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Abstract
The integration of fluorescence and plasmonic properties into one molecule is of importance in developing multifunctional imaging
and therapy nanoprobes. The aim of this research was to evaluate the fluorescent properties and the plasmonic–photothermal,
therapeutic, and radiotherapeutic potential of 177Lu–dendrimer conjugated to folate and bombesin with gold nanoparticles in the
dendritic cavity (177Lu–DenAuNP–folate–bombesin) when it is internalized in T47D breast cancer cells. The intense near-Infrared
(NIR) fluorescence emitted at 825 nm from the conjugate inside cells corroborated the usefulness of DenAuNP–folate–bombesin
for optical imaging. After laser irradiation, the presence of the nanosystem in cells caused a significant increase in the tem-
perature of the medium (46.8�C, compared to 39.1�C without DenAuNP–folate–bombesin, P < 0.05), resulting in a significant
decrease in cell viability (down to 16.51% + 1.52%) due to the 177Lu–DenAuNP–folate–bombesin plasmonic properties. After
treatment with 177Lu–DenAuNP–folate–bombesin, the T47D cell viability decreased 90% because of the radiation-absorbed
dose (63.16 + 4.20 Gy) delivered inside the cells. The 177Lu–DenAuNP–folate–bombesin nanoprobe internalized in cancer
cells exhibited properties suitable for optical imaging, plasmonic–photothermal therapy, and targeted radiotherapy.
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Introduction

Different-sized gold nanoparticles (AuNPs) can be classified into

molecular luminescent AuNPs (from 0.3 to 2 nm) and conven-

tional plasmonic AuNPs (from 2 to 100 nm).1 Luminescent

AuNPs lack the characteristic surface plasmon resonance (SPR)

due to the limited number of free electrons but can give a broad

range of emissions from visible to near-Infrared (NIR) regions.1

Due to their SPR, AuNPs can be used as localized heat sources for

cancer treatment.2,3 The photothermal conversion effect in

AuNPs is based on the collective oscillations of the electrons

under optical excitation, which provide strong localized heating

when they are irradiated with a laser or exposed to a certain radio-

frequency field.3–5 The localized heating, reaching temperatures

about of 700�C around AuNPs, causes irreversible thermal

destruction of cancer tissues.6–8
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The integration of fluorescence and plasmonic properties

into one molecule is of importance in developing multifunc-

tional imaging and therapy nanoprobes.9,10

Lutetium-177 is a b- and g-emitting radionuclide with a

physical half-life of 162 hours (6.73 days). In the field of

nuclear medicine, an in vivo theranostic approach combines

the potential of both diagnosis and therapy in the same target-

ing molecule by labeling with either a diagnostic (eg, 68Ga) or a

suitable therapeutic (eg, 177Lu) radionuclide.11,12

Dendrimers are hyperbranched polymeric structures. Poly-

amidoamine (PAMAM) dendrimers are spherical macromole-

cules composed of repeating PAMAM units which are known

to have high in vivo stability.13,14 Unmodified cationic PAMAM

dendrimers have been shown to be hemolytic, a property that

was associated with their cationic nature. However, the construc-

tion of novel dendrimers with biocompatible components

through the surface modification of commercially available den-

drimers by PEGylation, acetylation, glycosylation, amino acid,

vitamins, and peptide functionalization have solved the safety

problem of dendrimer-based nanotherapeutics.13

Over the last 2 decades, several experimental evidences

have suggested that the gastrin-releasing peptide (GRP) and

other bombesin-like peptides act as growth factors in many

types of cancer.15 Overexpression of GRP receptors (GRPR)

is present in 96% of breast cancer tissues.16 The overexpression

of folate receptor (FR)-a has been confirmed in all clinical

breast cancer subtypes comprised of estrogen receptor (ER)

positive, progesterone receptor (PR) positive, human epidermal

growth factor receptor(HER2) positive, and triple negative

(ER�, HER2�, PR�) tumors.17–19 Therefore, heterobivalent

conjugates of bombesin and folate are expected to improve the

recognition of breast cancer cells positive to FR and GRPR.

