WGCNA 6 (k = 20) 370 89,286 0.184
WGCNA 7 (k = 20) 172 11,040 0.481 WGCNA 7 (k = 20) 201 35,418 0.082 WGCNA 7 (k = 20) 181 28,132 0.095
WGCNA 8 (k = 20) 38 834 0.053 WGCNA 8 (k = 20) 105 7,231 0.125 WGCNA 8 (k = 20) 159 14,801 0.246
WGCNA 9 (k = 20) 58 2,249 0.017 WGCNA 9 (k = 20) 171 17,254 0.256 WGCNA 9 (k = 20) 173 17,306 0.274
WGCNA 10 k=20) 48 881 0.400 WGCNA 10 k=20) 187 20,292 0.217 WGCNA 10 k=20) 189 21,625 0.185
WGCNA 11 (k = 20) 88 4,670 0.150 WGCNA 11 (k = 20) 69 3,021 0.111 WGCNA 11 (k = 20) 64 2,668 0.098
WGCNA 12 (k=20) 124 NA WGCNA 12 (k=20) 246 34,917 0.266 WGCNA 12 (k =20) 222 28,240 0.272
WGCNA 13 (k=20) 35 971 0.003 WGCNA 13 (k = 20) 55 1,602 0.372 WGCNA 13 (k = 20) 54 1,688 0.201
WGCNA 14 (k = 20) 88 3,814 0.215 WGCNA 14 (k=20) 218 26,418 0.330 WGCNA 14 (k =20) 230 27,212 0.469
WGCNA 15 (k = 20) 50 2,179 0.016 WGCNA 15 (k = 20) 21 294 0.024 WGCNA 15 (k = 20) 15 175 0.018
WGCNA 16 (k =20) 46 1,193 0.049 WGCNA 16 (k=20) 134 12,283 0.161 WGCNA 16 (k = 20) 84 4,155 0.289
WGCNA 17 (k=20) 45 1,638 0.023 WGCNA 17 (k=20) 128 10,301 0.227 WGCNA 17 (k=20) 153 15,412 0.192
WGCNA 18 (k = 20) 72 3,108 0.077 WGCNA 18 k=20) 170 15,248 0.420 WGCNA 18 k=20) 169 15,297 0.416
WGCNA 19 k=20) 41 1,211 0.016 WGCNA 19 k=200 117 8,769 0.236 WGCNA 19 k=20) 115 9,200 0.134
WGCNA 20 k=20) 42 1,030 0.056 WGCNA 20 (k = 20) 12 89 0.092 WGCNA 20 (k = 20) 13 7 0.509

Bold values have an FDR adjusted p-value < 0.05.

and the MeWo melanoma cell line from the Developmental
Therapeutics Program’s NCI-60. In addition, we leveraged
microarray gene expression data on skin fibroblast samples (n
= 29) from Gene Expression Omnibus (Edgar et al., 2002;
Barrett et al., 2013) (GEO) (Supplemental Table 1). The skin
fibroblast samples varied in age and ethnicity (Caucasian and
Puerto Rican). Finally, we obtained gene expression data from the
TCGA melanoma samples from the Broad GDAC Firehose (n =
474). Raw CEL files were downloaded from the CCLE web portal.
All samples from the CCLE, NCI-60, and GEO were performed
on Affymetrix HG-U133 plus 2.0 arrays. All microarray samples
were re-normalized together to ensure minimal batch effects.
Normalization of all microarray data (background adjustment,
interquartile normalization, and median polish) was completed
using robust multichip averaging (Gautier et al., 2004) in R. We
obtained RAF and RAS mutation status on the CCLE cell lines
from the Oncomap mutation provided in the CCLE web portal

and additional binary calls for copy number and mutation data
from the CCLE web portal.

