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Abstract

Reef configuration and hydrodynamics were identified as the principle physical drivers

behind coral reef fish aggregations on a mid-shelf patch reef in the northern section of the

Great Barrier Reef (-16.845˚, 146.23˚). The study was carried out over a six-year period at a

large reef pass on the oceanic margin of the northern Great Barrier Reef. Over this period

(February 2006 –December 2012) tidal state, moon phase and surface seawater tempera-

ture were monitored. The timing of sampling was organised to assess variation in physical

environment at daily, monthly, seasonal and annual time scales. Over these time scales,

temporal patterns of occurrence of 10 species of coral reef fish from 5 families representing

5 defined trophic groups were monitored. The study incorporated 1,357 underwater visual

census counts involving 402,370 fish and these estimates were collated with data on tidal

state, water temperature, lunar and seasonal periodicity. Aggregated boosted regression

trees analysed the univariate responses of fish abundance and species richness to the vari-

ation in the physical environment of the reef pass. Flood tides or when water flows from

open water through the pass and into the Moore Reef lagoon had 2.3 times as many fish

and 1.75 times as many species compared to counts made on ebb tides. Fish abundance

was highest in late winter and spring months (Austral calendar), but notably when water

temperatures were below the long-term mean of 27˚C. Multivariate regression trees and

Dufrêne-Legendre indicator predicted 4 out of 10 times the occurrence of all 10 species at

any temporal scale ranging from hours to years. Flood tides were the principle driver under-

lying the occurrence of all 10 species regardless of their trophic classification and produced

distinct seasonal assemblages, indicative of fishes aggregating to forage and reproduce.

Introduction

A typical feature of reef-fish behaviour is the formation of aggregations for the purposes of

reproduction and feeding at characteristic sites in coral reef systems. These behaviours are fre-

quently observed in reef passes, which provide abrupt transitions between productive shallow
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benthic reef habitats and open ocean ecosystems [1–5]. Although tropical open oceanic envi-

ronments are regarded as largely oligotrophic, they support large populations of macroplank-

tonic organisms including gelatinous zooplankters which make a substantial contribution to

the flux of carbon and remineralization processes on adjacent reefs [6]. Oceanic waters adja-

cent to reefs are enhanced by hydrodynamic processes that induce upwelling of nutrient rich

water [7–10]. In addition to the transport and redistribution of potential food items for plank-

tonic and nektonic feeding reef fishes, reef passes are also associated with current systems that

may redistribute eggs and developing larvae of spawning reef fishes [1, 11–13]. To date, much

of the interest in reef fish-aggregations has focused on the significance of reproductive events

and the role of the physical environment in determining the timing and intensity of spawning

[14–16]. Recent studies have noted the critical importance of environmental influences, espe-

cially temperature, on initiating reproductive activities and the need to monitor variation in

the physical environment at locations that support aggregative behaviours [17].

There is an extensive literature on the biological and environmental factors driving the for-

mation of spawning aggregations [18]. Also, the formation of aggregations to exploit food

items that are concentrated in reef passes contemporaneously with spawning aggregations has

been described [5, 19, 20]. However, foraging aggregations may develop from the environment

created by the interaction of reef geomorphology and hydrodynamic forces, that concentrate

plankton, nekton and nutrients in reef passes [8, 12, 21]. The importance of environmental

variables in determining the timing of aggregations has been noted in recent studies, such as

current direction, time of day [16] and temperature [17], with respect to spawning events.

However, given the complexity of reef pass environments an understanding of the triggers for

the formation of fish aggregations requires a more comprehensive knowledge of the temporal

pattern of environmental variation in reef passes. Hydrodynamic processes operate on a vari-

ety of timescales. These range from daily tidal cycles to monthly lunar cycles in the strength of

tidal flows, seasonal trends where the environment is modified by changing temperatures and

prevailing winds, through to inter-annual variation reflecting episodic trends including El

Niño-Southern-Oscillation (ENSO) events. For this reason, long-term environmental moni-

toring at aggregation sites is critical. Moreover, such data sets are necessary for modelling

responses in fish aggregation dynamics to climate change [17].

The present study adapts a widely accepted definition for fish spawning aggregations [22]

and defines fish aggregations as: a repeatable gathering of conspecific fish at a predictable time

and space with a four-fold increase in density compared with non-aggregating times. How-

ever, in nature many fish aggregations sites are used by many species, and such aggregations

include a variety of trophic groups and interactions. These include egg predators exploiting

the products of spawning aggregations [1, 19, 23], and large aggregations of reef fish that repre-

sent prey for larger predators which also congregate at such sites [4, 5, 24]. Finally, through

defecation, reef-fish aggregations can subsidise nutrient inputs to reef ecosystems [25, 26] or

directly augment food resources [27]. Clearly, fishes can form aggregations for a number of

reasons that are not necessarily mutually exclusive, including mate selection, spawning, and

foraging.

