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Abstract: Since the Coronavirus disease 2019 (COVID-19) pandemic outbreak, many methods have
been used to detect antigens or antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), including viral culture, nucleic acid test, and immunoassay. The shear-horizontal surface
acoustic wave (SH-SAW) biosensor is a novel pathogen detection platform with the advantages
of high sensitivity and short detection time. The objective of this study is to develop a SH-SAW
biosensor to detect the anti-SARS-CoV-2 nucleocapsid antibody. The rabbit sera collected from
rabbits on different days after SARS-CoV-2 N protein injection were evaluated by SH-SAW biosensor
and enzyme-linked immunosorbent assay (ELISA). The results showed that the SH-SAW biosensor
achieved a high correlation coefficient (R = 0.9997) with different concentrations (34.375–1100 ng/mL)
of the “spike-in” anti-N protein antibodies. Compared to ELISA, the SH-SAW biosensor has better
sensitivity and can detect anti-N protein IgG signals earlier than ELISA on day 6 (p < 0.05). Overall,
in this study, we demonstrated that the SH-SAW biosensor is a promising platform for rapid in vitro
diagnostic (IVD) testing, especially for antigen or antibody testing.

Keywords: surface acoustic wave (SAW); severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2);
in vitro diagnostic (IVD)

1. Introduction

Since the COVID-19 outbreak in late 2019, there have been more than 200 million con-
firmed cases (https://covid19.who.int accessed on 21 May 2021). The disease is caused by
SARS-CoV-2, which is a member of the Coronaviridae family. It possesses a single-stranded
and positive sense RNA genome. The genome size ranges from 26 to 32 kilobases [1–4].
SARS-CoV-2 contains four major structural proteins, including spike (S) protein, envelop (E)
protein, membrane (M) protein, and nucleocapsid (N) protein [5,6]. Since the S protein and
N protein are the most immunogenic proteins in SARS-CoV-2, antibodies to the S and N
proteins are usually detected in serological assays. In addition, SARS-CoV-2 contains large
amount of N protein. Moreover, the N protein is highly expressed during infection [7–10].
Currently, there are a number of methods to detect SARS-CoV-2, including viral culture,
nucleic acid test, and immunoassay. Virus culture requires specialized laboratories and
well-trained technicians. It takes a lot of time and effort to isolate the virus [11–13]. A
common nucleic acid test is real-time polymerase chain reaction (RT-PCR). It is sensitive
and accurate for the detection of viral genomes, while it requires long time and equipment.
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Typical immunoassays are enzyme-linked immunosorbent assay (ELISA) and lateral flow
immunoassay. ELISA has the advantage of high throughput and high selectivity. However,
it requires long preparation time. The advantages of lateral flow immunoassay are low cost
and short time. However, some interfering factors may lead to false-negative results [14].
With the severity of the pandemic, the development of a rapid and convenient assay is
important to gain insight into the duration and extent of immunization associated with
SARS-CoV-2, to track the prevalence of the disease, and to assess the effectiveness of
vaccines [15,16].

It has been shown that a SH-SAW biosensor can be applied to immunoassay with high
selectivity and sensitivity. Furthermore, an attractive advantage of SH-SAW biosensors
is the ultra-fast detection, which has been reported [17–20]. The gold membrane in the
sensing area is coated with antigens or antibodies of the molecule of interest. When the
assay starts, the sample is loaded onto the sensing region of the chip. The molecule of
interest in the sample binds to the antigens or antibodies on the chip, and the molecular
binding event causes a change in the velocity of the SH-SAW. As a result, a phase-shifted
electrical signal can be obtained. The concentration of the target molecules is measured
based on the detection of mass and viscosity changes in the sensing zone. When the mass
and viscosity on the sensing zone increase, the velocity of SH-SAW usually decreases.
In other words, the higher the concentration of the target molecule, the larger signal it
produces. In addition, there are ways to amplify the output signals. Secondary antibodies
or secondary antibody conjugated to gold nanoparticles can also be used for measurements.
Some literature has shown that gold nanoparticles are effective in amplifying the signal
and increasing the sensitivity [21].