The multifunctional theranostic radiopharmaceutical com-

posed of AuNPs (size range: 1.0-2.9 nm) entrapped within the

internal cavities of 177Lu/68Ga-labeled PAMAM and conjugated

with target-specific molecules (bombesin and folate) at the per-

iphery of the dendrimer has been recently synthesized as a poten-

tial optical and nuclear imaging agent for breast tumors as well as

for targeted radiotherapy and plasmonic photothermal therapy.20

Nevertheless, fluorescent and plasmonic properties of radio-

pharmaceuticals based on AuNPs can significantly differ from

those observed in vitro due to the possible AuNP aggregation

inside cells.21,22

The aim of this research was to evaluate the fluorescent

properties and the plasmonic, photothermal, therapeutic, and

radiotherapeutic potential of the 177Lu–DOTA–dendrimer–

AuNP–folate–bombesin (177Lu–DenAuNP–folate–bombesin)

nanoprobe, when it is internalized in T47D breast cancer cells.

Experimental Methods

Preparation of 177Lu–DenAuNP–Folate–Bombesin and
DenAuNP–Folate–Bombesin

In this research, we used a 177Lu–DenAuNP–folate–bombesin

conjugate for which the carboxylate groups of bombesin and

folic acid were covalently conjugated to the free amine groups

of the dendrimer surface.20 Elemental analysis, particle size

distribution, transmission electron microscopy (TEM) analysis,

ultraviolet (UV)-visible (Vis), scanning electron microscopy

and X-ray analysis, infrared and fluorescence spectroscopies,

and radio-HPLC analyses confirmed the dendrimer functiona-

lization with high radiochemical purity (>95%).20 Briefly,

p-SCN-benzyl-DOTA (S-2-[4-Isothiocyanatobenzyl]-1,4,7,10-

tetraazacyclododecane tetraacetic acid; 5.38 mmol, Macrocyc-

lics, Dallas, Texas) was conjugated in aqueous–basic medium

(bicarbonate buffer, 0.2 M, pH 9.5) to the G4-PAMAM-

(NH2)64 dendrimer (0.3 mmol, Sigma-Aldrich Chemical Co,

St Louis, Missouri). The carboxylate groups of Lys1Lys3

(DOTA)-bombesin (0.55 mmol, piChem, Graz, Austria) and

folic acid (2.27 mmol Sigma-Aldrich Chemical Co) were acti-

vated with HATU in DMF/DIPEA and also conjugated to the

terminal amine groups of the PAMAM-G4 dendrimer. The

conjugate was mixed with 1% HAuCl4 followed by the addi-

tion of NaBH4 and purified by ultrafiltration. A 15-mL aliquot

(1.5 mg/mL) of the dendrimer–AuNP–folate–bombesin conju-

gate was diluted with 1 mol/L acetate buffer (35 mL, pH 5),

followed by the addition of 177LuCl3 (20 mL, 40 GBq/mL, >3

TBq/mg, ITG, Germany). The mixture was incubated at 90�C
for 30 minutes. Radiochemical purity was >95% determined by

size-exclusion radio-HPLC (ProteinPak 300SW, Waters, 1 mL/

min, injectable grade water). This complex will be referred to

as 177Lu DenAuNP–folate–bombesin.

Since the radioactive material cannot be handled in TEM

and fluorescent spectroscopy equipment, DenAuNP–folate–

bombesin was used in these studies considering that few
177Lu atoms (traces) are present in the 177Lu DenAuNP–

folate–bombesin system (MW* 30 000 g/mol).

Cell Culture

The T47D breast cancer cell line was originally obtained from

the American Type Culture Collection (Atlanta, Georgia). The

cells were routinely cultured at 37�C with 5% CO2 and 85%
humidity in Roswell Park Memorial Institute medium (Sigma-

Aldrich Co) supplemented with 10% fetal bovine serum and

antibiotics (100 U/mL penicillin and 100 mg/mL streptomycin).

These cells were selected since previously we have demon-

strated an important uptake of 177Lu–DenAuNP–folate–bom-

besin in T47D, which was significantly inhibited by

preincubation with cold Lys3-bombesin peptide or folic acid

alone, indicating that the multifunctional system has specific

recognition for GRPRs and FRs.20

Transmission Electron Microscopy

Transmission electron microscopy analyses were performed in

order to corroborate the internalization of DenAuNP–folate–

bombesin in T47D cells. Cells (5 � 105) were seeded into

6-well plates (Cyto-One, USA Scientific, Ocala, Florida) for

24 hours to allow adherence. DenAuNP–folate–bombesin was

added to cells followed by 1 hour of incubation at 37�C. The
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cells were washed 3 times with PBS, centrifuged into small

pellets, and fixed with 2% glutaraldehyde and 2% paraformal-

dehyde in sodium cacodylate buffer (0.1 mol/L). The cells were

further fixed with 1% osmium tetraoxide in 5 mmol/L

2-mercaptoethanol (phosphate–mercaptoethanol buffer),

dehydrated in graded acetone series, and embedded in Epon-

Spurr epoxy resin. Sections were cut at 85 nm using a diamond

knife (Diatome, Hatfield Pennsylvania). The sections were

stained with Sato’s triple lead stain and 5% aqueous uranyl

acetate for organelle visualization. The prepared samples were

examined on a JEOL 1400 TEM microscope (JEOL, Peabody,

Massachusetts) operating at 80 kV.