The goal of the present study was to examine the extent to which key features of the hydro-

dynamic environment predicted the occurrence of 10 fish species from five distinct trophic

groups at a fish aggregation site over a six-year period. The hydrodynamic features chosen for

this study ranged in temporal scale from daily (tidal regimes) too seasonal (water temperature)

through to inter-annual periodicities. Using multivariate hierarchical analysis, we examined

the temporal changes in fish assemblages at a fish aggregation site and behavioural observa-

tions over time enabled hypotheses to be advanced regarding the drivers for aggregations at

particular times. We predicted from research at other aggregation sites that: a) aggregation of
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fishes for the purpose of reproduction would have a seasonal signature, synchronised by lunar

and tidal cues to take advantage of strong currents that advect gametes away from reef hetero-

trophs [1, 19, 28]; b) tidal inputs of planktonic and smaller nekton may result in a consistent

presence of planktivores and piscivorous fish predators [29, 30] and c) on short time scales

reversals of the daily tidal cycle would be the most potent source of variation, with planktivores

and their predators exploiting the incoming tidal flow, and reproductive aggregations and egg

predators associated with the outgoing flow [11, 31]. Because of the requirement of intensive

sampling at limited locations, long-term studies involve a trade-off between temporal and spa-

tial monitoring. While marine macroecology has benefitted from the analysis of spatially

extensive data sites, inferences about processes are best evaluated by dynamic data collected

over important temporal scales [32] and the latter was the focus for the current study. The

long-term monitoring of this single location yielded a unique and detailed perspective of the

significant temporal drivers of fish abundance at a tropical multi-species fish aggregation site

at the scales of years, seasons, lunar phases and tides.

Methods

Study site

The study site (-16.845˚, 146.23˚), was situated approximately 55 km east of Cairns on the

north-western side of Moore Reef, a mid-shelf patch reef located in the northern section of the

Great Barrier Reef (GBR), Australia (Fig 1A). Moore Reef has a crescent shape, characterised

by an extensive reef flat on the windward margins, with a well-developed reef front that semi-

encloses a lagoon dominated by isolated patch reefs (Fig 1B). Several reef passages dissect the

reef flat at the north-western corner of Moore Reef (Fig 1C). The fish aggregation site (FA)

was in close proximity to a commercial tourism site that operates off a platform on the lagoon

side of Moore Reef (~ 350 m direct line; Fig 1C), which facilitated the means to perform under-

water visual census counts (UVC) at the FA regularly. The Great Barrier Reef Marine Park

Authority (GBRMPA) have classed Moore Reef as Marine National Park Zone. The commer-

cial tourism company operates under GBRMPA permit G10/33331.1. The research carried out

in this study was non-evasive, but was conducted under GBRMPA research permit G12/

35200.1. The UVC counts were conducted from February 2006 to November 2012. The larger

reef passage is ~330 m in length, 60 to 250 m in width and 14 to 22 m in depth with a north to

south orientation. This passage contained the FA, which was situated on the north-west aspect

of the passage and covered an area of ~ 3,500 m2 (Fig 1C). Habitats within the FA included a

reef crest and reef slope, mainly dominated by tabular and digitate hard corals. The reef fronts,

on both the outer and inner side of the passage also included some groove and spur morphol-

ogy and both slopes terminated at ~ 20 m depth into a sand-rubble substratum dotted by iso-

lated coral patches (Fig 1B). On 3 February 2011, a large tropical cyclone (“Yasi”, Category 5

strength) destroyed 95% of the tabular corals at the FA.

Environmental variables

Outer reef fronts and passages experience changing environmental conditions on a daily and

seasonal scale [33]. The information on several environmental variables was collected between

February 2006 and November 2012. These variables included tidal state, moon phase and sur-

face seawater temperature (SST) (for data source information see S1 Table). Two of the vari-

ables, water current direction and moon phase, require further explanation. The Moore Reef

passage was similar to other reef passages such as the Ribbon Reefs in the northern GBR [34]

and the Marshall Islands in the central Pacific [3], in that it experiences strong alternating cur-

rents generated by tides. At the study area, the flood tide causes water to flow onto the reef and
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Fig 1. Site map of Moore Reef fish aggregation site. (A) The location of Moore Reef in the Great Barrier Reef and (B) the location of the fish

aggregation site at Moore Reef. (C) Bathymetric map of reef scape at the Moore Reef fish aggregation site. The direction of flows through the

passage are detailed by the white (flooding) and black (ebbing) arrows. The letters (TP) refer to the location of a commercial tourism platform

and the underwater visual census path is represented by the light blue arrow passing through the fish aggregation area (yellow box). The lidar

(light imaging, detection and ranging) bathymetry data of Moore Reef was courtesy of Dr Robin Beaman, James Cook University.

https://doi.org/10.1371/journal.pone.0209234.g001
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lagoonwards, while the ebbing tide forces water to flow out through the passage to the Coral

Sea (Fig 1C). Moon phase has been represented as a fraction of luminosity, which is a quantita-

tive way of describing the moon’s phase [35]. The measurement ranges from zero to one. Zero

described the new moon phase, while 1 described the full moon phase and the first and last

quarters were represented by 0.5. First and last quarter can be distinguished by noting whether

the fraction illuminated was increasing or decreasing. First quarter occurred when the fraction

illuminated was increasing (moon waxing; in evening sky) and last quarter occurred when the

fraction illuminated was decreasing (moon waning; in morning sky) [35].

Species richness and abundance estimates

A pilot study was conducted at the study site from February 2005 to January 2006, during

which time a species list of larger fish (>20 cm total length) that occur at the site was compiled

(S2 Table). A subset of 10 common species from 5 families was selected for this quantitatively

descriptive study because they formed relatively high density, conspicuous aggregations

(Table 1). This selected suite of large coral reef fishes displayed a variety of foraging and repro-

ductive modes. These included pelagic predators (Carangidae), predators on reef-associated

fishes (Lutjanidae), egg predators (Macolor niger) and planktivorous species (Acanthuridae) to

represent fish exploiting food characteristics of the outer reef fronts. Species representing pred-

ators on benthic invertebrates (Lethrinidae, Haemulidae and some Carangidae) were selected

to potentially represent fish exploiting the outflowing currents of a reef pass to reproduce.