In 2010, a research group of the authors reported a unique structure, a microfabricated
air cavity and a small detection circuit for the SH-SAW biosensor chip [22]. Since the
air cavity structure allows the liquid sample to reach the chip surface directly, the test
procedure is very simple and suitable for point-of-care testing (POCT). We can place a
drop of sample, such as whole blood, serum, urine, or saliva, directly on the chip. In
addition, the air cavity structure is very efficient for the fabrication process where the
capture proteins, reference proteins, and blocking proteins can be coated on the gold side
of the SH-SAW biosensor. Several automated coating devices for our SH-SAW biosensor
have been developed. On the other hand, since our SH-SAW biosensor does not require a
washing process, a complicated flow system including pump and tubing is not required [22].
No-wash, rapid, and quantitative immunoassay SH-SAW biosensor has been expected for
state-of-the-art POCT applications and several collaborative studies have been conducted
over a decade [17,19–21,23]. These studies suggest that our SH-SAW biosensor must be
one of the attractive candidates for rapid, small, and quantitative POCT kits. In this paper,
since POCT must be a key technology in the recent COVID-19 pandemic, we present our
SH-SAW biosensor as one of the candidates. In order to demonstrate the concept that
the SH-SAW biosensor can be applied to a rapid, small, and quantitative SARS-CoV-2
antibody detection kit, we developed a SARS-CoV-2 nucleocapsid antibody detection kit
for rabbits. First, we investigated the different blocking reagents and coating concentrations
to explore the optimal conditions for the SH-SAW biosensor chips. Afterwards, the four
parameter logistics (4PL) curve of the SH-SAW biosensor was established. The sensitivity
of the SH-SAW biosensor was also evaluated. A commercially available rabbit SARS-CoV-2
nucleocapsid antibody was used as a standard. We then evaluated the production of
rabbit sera collected on different days after injection of SARS-CoV-2 N protein. Secondary
antibody (goat anti-rabbit IgG) was conjugated with gold nanoparticles (OD10) and used
for signal amplification. For comparison with the SH-SAW biosensor, ELISA was chosen as
the control experiment.
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2. Materials and Methods
2.1. Materials

The SH-SAW sensor chips are supplied by tst biomedical electronics Co., Ltd. The
SH-SAW sensor chip has a unique structure with a microfabricated air cavity above the
interdigital transducer (IDT). The air cavity is composed of epoxy walls that surround
the IDT and a glass lid [22]. This structure allowed the attenuation of SH-SAWs to be
minimized and liquid reagents and samples can be applied directly to the chip surface.
A SH-SAW sensor chip with two channels is shown in Figure 1. Each channel has three
important areas: an IDT with a center frequency of 250 MHz, a sensing region with a gold
film, and a reflector. The SH-SAW wavelength is around 20 µm at 250 MHz. The substrate
material for the chip is 36◦Y-cut 90◦X-propagation quartz with a 0.35 mm thickness. The
IDTs, reflectors, and sensing areas are formed with an approximately 100-nm thick gold
film. The 250 MHz SH-SAW excited at the IDT propagates to the reflector, where it is
reflected, and then propagates back to the IDT, where it is received [17]. This structure can
reduce the size of the chip, thus reducing the cost of the chip.
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Figure 1. SH-SAW sensor chip. (a) Photograph of SH-SAW sensor chip; (b) schematic of SH-SAW sensor chip.