Fluorescence Imaging of DenAuNP–Folate–Bombesin
Inside Cells

T47D cells (2 � 103) were grown on glass coverslips and fol-

lowing treatment with dendrimer (Den), Den-AuNP, and

DenAuNP–folate–bombesin were rinsed with ice-cold PBS,

fixed in acetone, and washed twice with PBS. After the addition

of 250 mL (1 mg/mL) of Hoechst (DNA stain), cells were incu-

bated for 1 minute at room temperature and rinsed with PBS

before being mounted onto slides (ProLong Gold; Molecular

Probes, Invitrogen Life Technologies, California). Hereinafter,

the preparation of DenAuNP–folate–bombesin internalized in

the T47D cells will be referred to as DenAuNP–folate–bombesin

cell. Images of the fluorescent AuNPs of DenAuNP cell and

DenAuNP–folate–bombesin cell were taken using an epifluor-

escent microscope (MeijiTechno MT6200; Saitama, Japan).

Hoechst dye inside the nuclei was visualized with an excitation

filter of 330 to 385 nm and using an emission filter of 420 nm.

The AuNPs were detected using an excitation filter of 530 to 550

nm and an emission filter of 590 nm.

X-Ray Photoelectron Spectroscopy)

X-ray photoelectron spectra were acquired on a Thermo

K-Alpha spectrometer equipped with an Al Ka X-ray source

(1486.68 eV). The source was calibrated using Au 4f7/2

(84.0 eV) and Ag 3d5/2 (368.2 eV) from foil samples. An argon

ion beam was used for charge compensation in the samples.

The of DenAuNP–folate–bombesin and DenAuNP–folate–

bombesin cell samples were introduced into an ultrahigh

vacuum chamber of the spectrometer (1 � 10�7 to 1 � 10�8

Pascal) and measured at 297 K. The spot size in the beam was

200 mm. Twenty scans for Au4f were performed with an energy

step size of 0.03 eV. Survey spectra were measured in the range

of 0 to 1320 eV for DenAuNP–folate–bombesin (Supplemental

Figure S1) and DenAuNP–folate–bombesin cell samples. The

binding energies were referenced to the C1s peak at 285 eV.

Shirley background subtraction was applied to all spectra.

High-resolution spectrum was obtained for Au4f, C1s, and

O1s bands. The Au4f spectrum was statistically analyzed using

the Origin 8.1 software. The best fit was achieved for 4 peaks

with a multipeak model and the Gaussian function with a cor-

relation factor R2 of .987 (DenAuNP–folate–bombesin), and

for 6 peaks and the Lorentzian function with R2 ¼ .994 for the

DenAuNP–folate–bombesin cell.

Fluorescence Spectroscopy Analysis of DenAuNP–Folate–
Bombesin Inside Cells

Emission fluorescence spectra at 291 K of (1) DenAuNP–folate–

bombesin cell sample, (2) T47D cells þ Hoechst (matrix

emission), and (3) T47D cell samples were recorded on a

Perkin-Elmer LS-55 low-resolution luminescence spectrometer,

from 200 to 900 nm (PerkinElmer, Inc., Santa Clara, California).

All the samples were excited with wavelengths in the UV region

to VIS region in order to distinguish between emission bands

from the DenAuNP–folate–bombesin cell and those from the

cells and remaining Hoechst dye themselves and to identify

bands from Raleigh and Raman scatterings of the excitation

lights used as well as harmonics bands in the VIS region from

emission bands in the UV region (see Supplemental material).

The best results for the 3 samples were obtained using excitation

wavelengths (lexc) of 222, 270, 300, and 510 nm; emission filter

of 290, 390, 430, and 515 nm, and excitation; and emission slits

of 5 nm and 50 nm/min. To confirm some emission bands, exci-

tation slit equals to 7 nm and emission slit equals to 10 nm were

also tested. The source parameters were delay time (ms): 10, gate

time (ms): 20, cycle time (ms): 33, and flash time: 3.