The abundance of the selected aggregating species was estimated 4 to 5 days a week for 6

years by the senior author. These UVC counts followed the same census path, starting at the

mouth of the channel and moving north around the outer slope of the tourist pontoon reef

(Fig 1C). This survey was conducted daily between 1400 h and 1500 h while on snorkel. Notes

were also taken during census on the trophic or reproductive behaviour of fish present (S2

Table). Foraging behaviour was observed as the direct consumption of prey items, and with

planktivores feeding behaviour was associated with the up and down movement in the water

column. Courtship behaviour, such as specialised colour changes and chasing were identified

from published examples [18, 48, 49].

Table 1. The 10 species of coral reef fish surveyed between February 2006 and November 2012 at the fish aggrega-

tion site, Moore Reef, classified into 5 broad trophic groups.

Trophic group Family Species Reference source

Predators of small

fish

Carangidae Caranx
sexfasciatus

[36–39]

Lutjanidae Lutjanus bohar [39]

Predators of benthic

invertebrates

Carangidae Trachinotus
blochii

[40]

Haemulidae Plectorhinchus
lineatus

[40]

Lethrinidae Lethrinus
nebulosus

[39, 41]

Lethrinidae Lethrinus
olivaceus

[41] (also has consuming fish and cephalopods)

Lethrinidae Monotaxis
grandoculis

[36, 41, 42]

Planktivores Acanthuridae Naso annulatus [43]

Egg predators Lutjanidae Macolor niger [20, 44] (S1 Video)

Omnivores Acanthuridae Acanthurus
dussumieri

Sand grazers [45], Detritivore [46], grazing herbivore

[47], planktivore and faecal scavenger (S2 Table and S2

Video)

https://doi.org/10.1371/journal.pone.0209234.t001
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Caesionidae abundance

Caesionidae represents a large component of outer slope reef fish communities on mid-shelf

reefs in the GBR [50]. These fish are small, mobile, can form dense aggregations, feed on

plankton and have been considered too difficult to count accurately in UVC studies [30] and

therefore were omitted from the original monitoring programme. Three of the five species of

Caesionidae were known to form foraging aggregations at the fish aggregation site (S2 Table).

To assess whether there were temporal changes in the abundance of these planktivores at the

FA, a GoPro video camera was fixed to a star picket in 9m depth of water in approximately

the centre of the FA. During October 2013 and February 2014, two days in each month were

selected for videotaping. The two days in each month coincided with a flood and ebb tide

phase, and on each day the camera recorded 4 hours of video footage. A 40-minute video from

each four-hour video was selected that represented the middle of the tide phase. A random

number generator was used to select 10 screen shots from each 40-minute video. The selected

screen shots were used with the software Event Measure [51] to accurately count the abun-

dance of caesionids present at a distance of up to 6m from the camera.

Statistical analyses

The data comprised 1,357 UVC counts at the FA between 1 February 2006 and 29 of Novem-

ber 2012. There were 402,370 individual fish from 10 species in this dataset. Date, month and

moon phase were available for all counts, and SST was measured for all but 21 samples. We

performed univariate and multivariate analyses on untransformed fish counts using two types

of regression trees. Regression trees can be summarised in ways that give powerful ecological

insight by representing complex information in a visual format that can be easily interpreted

[52, 53].

The univariate responses of species richness and raw fish counts of the 10 selected species

were modelled using aggregated boosted regression trees (ABT) to summarise the relative

influence of major predictors and to interpret interactions [54–56]. The ABT models included

the main effects and up to three-way interactions amongst the full suite of five explanatory

covariates (tide, moon phase, month, decimal date, and SST), all predictors and up to third-

order interactions. No monotonic constraints were applied to the functional form of selected

individual predictors. Five methods were used to interpret and compare the models as per

Fabricius and De’ath [56]. The best predictive models were determined by comparing the “pre-

diction error” (PE) expressed as a percentage of models with varying levels of interactions.

Multivariate prediction and regression trees (MRT) were used to model the abundance of

all 10 fish species in response to the most influential explanatory covariates identified in the

univariate models. The overall fit of the model was the “relative error” (RE), or fraction of vari-

ance not explained by the tree [52]. The RE over-estimates the performance of the tree when

predicting for new data, so predictive accuracy was estimated from five-fold cross validation

(the “cross-validated relative error”; CVRE). The most parsimonious models selected were

the ones that simultaneously minimise RE and CVRE [52, 53]. The performance of the final

model was assessed by comparing the best MRT with an unconstrained clustering of the same

distance matrix with the same numbers of terminal nodes (clusters). If the unconstrained clus-

ter analysis accounts for substantially more of the species variation than an MRT analysis, it

was likely that additional, unmeasured covariates were responsible for the difference in

explained species variation [52].