In this study, we used a two-channel SH-SAW biosensor chip with approximately
3 mm × 5 mm; one channel was used for reference and the other for capture. Each channel
on the chip has an IDT, a reflector, and a sensing zone between them. The chip is mounted
on a printed circuit board (PCB) with the signal pads and ground pads connected by
bonding wires. Afterward, the bonding wires and some areas of the chip are molded by an
epoxy resin. The two-channel SH-SW biosensor chip mounted on PCB is shown in Figure 2.
There is an open area of 3 mm square around the black epoxy resin, which facilitates the
retention of the sample liquid. The two black rectangles in the open area are a reference
channel and a capture channel with a gold film.
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Hellmanex III (259304) was obtained from HellmaAnalytics. Dithiobis [succinimidyl
propionate] (DSP) (VI309258) and dimethyl sulfoxide (DMSO) (TH270381) were purchased
from Thermo. Recombinant N protein coated on the chips and rabbit serum were obtained
from National Health Research Institutes, Taiwan. Bovine albumin serum (FUBSA001.100)
was purchased from Bio Future. Stabilguard (SG01-1000) was purchased from SURMOD-
ICS. Sodium bicarbonate (BSBR8715V, Sigma) was used to dilute detection antibody when
conjugating with OD10 (19120086, BBI Solutions). The serum used to dilute the stan-
dards was purchased from Sigma. Horseradish peroxidase-conjugated anti-rabbit IgG
(GTX213110-01) was purchased from GeneTex. Rabbit SARS-CoV-2 nucleocapsid antibody
(GTX135357) was purchased from GeneTex. The detection antibody, goat anti-rabbit (IgG)
secondary antibody (ab6702) was purchased from Abcam. TMB ELISA substrate (high
sensitivity) (ab171523) and 450 stop solution for TMB substrate (ab171529) were purchased
from Abcam. Trizma base (SLBS16762, Sigma) with Tween 20 (0000303176, Promega)
(TBST) was prepared by adding Tween 20 (0.05 v/v%) to TBS. Stabilizer were prepared by
adding 15 uL of Tween 20 to 10% sucrose (BCBV9208, Sigma). Phosphate buffered saline
containing Tween 20 (PBST) was prepared by adding Tween 20 (0.05 v/v%) to PBS (80 g/L
NaCl, 2 g/L KH2PO4, 2 g/L KCl, 11.5 g/L Na2HPO4, pH7.4) (CWFF0613, Bio Future).

2.2. Fabrication of SH-SAW Biosensor Chips Coated with N Protein

Initially, the sensing area of the SH-SAW chips was cleaned with O2 plasma. 2%
Hellmanex III was added and incubated for 20 min. After that, the chips were rinsed
twice with double distilled water. Total of 0.4 mg/mL of DSP solution (in DMSO) was
added onto the chips. After 20 min of incubation, the chips were rinsed with DMSO and
washed with double distilled water. Then, the chips were air-dried. The reference and
capture channel were coated with 2% bovine serum albumin (in double distilled water)
and 1.6 mg/mL or 0.8 mg/mL of SARS-CoV-2 nucleocapsid protein (in 50 mM Tris buffer,
400 mM NaCl, and 500 mM immidazole), respectively. Afterwards, the chips were blocked
with 2% gelatin (in PBS), or 2% casein pH7.4 (in PBS) to reduce non-specific binding of
proteins during the detections. Finally, stabilizer was added and the chips were blown dry.
The chips were labeled and stored at 4 ◦C.

2.3. Preparation of the Standard Solutions

Rabbit SARS-CoV-2 nucleocapsid antibody was diluted and used as a standard. The
initial concentration of rabbit SARS-CoV-2 nucleocapsid antibody was 0.33 mg/mL. It
was diluted with serum, and the final concentration was 1100 ng/mL. After that, serial
dilutions were performed. The concentrations of standards were 1100 ng/mL, 550 ng/mL,
275 ng/mL, 137.5 ng/mL, 68.75 ng/mL, and 34.375 ng/mL, respectively. Serum was the
blank sample.