Phothothermal Plasmonic Potential of DenAuNP–Folate–
Bombesin Inside Cells

T47D cells were incubated in a 96-well plate at a density of 5� 103

cells/well. The cells were cultured for 24 hours at 37�C with 5%
CO2 and 85% humidity. Then, the culture medium was removed,

the well plate was placed in a dry block heater at 37�C, and the cells

were exposed to one of the following treatments (n¼ 6): (1) 100mL

of Den–folate–bombesin and 100mL of PBS, pH 7 with irradiation

(1.19 W/cm2); (2) 100 mL of DenAuNP–folate–bombesin and 100

mL of PBS pH 7 with irradiation (1.19 W/cm2); (3) 100 mL of

distilled water (without nanoparticles) and 100 mL of PBS pH 7

with irradiation (1.19 W/cm2); or (4) no treatment.

Laser irradiation in all experiments was conducted using a

compact pulsed Nd: YAG laser (Q Smart 100; Quantel laser)

pulsed for 5 ns at 532 nm (energy ¼ 50 mJ/pulse) with a

repetition rate of 10 Hz. The per-pulse laser power was mea-

sured using a Dual-Channel Joulemeter/Power Meter (Molec-

tron EPM 2000; Coherent, Santa Clara, California). A

diverging lens was used in the path of the laser beam such that

the well plate was fully covered by the laser (diameter¼ 7 mm,

area ¼ 0.38 cm2). The irradiance at the well plate was then

calculated as the laser power per pulse divided by the laser spot

area. Irradiation was performed for 6 minutes while delivering

1.19 W/cm2 of average irradiance.

During laser irradiation, the temperature increase was mea-

sured using a type K thermocouple (model TPK-01) of imme-

diate reaction that had been previously calibrated (probe

diameter ¼ 0.8 mm). The thermocouple was introduced into

the well, and the temperature was registered each second using
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a cold-junction-compensated K-thermocouple to digital con-

verter (MAX6675, Maxim Integrated Products, Inc., San Jose,

California) connected to a microcontroller board (Arduino

Uno, Arduino AG Trademarks) with Universal Serial Bus

(USB) computer connection. After irradiation, the solution of

each well was removed and replaced with fresh medium.

The percentage of surviving cells in each well was evaluated

by the spectrophotometric measurement of cell viability as a

function of mitochondrial dehydrogenase activity, which

involves the cleavage of the tetrazolium ring of sodium 30-(1-

[phenylaminocarbonyl]-3,4-tetrazolium)-bis(4-methoxy-6-

nitro) benzene sulfonic acid hydrate (XTT) in viable cells to

yield orange formazan crystals that are dissolved in acidified

isopropanol (XTT kit, Roche Diagnostics GmbH, Mannheim,

Germany). The resulting absorbance of the orange solution was

measured at 480 nm in a microplate absorbance reader (Epoch,

BioTek, Vermont). The absorbance of the untreated cells was

considered as 100% of T47D cell viability.

Radiotherapeutic Potential: Cell Dosimetry

T47D cells were incubated in a 96-well plate at a density of 5� 103

cells/well for 24 hours at 37�C with 5% CO2 and 85% humidity.

Then, the culture medium was removed, and the cells were exposed

for 2 hours (at 37�C, with 5% CO2 and 85% humidity) to one of the

following treatments (n¼ 6): (1) 100 mL of 177LuCl3 (74 kBq) and

100mL of PBS, pH 7; (2) 100mL of 177Lu–DenAuNP (74 kBq) and

100 mL of PBS, pH 7; (3) 100 mL of 177Lu–DenAuNP–folate–

bombesin (74 kBq) and 100 mL of PBS, pH 7; or (4) no treatment.

After 2 hours, the solution in each well was removed and

replaced with fresh culture medium. The cells were maintained

for 3 days at 37�C with 5% CO2 and 85% humidity. After that,

the percentage of cell viability in each well was evaluated using

the XTT kit method, as described earlier. The absorbance of the

untreated cells was considered as 100% of T47D cell viability.

The calculation of absorbed dose in the cell was carried out

by the Committee on Medical Internal Radiation Dose (MIRD)

methodology using the cell internalization factors for 177Lu–

DenAuNP–folate–bombesine and 177Lu–DenAuNP previously

reported by Mendoza-Nava et al.20 The internalized activity is

considered the initial activity A0. From the calculation of the

total number of disintegrations during 3 days and the cell geo-

metric factor (determined by Montecarlo using PENELOPE),

the absorbed dose was computed.

Statistical Analysis

Comparisons between groups in laser irradiation and 177Lu

irradiation studies were made using the student t test (signifi-

cance was defined as P < 0.05).