Each node of the tree can be defined by the multivariate mean of its samples, the predictors

that define it, the number of samples that were grouped there, and by Dufrêne-Legendre spe-

cies indicators (DLI). For a given species and a given tree node, the DLI was defined as the
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product of the mean species abundance occurring in the group divided by the sum of the

mean abundances in all other groups (“specificity” A), times the proportion of sites within the

group where the species occurs (“fidelity” B), multiplied by 100 [57–59]. Each species can be

associated with the tree node (assemblage) where its maximum DLI value occurred. The index

distinguishes between ubiquitous species that dominate many nodes in absolute abundance

and species that occur consistently within single nodes, but have a low abundance [52]. Finally,

the point-biserial correlation coefficient was used for determining the ecological preferences

of species among the set of alternative tree nodes or node combinations. This was a generalisa-

tion of the Pearson’s phi coefficient [60]. All analyses used the R open source libraries vegan,

abt, mvpart, mvpartWRAP and indicspecies [61].

Results

Abundance

Abundance patterns of the 10 species varied over the six-year sampling period, primarily in

association with five environmental variables “tide”, “month”, “SST”, “date”, and “moon

phase”. Partitioning of the five environmental variables demonstrated that tide was the domi-

nant influence (64.8%), followed by month (19%) and SST (11%). Date, representative of

among-year variation, and moon phase (frequently associated with reproductive periodicity),

showed a minor influence (4% and 0.9%), respectively (Table 2 and Fig 2A). Permutation tests

showed the effects of dropping these minor influences had little effect on PE, but omitting tide

caused a 1.5-fold increase in PE in relation to the full model (Table 2). Partial dependency

(effects plots) showed that UVC counts made at the aggregation site on flood tides had 2.3

times as many fish as counts made on ebb tides (Fig 2B).

Fish abundance patterns of the 10 target species at the fish aggregation site were predictable.

Models of main effects with 3-way interactions had a PE (44.8%) lower than that observed

with models including 2-way interactions (47.6%), equating to an R2 of 55.2% in explaining

variance in total fish abundance. There was evidence of a recurring pattern of higher fish abun-

dance in the second half of the year (the austral spring/summer) (Fig 2C). This was heightened

when SST’s were below the long-term mean (Fig 2D), indicating the influence of among-year

variation in temperature. There was a trend in increasing fish abundance post-mid 2011 (Fig

2E), but lunar periodicity had no influence on fish abundance (Fig 2F). Partial interaction

plots showed that UVC samples from cooler seawater temperatures in the period August-

November had higher than average fish abundance (Fig 3A). Flooding tides had higher

Table 2. Relative influences (%) of environmental variables on total fish abundance and species richness (10 selected species) in underwater visual census counts at

the Moore Reef fish aggregation site.

Total Fish Abundance Species Richness

Influence PE% P Influence PE% P

abt full model 44.8 48.29

Tide 64.82 150.7 <0.001 67.474 136.65 <0.0001

Month 18.92 27.50 <0.0001 11.098 12.69 <0.0001

SST ˚C 11.08 14.89 <0.0001 13.278 14.45 <0.0001

Decimal Date 4.23 4.01 <0.0001 6.96 6.81 <0.0001

Moon phase 0.94 0.50 <0.0001 1.1889 0.39 0.025

The top row shows the prediction error (PE%) of the best aggregated boosted regression tree models. Subsequent rows show the results of permutation tests (n = 1000

permutations) and the increase in PE% by dropping each variable, relative to the full model.

https://doi.org/10.1371/journal.pone.0209234.t002
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Fig 2. Partial dependency plots for the univariate response of pooled fish abundance from the best aggregated

boosted regression tree model. Relative influences (A) of pooled fish abundance (10 selected species) in underwater

visual census samples at Moore Reef fish aggregation. Partial dependency plots of fish abundance on the tidal direction

(B), month (C), surface seawater temperature (D), decimal date (Dt.num) (E) and moon phase (F), show the response

of abundance as a function f () of each predictor, with the influence of all other predictors held to a constant. Shading

Temporal variation in multi-species coral reef fish aggregations
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abundance than ebbing tides in all months, but that difference was greatest in the second half

of the year (Fig 3B).

Species richness

The increase in total fish abundance at the fish aggregation site was driven by an increase in

species richness. However, the species richness model of the 10 selected species was different

to the abundance model in the order of dominant variables influencing the observed patterns.

SST (13.3%), not month (11%), was the second dominant variable influencing the number of

species at the fish aggregation site (Table 2 and Fig 4A). Tide had the highest influence on spe-

cies richness (67.5%), with decimal date (7%), and moon phase (1.2%) being the least influen-

tial (Table 2 and Fig 4A). Partial dependency (effects plots) showed that UVC counts made at

the aggregation site on flood tides had about 1.75 times as many species counts made on ebb

tides (Fig 4B). Species richness was higher in cooler months (Fig 4C) and notably when tem-

peratures were below the long-term mean (Fig 4D). This was indicative of among-year varia-

tion in seasonal temperatures, and also a yearly effect was noted in that species richness

decreased under the mean from 2011 (Fig 4E). Overall, lunar periodicity had no influence on

species richness. (Fig 4F).

The best model, with 3-way interactions, had a relative PE of 48%, equating to an R2 of 52%

in explanation of the variance in species richness. Models of main effects (PE = 55.7%) and

2-way interactions (PE = 50.7%) had higher prediction errors. Permutation tests showed that

the effects of dropping moon phase from the model had no significant effect on PE, but omit-

ting tide caused a 1.3-fold increase in PE in relation to the full model (Table 2). The error in

the model without tidal state was 1.14 times the overall variance in species richness. The inter-

actions among the covariates of SST, month and tide were interpreted from partial interaction

plots (Fig 5). Species richness was higher than average with cooler SST’s in the period May-

October (Fig 5A), but higher richness on flooding tides in all months (Fig 5B).