2.4. Preparation of Detection Antibody Conjugated OD10

One mL of gold colloid solution was added to the Eppendorf and centrifuged at
13,000 rpm for 15 min. The supernatant was discarded. Afterwards, the pellet was re-
suspended with 0.05 mg/mL of the detection antibody. After incubation for 1 h at room
temperature, 200 mg/mL of bovine serum albumin was added. After 30 min of incuba-
tion at room temperature, the solution was centrifuged at 13,000 rpm for 15 min. The
supernatant was removed. The pellet was suspended with a micropipette and 100 µL of
StabilGuard Immunoassay Stabilizer was added. The solution was then incubated at room
temperature for 4 h. Afterward, the solution was centrifuged at 15,500× g for 15 min to
remove the supernatant. Finally, 100 µL of StabilGuard Immunoassay Stabilizer was added
to achieve OD10.

2.5. Measurement of Anti-N Protein Antibodies Using SH-SAW Biosensor

The SH-SAW biosensor measurement system is shown in Figure 2, which was designed
by one of the research teams of the authors [22]. A control box with measurement circuitry
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is connected to a personal computer via a USB cable. In addition, the control box is
connected to a fixture to which two SH-SAW biosensor chips can be connected. The
measurement signals of the two SH-SAW biosensor chips can be displayed in real time on
the personal computer and are recorded in a file. Figure 3 showed a schematic diagram
of the measurement protocol for anti-N protein IgG on a SH-SAW biosensor chip coated
with N-protein. In the first step (A), 5 µL of sample was added onto the chip coated with
SARS-CoV-2 nucleocapsid proteins. In the second step (B), the chip was rinsed with PBS to
remove the nonspecific-bound proteins. In the third step (C), 5 µL of detection antibody
conjugated to AuNP was added. The molecular binding event causes a phase shift in the
output signal of the SH-SAW. Figure 4 shows the phase shifts measured on the reference
and capture channel during the assay, and the phase shifts of the SH-SAW biosensor output
signals are measured continuously during assay steps (A), (B), and (C). The phase at the
end of the step (B) was set as the baseline. The baseline and the phase at five minutes after
the addition of the 2nd antibody conjugated OD10 should be related to the concentration
of anti-N protein IgG in the sample.
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(C) 5 µL of detection antibody conjugated to AuNP was added.

2.6. Control Experiment with ELISA

ELISA was used for comparison with the SH-SAW biosensor. A total amount of
14 µg/mL SARS-CoV-2 nucleocapsid protein was added to each well of the microplate and
incubated for 16 h at 4 ◦C. The solution was removed and each well of the microplate was
washed three times with PBST. Afterwards, to prevent non-specific binding of proteins,
the well was filled with 3% bovine serum albumin in PBST (blocking buffer) at room
temperature. The blocking buffer was removed and each well was washed twice with
PBST. Standards and samples were loaded into each well and incubated for 2 h at room
temperature. The standards and samples were removed and the wells were washed three
times with PBST. About 0.41 µg/mL of horseradish peroxidase-conjugated anti-rabbit
IgG was added and incubated for 1 h at room temperature. After removing the detection
antibody from each well, the wells were washed four times with PBST. Then, the TMB
substrate solution was added to each well. After 20 min of incubation in the dark at room
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temperature, 450 nM of TMB substrate stop solution was added. Equal volumes of TMB
substrate solution and 450 nM stop solution for TMB substrate should be used. Finally, the
absorbance was measured at 450 nm using an ELISA reader.
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2.7. Statistical Analysis

In this study, all the data were presented as means ± SD (standard deviation). Statisti-
cal analysis was performed by using Student’s t test. p-value less than 0.05 were considered
statistically significant. Statistical analyses were performed by using SPSS statistics 17
(SPSS, Chicago, IL, USA).