Results and Discussion

Transmission Electron Microscopy

Figure 1 shows that DenAuNP–folate–bombesin is internalized

in T47D cells and exhibits vacuoles in the cell cytoplasm

(Figure 1, top 3 panels) and on the cell membrane (Figure 1,

bottom 2 panels). This specific recognition and internalization

into the cell cytoplasm is attributed to the biological behavior

conferred by bombesin and folate on the dendrimer surface

which binds to GRPR and FR on the cell membrane.20,23

X-Ray Photoelectron Spectroscopy

The X-ray photoelectron spectroscopy (XPS) spectra of Au4f

core orbitals of the DenAuNP–folate–bombesin system (Figure

2A) revealed 4 peaks corresponding to 2 doublets of the 4f7/2

and Au4f5/2 orbitals of gold, which are shifted to larger binding

energies with respect to those of the bulk gold metal (Au0

atoms), 84.0 and 87.6 eV, (3.67 separation), respectively. The

separation of the first doublets was 3.7 eV and the second one

was of 3.8 eV. Au4f7/2 peaks at 84.3 and 84.6 eV (shifted 0.3

and 0.6 eV) with Full-Width Half-Maximum (FWHM) ¼ 0.8

eV, and Au4f5/2 at 88.0 and 88.4 eV (shifted 0.4 and 0.8 eV)

with FWHM ¼ 1 eV, indicating that in the DenAuNP–folate–

bombesin system, the encapsulated AuNPs are interacting with

the amides and amines of the dendritic cavity with different

degrees of strength because of the AuNP sizes that are between

2.1 and 2.9 nm20 and the coexistence of Au0 and any oxidized

form. The treatment of the XPS spectrum and the extent of the

shift suggest the presence of the AuNPs with the shorter dia-

meter and/or the Au1þ oxidation state in the surface in about

20%. The shift of core Au4f electron peaks is inversely propor-

tional to the grain size.24 In AuNP-S-derivatives, where sulfur

atoms are covalently bonded to AuNPs, the peak of Au1þ

shifted significantly between 0.8 and 2.0 eV with respect to

the Au0 peak position. The coexistence of Au0 and Au1þ atoms

in the encapsulated AuNPs (diameter 2.5 + 0.4 nm), and the

stabilization that the conjugated dendrimer affords to the sys-

tem, explain the particular fluorescence–plasmonic properties

observed in the studied samples.

DenAuNP–folate–bombesin cell sample presented a partic-

ular XPS spectrum (Figure 2B). The positions of the peaks

indicate the presence of 4 defined Au peaks centered at 82.3,

85.2, 89.6, and 94.2 eV, but the multipeak model using the

Lorentzian function revealed 2 additional peaks on the left side

(88.0 eV) and right side (90.6 eV) of the peak at 89.6 eV. The

large shifts with respect to DenAuNP–folate–bombesin defi-

nitely point to a strong interaction of the conjugate system with

the cells, which demonstrate that the conjugate was interna-

lized in the cell, where it is not homogenously distributed and

then exposed to different types of interaction with the cell. The

4f7/2 peak is located at 85.2 eV and 4f5/2 at 89.6 eV which has

been associated with Au1þ with shifts of 0.9 and 1.6 eV with

respect to the conjugate system before contact with the cell.

This shift can also be due to the interaction of the encapsulated

AuNPs with the amine and amide groups of cell proteins. How-

ever, the 4f5/2 peak is the most intense and broader than the

4f7/2 peak because of the contribution of the 2 peaks found by

the fitting. This is an anomaly, since usually the 4f5/2 is less

intense than the 4f7/2 peak. The band at 88.00 eV is associated

with Au0, but the other one seems to be an oxidized form of Au.
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The band at 82.3 eV is too low in energy to correspond to Au0

and that at 94.2 eV is too high for Au1þ oxidation states. This

brings us to propose that once the DenAuNP–folate–bombesin

is inside the cell, several interactions of the conjugate with

anion and cation-transport cellular processes occur, which

leads to chemical changes in the surface of the encapsulated

AuNPs. Gold can have less common oxidation states such as

�1, þ2, and þ5. Therefore, it would be possible that Au0

atoms could be reduced to Au�1 atoms (auride anion), which

is relatively stable due to the very high Pauling electronegativ-

ity of gold, and its ability to form salts with Ca, K, Cs, and Rb25

and be oxidized to oxidation states higher than Au1þ ions

(possibly 2þ and 3þ oxidation state). The presence of remain-

ing Au0 atoms and electrons from the Au1� atoms on the sur-

face of the encapsulated AuNPs (diameter 2.5 + 0.4 nm) did

not allow the plasmonic resonance band to extinguish in the

DenAuNP–folate–bombesin cell sample.