Assemblage structure

Analysis of the multi-species abundance data produced recognisable assemblages of reef fishes.

These assemblages displayed fidelity and predictability with respect to the five environmental

variables that were incorporated into MRT. The best performing MRT split the data into eight

assemblages on tide, month and SST when moon phase was included (Fig 6A). The over-

whelming environmental influence on fish abundance patterns at the fish aggregation site was

tide. Whether individual fish species occurred throughout the year or were seasonally repre-

sented, all 10 species, regardless of their trophic classification (Table 1), were more abundant

on the flood side of the regression tree. The left hand branches were the counts made on ebb

tides, with low abundance of all species (Fig 6A). The first split of the MRT explained a third of

the tree variance, 14.4% of the 41.2% (Table 3).

The MRT model illustrated seasonal periodicities in fish abundance by producing distinct

seasonal assemblages on the flood side of the tree categorised by month with the spring assem-

blage further divided into warm and cool, split at the threshold value of 25.7˚C (Fig 6A).

Monthly temperature ranges varied (Figs 3A and 5A), which was reflective of inter-annual var-

iation in temperatures, with the lowest temperature recorded in 2011 and the highest in 2006

(Fig 6B). Although no single species was an indicator for any leaf of the tree, all indicators

around the response lines is 2 standard errors. Horizontal dotted lines show the mean fish abundance across all counts.

Vertical dotted lines show the mean value for each predictor. Rugs on the x axes show the spread of sampling in ten-

percentiles within the range of each predictor.

https://doi.org/10.1371/journal.pone.0209234.g002
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Fig 3. Partial interaction plots from the best aggregated boosted regression tree model for pooled fish abundance.

Partial interaction plots for the response of pooled fish abundance (10 selected species) to different seawater

temperatures at different months (A) and as a function f () of months given tidal direction (B). The contours of fish

abundance in (A) show the spread of temperatures sampled in each month as ten-percentiles (open circles) and the

increasing grey scale represents increasing fish abundance.

https://doi.org/10.1371/journal.pone.0209234.g003
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Fig 4. Partial dependency plots for the univariate response of species richness from the best aggregated boosted

regression tree model. Relative influences (A) of species richness in underwater visual census samples at Moore Reef

fish aggregation site. Partial dependency plots of species richness (10 selected species) on the tidal direction (B), surface

seawater temperature (C), month (D), decimal date (Dt.num) (E) and moon phase (F), show the relationship of
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occurred higher in the tree at combinations of nodes and branches (Fig 6A and Table 4). This

apparent discrepancy between the seasonality of abundance, but the lack of characteristic

indicators for terminal seasonal leaves, may be due to the ambitious nature of the MRT. For

example, Acanthurus dussumieri was a ubiquitous indicator at the root node, but this species

showed clear peaks in abundance when seawater temperatures were cooler, on both the flood

and ebb side of the tree (Fig 6A). This was supported by the relatively high point biserial coeffi-

cient of association of 0.69 with tree leaves 13 (“Flood.Winter”) and 31 (“Flood.Spring.Cool”)

(Table 5) and the lack of this species from the summer assemblages (Fig 6A).

Each node and terminal leaf of the tree was defined by the predictors, the number of sam-

ples that were grouped there, and by DLI in Fig 6A. Two species Lethrinus olivaceus and Plec-
torhinchus lineatus, both predators of benthic invertebrates, also showed predictable seasonal

patterns of occurrence. Both L. olivaceus and P. lineatus had the highest DLI with the combina-

tion of leaves 14, 30 and 31 on the right hand branches in the MRT with node 7 (“Flood.post.

Winter”). The “specificity” (A) of 0.96 for L. olivaceus at this node represented a 96% probabil-

ity that any particular UVC count recording L. olivaceus would occur in this node. However,

the “fidelity” of 0.43 showed that L. olivaceus occurred in only 43% of UVC samples in this

node. In contrast, P. lineatus had both high specificity and a high fidelity (93% of samples in

this node) (Table 4). The point-biserial coefficient of association between each species and

nodes showed a relatively high association (0.73) between the abundance of P. lineatus and the

node 15 “Flood.Spring” and leaves 30 and 31 of the MRT, regardless of differences in spring

water temperatures (Table 5 and Fig 6A).

The fish assemblages of all ten species on diel or seasonal time-scales were predictable. The

MRT had a prediction error of 61% and a relative error of 58.8% equating to an explanation of

41.2% of the multivariate distance variation. This means that the model was able to predict 4

out of 10 times, the occurrence of all 10 species at any temporal scale, ranging from hours to

years. A comparison of this MRT partitioning with an unconstrained clustering of the species

for all tree sizes from 1 to 7 splits (8 leaves) showed a consistently lower performance of the

MRT (by approximately 50%) in explaining variation in the assemblage structure. An uncon-

strained clustering with 8 groups had an error of 29.5%, nearly half of that for the MRT with 8

leaves (58.8%). This implied there were other environmental covariates, and perhaps some

sampling biases, that had not been included as predictors in the MRT model. Although, there

was not a close match between the species contributing most to the MRT and the overall varia-

tion in abundance. For example, P. lineatus comprised 28.8% of the variation in UVC counts,

and contributed nearly half (18.7%) of the distance variation explained by the MRT (R2 =

41.2%), yet the same ratio for N. annulatus was 23.5%: 2.8%, which translates to explaining

only 7% of the distance variation explained by the MRT (Table 3).