MAPK Pathway Information

We took advantage of a wide variety of data analysis techniques,
as described in detail below but focused much of our analyses
on sets of genes in the MAPK pathway, which were extracted
from the information in the WikiPathways (Gorban et al,
2010; Censi et al,, 2011) resource. We ultimately matched
MAPK pathway genes to probe sets in the Affymetrix arrays
used on for transcriptional profiling on the cell lines. We also
matched MAPK genes to those evaluated in TCGA RNAseq
dataset. For genes with multiple probe set matches, the probe
set with the maximum average intensity was used. We fit
multivariate mixture models using flexmix (Leisch, 2004; Gruen
and Leisch, 2007, 2008), assuming that there were two (BRAF+
vs BRAF—) or three (possible sub-grouping for BRAF-—)
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overarching different groups with gene expression values as the
dependent variables.

Unsupervised Network Rewiring Analysis
In order to conduct analyses exploring evidence for network
heterogeneity without specifying a grouping factor a priori
(i.e., in an unsupervised manner) we used multivariate mixture
models as implemented in the R module flexmix (Fritz and
Radziwill, 2010; Gorban et al., 2010; The UniProt Consortium,
2015). For the multivariate mixture models, we hypothesized
that groups identified in the data had different covariance
(correlation) structures reflecting the strength of the associations
of the expression values of genes within networks. We tested for
the existence of two groups in the data, but our approach could
have easily tested for three or more groups; however, sample size
limitations would have resulted in poor power for such analyses.
Based on the patterns of the correlations between expression
levels of the genes within each group, we sought to identify blocks
of highly correlated genes by using simple hierarchical clustering
of the pairwise correlations. Dendrograms or trees reflecting
this clustering could then be cut at varying heights to assess
the extent of heterogeneity within the flexmix analysis-derived
groups.

Assessing Statistical Significance

In order to determine whether there was a significant statistical
evidence for subgroups within a data set regulated exhibiting
different transcriptional networks, we leveraged simulation-
based tests. For a given analysis, we simulated 1,000 samples
with an n-dimensional mean vector and an n x n covariance
matrix consistent with the observed mean vectors and covariance
matrices for the full data set (ie., under the assumption of
homogeneity or non-subgroups). We then used flexmix to
identify two subgroups with these simulated data sets. From
these flexmix analyses, we calculated t-statistics comparing
the estimated mean vectors, chi-square statistics comparing
correlation matrices, as well as log-likelihood ratios, delta
AICs, and delta BICs comparing the two group vs. single
group fits. We calculated p-values for the statistics obtained
from the non-simulated data as the number of simulated
sample statistics greater than the actual test statistics divided
by 1,001.

A Posteriori Supervised Analyses

To determine whether or not the two groups identified in an
analysis could be explained by the existence of gene mutations
present or not in the cell lines, we performed logistic regression
analysis with the flexmix group identifier for a cell line as
the dependent variable and BRAF, NRAS, and KRAS mutation
information on those cell lines as explanatory variables. For
the CCLE cell lines, additional association tests were pursued
using gene mutation, gene amplification, insertion and deletion
information as independent variables. To account for the
multiple hypothesis tests, we used Q:Q-plots and Benjamini-
Hochberg (Benjamini and Hochberg, 1995) FDR-adjusted p-
values.

Exploring Network Architecture

To determine whether particular genes exhibited stronger
correlations with other genes and were acting as potential “hubs”
within the transcriptional networks, we calculated network
centrality metrics for each gene. To do this, individual “edges”
between each pair of nodes (i, j; where i and j denote genes or
nodes in the transcriptional network) were set equal to:

0, ifp (12) > 005
Ej = , NI
Tijs otherwise

where rizj

P (1’5) is the p-value associated with that correlation, to create

reflects the correlation between genes i and j and

graphs of the network. These calculations were performed for
each group identified from the mixture analysis using flexmix.
Based on the resulting graphs, we then calculated the metrics
degree centrality, closeness centrality, betweenness centrality,
and eigenvector centrality for each gene within each group’s
network. With these metrics for each gene, we examined the
degree of similarity of genes across groups (i.e., we compared
the metrics for each gene across the mixture model-derived
groups). For those genes that emerged as the most central for
each network, we identified drugs that target those genes using
the Drug Gene Interaction Database (DGIdb).