Fluorescence Spectroscopy

The analysis of spectra recorded under different excitation

wavelengths and emission filters allowed the discarding of

emission bands from the cells and Hoechst dye, excitation light

scatterings, and harmonic bands in the VIS-NIR region (which

are broad usually) from the emission band in the UV region.

In Figure 3, the fluorescence emission spectrum of the

DenAuNP–folate–bombesin cell (Figure 3A) is presented com-

parative to that of the DenAuNP–folate–bombesin conjugate

(Figure 3B) obtained under the same experimental conditions.

Regardless of the extent of the intensities, the intensity ratio of

the UV/VIS-NIR bands of Figure 3A changed with respect to

that of Figure 3B, and bands enveloped in the spectrum of the

latter are revealed in the former. From 200 to 500 nm, the

emission bands correspond to the organic components such

as the functionalized dendrimer, the cells, and the Hoechst dye.

Main bands in the VIS-NIR region (525-900 nm) of Figure 3B

are clearly revealed in Figure 3A although slightly shifted. This

points to the interaction of the DenAuNP–folate–bombesin

with the cell. However, a sharp intense band at 825 nm is

revealed. This lead to search of the origin of such a band. It

was found that this band does not correspond to any scattered

excitation light nor to first harmonic bands from the emission

bands of the sample (for this test, the emission slit was larger

than the excitation slit, Supplemental Figure S2), since it is

present in the DenAuNP–folate–bombesin cell sample at the

same position (+2 nm) for all experimental conditions

Figure 1. Transmission electron microscope (TEM) micrographs. Top panels: intracellular uptake in T47D breast tumor cells treated with
DenAuNP–folate–bombesin for 2 hours. Bottom panels: DenAuNP–folate–bombesin in membrane showing a vacuole formation.
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(Figure 3A and 4 and Supplemental Figure S2). It was seen as a

poor band in the T47D cells and Hoechst dye spectra, and the

relationship between them is probably that imines, imide, or

imidazole groups are present in proteins and dyes such as

Hoechst. The DenAuNP–folate–bombesin cell spectrum reveals

more pronounced bands in the VIS (valence state effect) and

NIR (surface ligand effect) regions than the DenAuNP–folate–

bombesin, which indicates its internalization in T47D cells.

In Figure 4, the fluorescence emission spectra in the VIS-

NIR region (525-900 nm) excited at 510 nm and with variable

emission filters of (1) DenAuNP–folate–bombesin cell sample,

(2) T47D cells þ Hoechst, and (3) Hoechst are presented. The

spectra from 200 to 900 nm are given in Supplemental Figures

S3 and S4. In the spectra of the 3 samples (Figure S3 and S4), a

shoulder at about 461 nm is observed, which corresponds to the

fluorescence emission of the Hoechst dye. However, this emis-

sion is not the origin of the sharp band observed at 825 nm

because the Stokes shift would be too large for any energy

transfer and neither corresponds to a harmonic band, since

these would appear beyond 900 nm. Figure 4 reveals an

enhanced luminescence in the NIR region with a 515 nm emis-

sion filter, and the sharp band at 825 was the most intense at

this condition. The emission filters did not diminish intensity in

the (1) DenAuNP–folate–bombesin cell sample but disap-

peared in the (2) T47D cells þ Hoechst sample, and it was

negligible in the (3) Hoechst sample. The results demonstrated

that DenAuNP–folate–bombesin was internalized in the cell

and that the encapsulated stabilized AuNP of the DenAuNP–

folate–bombesin system transfers its emission energy to a

excited emission level already present in a component of the

T47D cell proteins (receptors), where it is harvested and then

reemitted with greater intensity. The emission bands from the

DenAuNP–folate–bombesin system between 650 and 770 nm

can act as an energy emission donor. However, in the T47D

cells, the energy emission acceptor is the defined sharp band at

825 nm since being of low intensity became the most intense

band excited at 510 nm with a 515-nm emission filter (Figure

4B) and excited at 222 nm with a 290-nm emission filter (Fig-

ure 3A). The enhanced emission fluorescence spectra of the

DenAuNP–folate–bombesin cell sample under 2 extreme exci-

tation light sources and those emission filters demonstrate that

DenAuNP–folate–bombesin acts as a whole in the cells. The

Stokes shifts between the bands in the 650 to 770 nm interval

and that at 825 nm would be from 55 to 175 nm and point to a

FRET mechanism in the energy transfer of DenAuNP–folate–

bombesin to T47D cells (Förster resonance energy or fluores-

cence resonance energy transfer,26–28 since the emission bands

of DenAuNP–folate–bombesin are poorly shifted (1-3 nm) and

the typical Förster distance for FRET (Ro ¼ 1-100 nm) had to

be fulfilled in DenAuNP–folate–bombesin cell.