Caesionidae abundance

The small planktivorous caesionids were significantly more abundant at the fish aggregation

site through the flood rather than ebb tides, regardless of the two months sampled (Fig 7). No

members of the Caesionidae family were recorded on ebb tides and both flood tide groups

sampled produced outliers, indicating high abundance of caesionids during flood tide (Fig 7).

richness as a function f () of each predictor, with the influence of all other predictors held to a constant. Shading

around the response lines are 2 standard errors. Horizontal dotted lines show the mean richness across all counts.

Vertical dotted lines show the mean value for each predictor. Rugs on the x axes show the spread of sampling in ten-

percentiles within the range of each predictor.

https://doi.org/10.1371/journal.pone.0209234.g004
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Fig 5. Partial interaction plots from the best aggregated boosted regression tree model for species richness. Partial

interaction plots for the response of species richness (10 selected species) to different surface seawater temperatures at

different months (A) and as a function f () of months given tidal direction (B). The contour plot in (A) shows the

spread of temperatures sampled in each month as ten-percentiles (open circles) and increasing grey scale with

increasing species richness.

https://doi.org/10.1371/journal.pone.0209234.g005
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Discussion

This long-term monitoring study is one of the few studies to analyse the temporal periodicities

of fish aggregations on time scales that range from hours to years. The structure of fish assem-

blages showed high levels of periodicity, with events strongly linked to the local hydrodynam-

ics. The primary influence was the short-term semidiurnal tidal pattern characteristic of this

region of the GBR [34]. Both ebb and flood tides were expected to influence the formation of

reef fish aggregations. However, the analysis showed that the flooding tide was the dominant

environmental factor associated with fish aggregating. Flood tides correlated strongly with sev-

eral species forming foraging aggregations. Seasonal patterns in abundance and species rich-

ness of the selected species, not normally associated with outer reef habitats for foraging, may

suggest a reproductive signature. Surprisingly, moon phase often associated with fish forming

spawning aggregations [1, 19, 28] contributed very little to the overall structure of the fish

Fig 6. Multivariate regression tree for 10 species of fish from Moore Reef fish aggregation site. The best tree structure from a multivariate regression tree analysis

of the counts of 10 species predicted by month, surface seawater temperature, tidal direction, and moon phase (A). Histograms on the terminal nodes (“leaves”) show

the abundance of each species and the number of underwater visual census samples (n). The bars on the histograms, from left to right represent 1. Trachinotus blochii,
2. Caranx sexfasciatus, 3. Lutjanus bohar, 4. Monotaxis grandoculis, 5. Macolor niger, 6. Lethrinus nebulosus, 7. Lethrinus olivaceus, 8. Plectorhinchus lineatus (indicated

by �), 9. Acanthurus dussumieri (indicated by ϯ), 10. Naso annulatus. The node numbers are in boldface type for leaves and given in brackets for higher nodes. The DLI

characterising the labelled nodes and leaves are an index of fidelity and specificity of a species to a node. (B) annual variation in surface seawater temperature, with the

arrow marking the lowest recorded temperature during the 6-year study period.

https://doi.org/10.1371/journal.pone.0209234.g006
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Table 3. Summary of the multivariate regression tree (Fig 6).

Splits

Species

1

(Tide = Ebb)

2

(Temp = 27.25)

3

(Month = 8.5)

6

(Month = 6.5)

12

(Month = 3.5)

7

(Month = 11.5)

15

(Temp = 25.75)

Tree

%variance

Species

%variance

Trachinotus blochii 4.8 0.09 0.29 0 0.72 0 0.12 6.04 16.2

Caranx sexfasciatus 1.01 0.11 0.43 0.12 0.13 0.03 0.06 1.87 6.79

Lutjanus bohar 1.65 0.04 0.01 0.01 0 0 0 1.72 3.71

Monotaxis grandoculis 0.93 0.06 0.01 0 0.01 0 0 1.01 2.25

Macolor niger 0.21 0.01 0.02 0.01 0.02 0.01 0.02 0.3 0.95

Lethrinus nebulosus 0.06 0 0.11 0 0 0.06 0.01 0.25 1.53

Lethrinus olivaceus 0.01 0 0.06 0 0 0 0 0.08 0.3

Plectorhinchus lineatus 2.53 0.06 13.82 0.25 0 1.99 0.06 18.71 28.78

Acanthurus
dussumieri

0.67 0.77 0 5.78 0.16 0.58 0.51 8.47 15.97

Naso annulatus 2.48 0.02 0.03 0 0.09 0 0.12 2.75 23.52

Split % variance 14.35 1.17 14.79 6.19 1.14 2.66 0.9 41.2 100

The overall amount of variation in species abundance in 1,357 underwater visual census samples (Species % variance), the species-specific variation explained by the

MRT (Tree %variance), the node number and threshold values for the splits (Splits), and the individual and overall variation in species abundance explained by each

split (Split % variance).

https://doi.org/10.1371/journal.pone.0209234.t003

Table 4. The Dufrene-Legendre indicator value for each of the 10 selected species at the Moore Reef fish aggregation site.