3. Results
3.1. Optimization of SH-SAW Biosensor Chip Surface

To optimize the N protein coating concentration on the SH-SAW biosensor chips, we
coated two different concentrations of N protein (1.6 and 0.8 mg/mL) and measured the cal-
ibration curve using the spike-in samples. The results showed 1.6 mg/mL N protein coated
chips (−39.19 ± 1.35 deg.) and 0.8 mg/mL N protein coated chips (−35.64 ± 1.86 deg.).
There was no significant difference between the two calibration curves. However, the
0.8 mg/mL N protein-coated chip remained one of the choices due to lower variability and
cost considerations. Therefore, we chose 0.8 mg/mL N protein-coated chip.

To optimize the blocking agents, two different blocking reagents (gelatin: 46 kDa,
casein: 25 kDa) were tested using spike-in IgG samples with different concentrations
from 0 ng/mL to 1100 ng/mL. Figures 5 and 6 show the measured phase shifts of the
reference and capture channels for gelatin and casein, respectively, as well as the delta
phase shifts subtracted between them. The phase shifts of the reference channel showed
almost similar values for different concentrations of N protein. On the other hand, the
phase shifts of the capture channel showed different values depending on the N protein
concentration. As shown in Figures 5a and 6a, the phase shifts of reference and capture
channels are stable and the final delta phase shifts obtained by subtracting these phase
shifts are also stable for both gelatin and casein blocking reagents. In contrast, as shown
in Figures 5b and 6b, the 4PL correlation of the SH-SAW biosensor chips-coated N protein
with the casein blocking reagent (R = 0.9711) was better than with the gelatin blocking
reagent (R = 0.9511). Therefore, we chose casein as the blocking reagent.
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3.2. Measurements of Standard Curves for SH-SAW Biosensor and ELISA

To evaluate and compare the sensitivity of the SH-SAW biosensor N protein chips and
N protein-coated ELISA platform, the spike-in antibody samples at different concentrations
(34.375–1100 ng/mL) and blanks (serum only) were measured. To create the standard
curve, these phase shift signals and that of ELISA for different concentrations of anti-N
protein IgG are plotted in Figures 7 and 8, and fitted to the following 4PL equation:

Delta phase shift or Absorbance = D + (A-D)/{1 + ([A-N IgG]/C)B}, (1)

where A = −2.13433, B = 1.47163, C = 1726.449, and D = −39.6 are the coefficients for
the SH-SAW biosensor chip with a coefficient of correlation (R) of 0.9997; A = 0.049731,
B = 1.2602, C = 26.92971, and D = 1.05379 are for ELISA with R of 0.9915; [A-N IgG] is the
concentration of spike-in anti-N protein IgG sample.
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3.3. Measurement of SARS-CoV-2 N Protein Induced Antibodies in Rabbit Serum

We used the SH-SAW biosensor and ELISA to measure the anti-N specific antibodies
produced by rabbit sera collected at different days after SARS-CoV-2 N protein injection.
From the results, we observed a surge of rabbit serum IgG in rabbit on day 6 of N protein
injection. We compared the SH-SAW biosensor and ELISA by measuring N protein-infected
rabbit sera Figure 9, and the results showed that SH-SAW biosensor could detect rabbit
serum IgG on day 6 with a significant phase shift change (p value < 0.05); however, ELISA
could only detect rabbit serum IgG with a significant signal change (p value < 0.05) on
day 9.
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4. Discussion

From the outbreak of the COVID-19 epidemic in 2020 to the present, the number of
coronavirus cases has exceeded 219 million. There is an urgent need for a rapid and accurate
coronavirus detection method [24–26]. The objective of this study was to develop a novel
SH-SAW-based biosensor coated with SARS-CoV-2 N protein and measure SARS-CoV-2
antibody in rabbit serum using SAW technology.