Figure 2. High-resolution X-ray photoelectron spectroscopy (XPS)
spectra of the Au4f core orbitals of (A) DenAuNP–folate–bombesin
and (B) DenAuNP–folate–bombesin cell.

Figure 3. Fluorescence emission spectra of (A) DenAuNP–folate–
bombesin cell, (B) DenAuNP–folate–bombesin. Excitation wave-
length: 222 nm, filter 290 nm. Excitation and emission slits: 5 nm.
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Small luminescent AuNPs (1.5-3.0 nm) can emit in the VIS

region (valence state effect) and in the NIR region (surface

ligand effect). This is the case of the DenAuNP–folate–bom-

besin, where the encapsulated AuNP has a diameter size

between 2.1 and 2.9 nm.20 The optical properties of the AuNPs

are enhanced by their encapsulation in such a functionalized

dendrimer because of the conformation and stabilization

afforded by the macromolecule whose dendritic cavity inter-

acts with AuNP through the tertiary amines and secondary

amides. As a result of this interaction, about 16% of Au0 atoms

are oxidized to Au1þ atoms (see the X-Ray Photoelectron

Spectroscopy section), and the resulting luminescence (fluor-

escence) is significant; the rest are Au0 atoms (enough electron

charge density), which is the main reason why the SPR band is

still seen as a defined shoulder in the UV/VIS absorption spec-

trum but shifted to higher energy (approximately 510-515 nm)

because of the small size of the AuNPs. It has been demon-

strated that the SPR band of AuNP typically observed at

520 nm shifts to lower or higher energy in an inversely propor-

tional mode to nanoparticle size.29 In fact, it has been reported

that an entrapped AuNP in a functionalized Dendrimer.G5

(Au-TOS-FA-DENPs) with AuNP size of 3.3 nm enhanced its

luminescence and maintained its SPR at 520 nm.30 Every day,

new theoretical and experimental evidences appear, which

demonstrate that AuNPs of diameters sizes between 1.5 and

4 nm are luminescent, that the SPR does not disappear, and that

those with larger size where the SPR effect predominates also

present luminescence. Although the fluorescence–plasmonic

properties of AuNPs are dominated by the valence states of

gold atoms and their particle sizes, it is clear from the above-

mentioned evidence that the type and extent of their chemical

environments can modify photophysical properties of AuNP

systems significantly.

Fluorescence Imaging

Fluorescence images corroborate TEM results, demonstrating

that DenAuNP–folate–bombesin is internalized in the cell. In

this figure, the fluorescence of the nanoconjugate is seen as

bright red dots that are localized either in the nuclei or in the

cytoplasm of the cell.

The fluorescence spectra of DenAuNP–folate–bombesin

cell sample (Figure 4) reveal emissions in the near-infrared

region when it is excited at 510 and 222 nm. The emission

bands between 650 and 850 nm regions are responsible for the

visualization of the nanoparticles in the fluorescence imaging

(Figure 5), under the recording conditions employed.

Effect of Laser Irradiation on Cell Viability

Figure 6 shows that the presence of AuNPs in the dendrimer

significantly increased the temperature of the medium after

laser irradiation (46.8�C, compared to 39.1�C without AuNPs

within the dendrimer, P < 0.05). As expected, the increase in

temperature of Den–folate–bombesin was similar to the control

Figure 4. A, Fluorescence emission spectra in the visible (VIS)-near-
Infrared (NIR) region of DenAuNP–folate–bombesin cell sample;
Hoechst dye in cells (short dotted line) and Hoechst dye (dotted line).
Excitation wavelength: 510 nm. Emission filter: 290 nm. B, Fluores-
cence emission spectra in the VIS-NIR region of DenAuNP–folate–
bombesin cell sample. Hoechst dye in cells (short dotted line) and
Hoechst dye (dotted line). Excitation wavelength: 510 nm. Emission
filter: 515 nm.

Figure 5. A representative microscopic field (�40) of T47D cells (A)
in phase contrast, (B) the Hoechst stained nucleus, (C) the DenAuNP–
folate–bombesin emission after 530 nm excitation, and (D) the
merged nuclear and AuNP fluorescence images.
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sample (PBS), which indicates that changes in temperature are

only determined by the presence of AuNPs within the dendri-

mer in the medium.