Splits (Node) Species A B DLI p

All (1) Lutjanus bohar 0.97 0.92 0.89 0.001

All (1) Monotaxis grandoculis 0.97 0.91 0.88 0.001

All (1) Macolor niger 0.96 0.89 0.85 0.001

All (1) Acanthurus dussumieri 0.98 0.85 0.83 0.001

Flood (3) Trachinotus blochii 0.92 0.91 0.84 0.001

Flood (3) Lethrinus nebulosus 0.96 0.85 0.81 0.001

Flood (3) Caranx sexfasciatus 0.89 0.82 0.73 0.001

Flood (3) Naso annulatus 0.92 0.6 0.55 0.001

Flood.post.Winter (7) Plectorhinchus lineatus 0.89 0.93 0.83 0.001

Flood.post.Winter (7) Lethrinus olivaceus 0.96 0.43 0.41 0.001

The DLI is the product of “specificity” (A) and “fidelity” (B) and the nodes for which each species had a maximum in DLI are shown with probability values p.

https://doi.org/10.1371/journal.pone.0209234.t004

Table 5. The point-biserial correlation coefficient of association (phi) between species and tree node.

Splits (Node) Tree Leaves Species phi p

Flood (3) 13+14+24+25+30+31 Lutjanus bohar 0.63 0.001

Flood (3) 13+14+24+25+30+31 Monotaxis grandoculis 0.60 0.001

Flood (3) 13+14+24+25+30+31 Trachinotus blochii 0.48 0.001

Flood (3) 13+14+25+30+31 Macolor niger 0.45 0.001

Flood (3) 13+14+24+25+30 Naso annulatus 0.26 0.001

Flood (3) 13+24+25+31 Caranx sexfasciatus 0.46 0.001

Flood (3) 14+30+31 Lethrinus olivaceus 0.45 0.001

Flood.Spring (15) 30+31 Plectorhinchus lineatus 0.73 0.001

Flood.Spring (15) 30+31 Lethrinus nebulosus 0.39 0.001

Flood (3) 13+31 Acanthurus dussumieri 0.69 0.001

https://doi.org/10.1371/journal.pone.0209234.t005
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Fig 7. Caesionidae abundance at Moore Reef fish aggregation site. Box plot of Caesionidae abundance on flood and ebb tides for the

months of February and October. The black line in box represents the median and whiskers indicate the variability outside the upper and

lower quartiles. The diamond represents the mean of the samples and the black circles at the end of boxplot represent outliers.

https://doi.org/10.1371/journal.pone.0209234.g007
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assemblages. The results suggest a strong interaction between fish abundance and cooler SST

reflective of seasonal preference of some aggregating species and inter-annual variation in total

fish abundance of all 10 species. Species richness and abundance of all 10 species were highest

throughout late winter and spring (Austral calendar). The study also suggests strong trophic

links between aggregating functional groups, which included small planktivores with pisci-

vores, and coprophagous fish with piscivores and invertivores.

Flood tides correlated strongly with the formation of fish aggregations at the site, wherein

fish probably capitalise on the ingress of oceanic plankton with the incoming tide. Outer reef

slopes vary in configuration due to the presence of grooves, spurs and passages and these mor-

phological features can influence the oceanic forcing of water onto the hard reef [33]. Local

topography, such as narrow passes between reefs, may entrain deep flowing water rich in zoo-

plankton near the reef crest. Flood tides in a reef passage typically cause upwelling of water in

front of the reef, which are then carried through the passage by tidal jets [8]. The surface waters

that enter the passage are drawn radially from a semi-circle of the ocean that was centered at

the entrance of the passage and flow separation occurs at the two points on the upstream side

of the passage [21]. The FA occurs at one of these separation points (Fig 1C), and water move-

ment in this location on flood tides has been recorded to be slower compared to the passage

and further along the outer reef slope (EE. Fisher, unpubl data). Like spur and groove mor-

phology [30], separation points may entrain planktonic material in the immediate area on

flood tides for longer periods. The repeated occurrence of small and large planktivorous fish at

the FA on flood tides provides some indirect evidence that there are regular periodicities in the

importation of allochthonous plankton on flood tides.

In support of our predictions, the inputs of small plankton and nekton with flood tides

supported the continual presence of planktivores and predators of small fish. The small

planktivores from the family Caesionidae were more abundant at the FA on flood tides than

ebb tides. Likewise, short-term temporal patterns in abundance were shown for the two pred-

ators of small fish, Lutjanus bohar and Caranx sexfasciatus. Both predators were consistent

members of all flood assemblages and known to forage on small oceanic and reef associated

fishes at the FA (S2 Table). The large planktivore N. annulatus, a consumer of larger plank-

tonic items including gelatinous plankton [43], was also a consistent member of all flood

assemblages at the FA. However, the analysis only explained 7% of the variation in the occur-

rence of N. annulatus in relation to the environmental covariates examined. This implies

other variables that have not been accounted for, such as the unpredictable boom-bust cycles

of gelatinous zooplankters [6] and possibly other large-scale hydrodynamic processes [10,

62], may influence the abundance of preferable planktonic prey for N. annulatus. Flood tides

at the FA suggest coral reef fish potentially form foraging aggregations derived from oceanic

resources.