SH-SAW technology was designed and built by the IDT design to generate acoustic
waves on a solid surface, allowing us to directly observe changes in the wave characteristics
of a specific marker when it binds to the SH-SAW surface. Compared to ELISA methods,
SH-SAW technology is easier and faster to obtain real-time results because there are no
secondary antibodies or signal enhancers. Other technologies, such as surface plasmon
resonance (SPR) technology, can also achieve high reliability, sensitivity and repeat-free
measurement by measuring the variation of the sensing angle over time; however, the SPR
detector systems are larger and more expensive than SH-SAW detection systems [27,28].
Electrochemical methods can also provide label-free measurements by measuring the
change in current or potential as the biomarker binds to the surface, but the principle
of electrochemical methods involves oxidation-reduction reactions, which may affect the
stability of the biosensor [29,30].

To construct a simulation of COVID-19 infection, we injected the rabbits with recombi-
nant N protein and measured anti-N protein IgG in rabbit serum after different days of
injection by SH-SAW biosensor. We successfully developed a construction scheme for a
prototype SH-SAW biosensor for measuring anti-N protein IgG in serum. The reference
channel of the dual-channel SH-SAW biosensor chip reduces environmental or non-specific
effects such as changes in temperature and sample viscosity. By using a miniature dispens-
ing machine to load the coating materials onto the gold films in the sensing and reference
zones of the chip, the machine allows accurate and precise control of liquid volume up to
40 nL [31,32]. N protein was cross-linked to the gold film of the chips via disulfide bonds,
and DSP has been widely used for the attachment of gold nanoparticles. In order to obtain
better resolution of SH-SAW signal, the blocking agent is one of the key factors to optimize
the SH-SAW phase shift signals. If the molecular size of blocking agent is too large relative
to the coating material, the coating material will be obscured by the blocking agent, making
it difficult to capture its target. From the results, the chips blocked with casein as the
blocking agent to perform a better phase shift signal because of the smaller shielding effect.
Although many ELISA COVID-19 antibody assays are now available in the market, the
detection time of ELISA is not convenient for large-scale screening [33–35]. The SH-SAW
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biosensor has an advantage of real-time measurements, which takes only about 10 min
per measurement, whereas it takes at least 6 h to perform ELISA. In addition, the SH-SAW
biosensor is portable. Measurements can be performed anywhere [20]. Measurements
with the SH-SAW biosensor are reproducible. It can be used for semi-continuous mea-
surements [17]. The sample volume used in the SH-SAW biosensor measurements is very
small. Only 5 µL of sample is required for the measurement, which is another advantage of
SAW biosensor technology compared to ELISA. In addition, we used SH-SAW biosensors
and ELISA to measure rabbit sera that were obtained from different days after N protein
injection. The results showed that SH-SAW biosensor has better sensitivity and larger
signal than ELISA.

Despite the many advantages of the SH-SAW sensor, some aspects of the current SH-
SAW biosensor limit the usefulness of this device. The SH-SAW biosensor is measured in a
three-step process; the more measurement steps there are, the greater the potential impact
on the accuracy of each test. However, this can be demonstrated by pre-operational training
to familiarize practitioners with biosensor measurements or by mixing samples directly
with lyophilized OD10 enhancer, omitting the cleaning step, thus enabling one-step sample
addition. The SH-SAW biosensor is a novel technology for in vitro diagnosis devices (IVD)
and POCT, and the extremely short test time is its greatest advantage which is worth of
development in more aspects of biomarker IVD. In addition, the measurement data as
shown in Figure 7a indicate molecular binding events on the surface. The binding kinetic
analysis can help to further improve the measurement accuracy, in addition to monitoring
the sensor output changes. Study is ongoing on the binding curves of the SH-SAW sensor
system [36,37].

5. Conclusions

Due to the COVID-19 pandemic, there is an urgent need for a rapid and convenient
point-of-care testing product. The SH-SAW biosensor platform coated with SARS-CoV-2
N protein provides a highly sensitive and rapid anti-N protein IgG test. Although the
operational steps and OD10 stability have yet to be optimized, the SH-SAW biosensor
platform has the potential to be developed for more aspects of biomarker IVD.
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