The effect of the temperature increase (plasmonic photo-

thermal potential) in the studied treatments after laser irradia-

tion is shown in Figure 6.

The DenAuNP–folate–bombesin system caused a signifi-

cant decrease in cell viability (P < 0.05) down to 16.51% +
1.52% by the end of treatment (6 minutes) when compared to

Den–folate–bombesin (80.1% + 2.28%; Figure 7). This result

corroborated that the release of heat due to the nanoparticle (the

expected temperature around each nanoparticle is 700�C) in

the cytoplasm and the nucleus of T47D cells is the reason for

the significant reduction in cell viability and not just the tem-

perature increase in the medium during those few minutes.

Several trials have demonstrated a significant improvement

in the clinical outcome when radiotherapy was conducted

under hyperthermic conditions in patients. Hyperthermia

increases the efficacy of radiotherapy by improving tumor oxy-

genation and interfering with the DNA repair mechanisms.

However, the current techniques for hyperthermia induction

display low spatial selectivity in the tissues heated. Lasers have

been used to induce hyperthermia, and spatial selectivity can be

improved by adding AuNPs within the dendrimer to the tissue

to be treated. By exposing nanoparticles within the dendrimer

to laser irradiation, it is possible to heat a localized area in the

targeted cell without any harmful heating to the surrounding

healthy tissues. The previous studies using AuNP for

hyperthermia have demonstrated that the functionalization of

AuNPs with probe molecules improves the particle accumula-

tion in cell models significantly.7,8 In this study, we have

demonstrated that the system DenAuNP–folate–bombesin

significantly reduces T47D breast cancer cell viability in com-

parison with Den–folate–bombesin after laser irradiation.

Radiotherapeutic Potential

As shown in Figure 8, the 3 studied treatments reduced the

T47D cell viability, being significantly inhibited by 177Lu–

DenAuNP–folate–bombesin (P < 0.05). This effect is attribu-

table to the greater T47D cell internalization of b-particles due

to the folate and bombesin moiety. 177Lu–DenAuNP does not

affect cell viability as much as 177Lu–DenAuNP–folate–bom-

besin but is higher than 177LuCl3. 177Lu–DenAuNP can be

internalized in the cell by passive endocytosis, whereas
177LuCl3 should not undergo cell internalization.

Figure 7. Effect on viability of T47D cells incubated on the presence
of Den–folate–bombesin, DenAuNP–folate–bombesin, and the con-
trol after laser heating (irradiance 1.1926 W/cm2). *Statistically sig-
nificant difference (P < 0.05) versus DenAuNP–folate–bombesin.Figure 6. Medium temperature increase after laser irradiation of

T47D cells incubated on the presence of Den–folate–bombesin,
DenAuNP–folate–bombesin, and a control solution (irradiance:
1.1926 W/cm2).

Figure 8. Effect of the radiation dose of 177LuCl3,
177Lu–DenAuNP,

and 177Lu–DenAuNP–folate–bombesin on T47D cell viability.
*Statistically significant difference (P < 0.05) versus 177Lu–DenAuNP–
folate–bombesin.
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The results of the cell viability (Figure 8) indicate that
177Lu–DenAuNP–folate–bombesin is about 4 times more lethal

than 177Lu–DenAuNP. This experimental value is in accor-

dance with the theoretical calculation of the absorbed

dose shown in Table 1, where the absorbed dose of 177Lu–

DenAuNP–folate–bombesin is 4 times greater than that of
177Lu–DenAuNP.

For absorbed dose calculation (Table 1), in each treatment,

an activity of 14.8 Bq/cell (74 kBq/5000 cells) was used and the

percentage of cell internalization of approximately 41% (6.07

Bq/cell) for 177Lu–DenAuNP–folate–bombesin and 9.8% (1.45

Bq/cell) for 177Lu–DenAuNP was considered as reported by

Mendoza-Nava et al, with the consequent delivery of a thera-

peutic dose. The factor 4:1 obtained from the internalization

fraction between 177Lu–DenAuNP–folate–bombesin and
177Lu–DenAuNP is in accordance with the lethality factor

(4:1) and with the absorbed dose calculation (4:1).

Conclusion

The 177Lu–DenAuNP–folate–bombesin nanosystem interna-

lized in cancer cells exhibited properties suitable for optical

imaging, plasmonic-photothermal therapy and targeted

radiotherapy.
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