The higher fish abundance and species richness of the 10 selected species in spring were a

general feature of the six-year monitoring program and are suggestive of some species forming

aggregations for reproductive purposes. The two species classed as predators of benthic inver-

tebrates (L. olivaceus and P. lineatus) peaked in abundance during spring flood tides. Neither

species was observed spawning on flood tides, although individuals of both species were

observed to have swollen abdomens and appeared gravid (S2 Table), which has been consid-

ered as indirect evidence of imminent reproductive activity [63]. The latter species occurred in

consistently large numbers during the spring each year of the monitoring period. There is indi-

rect evidence that some members of the Haemulidae family form spawning aggregations in

the west Indian Ocean [64] and the west Pacific Ocean [65]. While there is a lack of published

information on the reproductive behaviour of any member of the Haemulidae, histological
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information from a western Atlantic Haemulid representative shows that, Haemulon plumieri
collected from higher latitudes (> 17˚) has a distinct spawning season [66, 67].

The species L. olivaceus was also seasonal in appearance at the FA, with peaks in abundance

during spring flood tides, suggestive that spawning may be the reason for their aggregation.

Histological evidence from other studies indicates that some species of the lethrinids on the

GBR have a distinct spawning season in the cooler periods of the year [68–70], though details

on mating systems of lethrinids on the GBR are lacking. In other locations, several species of

the lethrinids are suggested to form spawning aggregations [64, 65, 71], and histological evi-

dence and acoustic telemetry suggested that Lethrinus harak made nightly spawning migra-

tions coinciding with lunar and tidal cues in the Pacific island of Guam [72]. Nocturnal

spawning has possible evolutionary advantages due to reduced egg predation [1]. However, it

is difficult to observe, possibly explaining why there is only one documented account of lethri-

nids aggregating to spawn [73]. Spawning at dusk or night has also been suggested for some

members of the family Haemulidae from observations of oocyte development [74].

The indirect evidence of repeatable seasonal aggregations of P. lineatus and L. olivaceus at

the FA are suggestive of fish forming spawning aggregations. Neither species normally forages

on upper outer reef slopes [40], and observations made during the present study found that

both aggregations contained fish with swollen abdomens (S2 Table). The question is why both

species are more abundant on flood rather than ebb tides. We hypothesise the FA may act as a

staging or courtship arena, increasing the probability of social interaction and mate selection

[75], and the tidal cue of flooding may synchronise these behaviours [76]. Lunar periodicity

has been shown to synchronise spawning behaviour in some lethrinid species [72, 73],

although this was not a finding in the present study.

At the FA, SST was found to influence the abundance and species richness of fishes. Abun-

dance and richness of the 10 selected species were highest when SST was below the long-term

mean of 27˚C. For abundance data, a yearly effect was detected with the highest abundance of

all 10 species being recorded in the spring months of 2011 when the inter-annual SST was low-

est for the monitoring period. The omnivore, A. dussumieri, showed species-specific thermal

preferences and was highly abundant when water temperature was below 25.7˚C. At this time,

the species was seen to consume protein-rich faeces of piscivores and invertivores [27] (S2

Table and S2 Video). The increase in abundance of A. dussumieri correlated with an increase

in species richness of higher trophic groups and was suggestive of a tight interaction between

aggregating species and fishes utilising resource pulses created by aggregating fishes. This

study suggests coral reef fish aggregations could be influenced by large-scale meteorological

events, such as El Niño, by producing warmer SST and as well as by anthropogenic climate

change [17].

Tropical cyclones may also influence coral reef fish aggregations. At the FA, species richness

showed an opposite trend to overall fish abundance with the lowest values recorded in 2011

and 2012. The trend in dropping richness may be associated with the high destruction of tabu-

lar corals at the fish aggregation site by the passage of the tropical cyclone “Yasi” in 2011. Tab-

ular corals have been identified as important habitat for large mobile coral reef fish including

the families Haemulidae, Lethrinidae and Lutjanidae and Acanthuridae (including A. dussu-
mieri and Naso sp.) [77]. The reduction in this important habitat type may have influenced the

occurrence and abundance of 8 of the 10 species selected in this descriptive study.

Conclusions

Flood tides were the dominant environmental driver underlying the formation of aggregations

by 10 large coral reef fishes on an outer slope adjacent to the seaward side of a passage of
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Moore Reef. The importance of flood tides to these aggregations emphasises the necessity to

incorporate tide into the sampling design of monitoring studies to determine long-term

changes in fish assemblages [78]. The study found that some species aggregated at the site on a

daily basis and others were more seasonal in occurrence. The daily occurrence of small and

large planktivores and piscivores were likely to be associated with fishes forming short-term

foraging aggregations. In contrast, the seasonal presence of two species of benthic feeding

invertivores appeared to be related to fishes forming spawning aggregations. Contrary to our

predictions, flood tides were the dominant correlates of the possible trophic and reproductive

aggregations. This comprehensive study, despite being limited to one site, does provide a

detailed description of the temporal patterns of fish aggregations in relation to the physical

environment and hypothesises the biological motive for trophically different species forming

aggregations. To resolve this requires more specific information on their trophic and repro-

ductive biology. Future work is planned in this area, but presently restricted by permits that

allow large-scale collections. Research at more aggregation sites is also warranted to test the

hypotheses that some fish from certain trophic groups aggregate to spawn and others to forage.

Such research may also determine the generality of our finding that reef configuration and

hydrodynamics are the most important physical drivers underlying coral reef fish forming

aggregations.
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