Analyses of the CCLE Melanoma Cell Line

Expression Data

To assess evidence for network rewiring associated with groups of
tumors defined by mutational status (i.e., a supervised analysis),
we tested the equality of correlation matrices computed for each
group using correlation matrix equivalence tests. Specifically,
we extracted gene networks centered on BRAF and KRAS
genes using geneMANIA. For this analyses, we identified the
20 most inter-connected genes associated with the BRAF and
KRAS pathways. Although NRAS is a more common mutation
in melanomas, we pursued more focused analysis on the
KRAS mutation because the cell lines and patient splits had a
greater proportion of KRAS mutant samples (i.e., there were
enough KRAS samples to pursue an analysis, but only a limited
number of NRAS mutant samples). We then calculated the
pairwise spearman correlations for the gene expression values
for those genes within mutant melanoma cell lines and wild
type melanoma cell lines. We compared the resulting correlation
matrices through permutation-based tests (see above). We
calculated x -statistics using the Steiger and Jennrich correlation
equivalence test methods with the psych (Revelle, 2015) package
in R. As noted in the package manual, the Steiger method uses
the sum of the squared correlations, whereas the Jennrich method
compares the differences between two matrices to the averages of
the two matrices. Thus, the Steiger method emphasizes non-zero
values to a greater degree, whereas the Jennrich method places
a greater emphasis the change in correlations. We generated
null distributions of x2-statistics through permutations of the
mutation status. For each test, we randomly permuted mutation
status 10,000 times, repeated the analyses, and derived the
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distribution of test statistics from these permutations to get a null
distribution as well as p-values for y-statistics.

Analyses of the TCGA Melanoma Tumor

Gene Expression Data

We performed similar correlation and permutation-based tests
within the TCGA melanoma gene expression data. For each
melanoma patient’s tumor gene expression data in the TCGA,
we obtained expression profiles from normal and tumor from
Cancer Genomics Hub. We used BAM slicer to identify
BRAF and KRAS gene regions and we assigned somatic
mutation status using the default settings in VarScan. We
stratified patient samples into three groups: BRAF mutant
(BRAF+), BRAF V600E mutant (BRAF V600E+), and BRAF
wildtype (BRAF—). We then performed correlation equivalence
tests to compare BRAF+ against BRAF— derived spearman
correlation matrices and BRAF V600E+ against BRAF—
derived spearman correlation matrices. As before, we generated
null distributions of relevant y2-statistics by permuting the
mutation status. To determine whether evidence for rewiring
was limited to the extracted BRAF network, we explored
evidence for broader network differences by identifying genes
that exhibited differential expression between mutant and
wild type groups using the DESeq and edgeR packages in
R. We wused these genes as inputs to identify candidate
networks by assessing them with geneMANIA and GO.
Resulting networks were then assessed for differences across
the mutation-defined groups, using correlation equivalence tests
and degree centrality statistics on these additional DEG-derived
networks.

Network Reconstruction Analyses

As a complement to analyses comparing correlation matrices,
we used the Weighted Gene Correlation Network Analysis
(Langfelder and Horvath, 2008, 2012) (WGCNA) package in R
to identify significant transcriptional modules within mutation
bearing and non-mutation-bearing samples. We created modules
(setting WCGNA parameter k to k = 10 and k = 20) within
BRAF+/- and KRAS+/- groups for the SU2C melanoma cell
lines; and BRAF+/- and BRAF V600E+/BRAF— for the TCGA
patient tumor samples. Corresponding modules were defined
as the modules with the maximum overlapping gene matches
between BRAF— or KRAS— modules and BRAF+, BRAF
V600E+, or KRAS+ modules. For the intersections of genes
identified, we assessed network rewiring using the previously
mentioned node centrality statistics and correlation equivalence
tests.
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Supplementary Figure 1 | Boxplot of normalized gene expression profiles across
all melanoma cell lines and skin fibroblast samples.

Supplementary Figure 2 | Boxplot of normalized gene expression profiles within
only melanoma cell lines.

Supplementary Figure 3 | Density plots for the posterior probability of the
flexmix groups in (A) SU2C melanoma cell lines and (B) CCLE melanoma cell
lines. These plots reveal that the flexmix called clusters were most distinct in the
SU2C melanoma cell lines. (C,D) are QQ-plots for gene significance association
tests against melanoma cell line groups discovered in the CCLE data.

Supplementary Figure 4 | Circular network graph of all common nodes. Top
network represents the network derived from correlation associations found in
cluster one, whereas the bottom network represents the edges present in cluster
two. Density of the edges highlights the differences in networks.

Supplementary Figure 5 | Pairwise correlation between MAPK Pathway genes
from the identified clusters in TCGA melanoma patients using flexmix were used to
generate heatmaps. Upper right hand half of matrix were correlation coefficients
from cluster 1, whereas lower left hand half of matrix were correlation coefficients
from cluster 2. Hierarchical clustering was subsequently performed using either
distances from cluster 1 coefficients (A) or cluster 2 coefficients (B).

Supplementary Figure 6 | Pairwise correlation between MAPK Pathway genes
from the identified clusters in all CCLE cell lines using flexmix were used to
generate heatmaps. Upper right hand half of matrix were correlation coefficients
from cluster 1, whereas lower left hand half of matrix were correlation coefficients
from cluster 2. Hierarchical clustering was subsequently performed using either
distances from cluster 1 coefficients (A) or cluster 2 coefficients (B).

Supplementary Figure 7 | QQ-plots for p-values based on association tests for
gene copy number variation observed against the groups discovered in the CCLE
dataset, using either the melanoma subset (A,B) or against all cell lines (C,D).

Supplementary Figure 8 | Observed p-values based on correlation strength
tests. Correlations were compared between those derived from TCGA melanoma
patients with BRAFv600e mutation against those derived from BRAF wt. Blue
points represent edges significant in only BRAF—, red points represent points
significant in only BRAFv600e+, black points represent significance in both.

Supplementary Figure 9 | Density plot of node centrality statistics for flexmix
clusters called on TCGA melanoma patients. We use four different degree
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centrality parameters (A) Centrality, (B) Closeness, (C) Betweenness, and (D)
Eigenvector Centrality.

Supplementary Figure 10 | Density plot of node centrality statistics for flexmix

clusters called across all CCLE cell lines. We use four different degree centrality

parameters (A) Centrality, (B) Closeness, (C) Betweenness, and (D) Eigenvector
Centrality.

Supplementary Figure 11 | Comparing node centrality statistics for BRAF+ and
BRAF— from the SU2C cell lines. We use four different degree centrality
parameters (A) Centrality, (B) Closeness, (C) Betweenness, and (D) Eigenvector
Centrality.

Supplementary Figure 12 | Comparing node centrality statistics for KRAS+ and
KRAS— from the SU2C cell lines. We use four different degree centrality
parameters (A) Centrality, (B) Closeness, (C) Betweenness, and (D) Eigenvector
Centrality.

Supplementary Figure 13 | Comparing node centrality statistics for
BRAFv600e+ and BRAF— from the TCGA melanoma patients. We use four
different degree centrality parameters (A) Centrality, (B) Closeness, (C)
Betweenness, and (D) Eigenvector Centrality.

Supplementary Figure 14 | Network derived from edges present in TCGA
BRAF+ patients.

Supplementary Figure 15 | Network derived from edges present in TCGA
BRAFv600e+ patients.
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