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Abstract
Interpersonal synchrony serves as a subtle, yet powerful bonding mechanism in social 
interactions. Problematically, the term ‘synchrony’ has been used to label a variety of dis-
tinct aspects of interpersonal coordination, such as postural similarities or movement activ-
ity entrainment. Accordingly, different algorithms have been suggested to quantify inter-
personal synchrony. Yet, it remains unknown whether the different measures of synchrony 
represent correlated features of the same perceivable core phenomenon. The current study 
addresses this by comparing the suitability of a set of algorithms with respect to their asso-
ciation with observers’ judgments of dyadic synchrony and leader-followership. One-hun-
dred fifteen observers viewed computer animations of characters portraying the movements 
of real dyads who performed a repetitive motor task with instruction to move in unison. 
Animations were based on full-body motion capture data synchronously collected for both 
partners during the joint exercise. Results showed most synchrony measures significantly 
correlated with (a) perceived synchrony and (b) the perceived level of balance of leading/
following by each dyad member. Phase synchrony and Pearson correlations were associ-
ated most strongly with the observer ratings. This might be typical for intentional, struc-
tured forms synchrony such as ritualized group activities. It remains open if these findings 
also apply to spontaneous forms of synchrony as, for instance, occurring in free-running 
conversations.
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Introduction

Behavioral coordination, and more specifically ‘interpersonal synchrony,’ is a common 
means of affiliation and bonding among humans (Hove & Risen, 2009; Launay et  al., 
2016). Interpersonal synchrony refers to the coordination of body movement rhythms 
between individuals in an interaction (Bente & Novotny, 2020; Bernieri, 1988). It can 
occur spontaneously in social interactions, promoting rapport (Bernieri, 1988), trust (Lau-
nay et  al., 2013), and cooperation (Wiltermuth & Heath, 2009) between the interaction 
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partners; it can alternatively be orchestrated when group members deliberately follow a 
common external rhythm, as is the case in many cultural rituals that aim to strengthen feel-
ings of belongingness and group entitativity (McNeill, 1995; Wiltermuth & Heath, 2009).

Both spontaneous and deliberate synchrony are evidently experienced as rewarding 
by the individual, as they benefit groups in terms of collective motivation (Reddish et al., 
2013) and effective collaboration (Miles et  al., 2017). In this sense, synchrony has been 
conceptualized as an evolutionarily established principle that facilitates social informa-
tion processing and joint action (Bente & Novotny, 2020). This evolutionary perspective 
implies that behavioral synchrony can be perceived, and that the attainment of synchrony is 
functional and putatively rewarding (Kokal et al., 2011; Oullier et al., 2008).

Though numerous algorithms have been suggested to quantify motor synchrony 
(Cheong, 2019; Coco & Dale, 2014; Fujiwara & Daibo, 2016; Schmidt et al., 2012), little 
is known about which of the quantitative measures best relates to human-made global per-
ceptions of synchrony. Numerous measures have been used to assess synchrony of move-
ment activity between interactants, such as Pearson product-moment correlations, rolling 
window time-lagged cross correlations (Boker et al., 2002), mutual information (Modde-
meijer, 1989), dynamic time warping (Pouw & Dixon, 2020), phase synchrony (Schmidt 
et al., 2012), among others. Understanding which measures relate to perceived synchrony 
is critical, as for synchrony to induce social outcomes like rapport, it must first be per-
ceived by those involved (Oullier, et al., 2008). In other words, the human experience of 
synchrony and its social benefits are only possible insofar as the involved parties can per-
ceive it (though this perception need not be consciously evaluated; Richardson et al., 2005).

Observer judgments have shown reliability and validity with respect to the measure-
ment of synchrony (Bernieri, 1988; Bernieri et  al., 1994). However, as Cappella (1990) 
noted, synchrony ratings could possibly be confounded with observers’ impressions of the 
dyads’ relational quality, or rapport. Specifically, he argues that because observers believe 
high synchrony and high rapport are equivalent, they may attribute high synchrony to a 
dyad because they first perceived high rapport. This confound is possible when other fac-
tors that contribute to perceived rapport, like smiling and proximity, are visible (Bernieri 
et al., 1994). Methodologies that obscure physical attributes of the dyads while preserving 
the movements are thus critical to faithfully assessing synchrony. Motion capture and char-
acter animation, in combination, do just this (Bente, 2019; Bente & Novotny, 2020), and 
we leverage these technologies for the current research.

To address the question of which measures relate to external perceptions of synchrony, 
we present a study that compares descriptive measurements of full-body motion capture 
data with observer ratings of synchrony. In this study, we address three methodological 
concerns associated with past research in this domain (see Bente, 2019). First, appearance-
based confounds have plagued interaction observation studies that use videotaped interac-
tions, as the physical characteristics (e.g., age, sex, race, perceived rapport of interactants; 
Bente, 2019; Cappella, 1990) could sway observer ratings of synchrony. In response to this 
issue, we overlay motion capture data with neutral (in terms of age, sex, race, etc.) com-
puter avatars, which obscures the identity of participants while realistically preserving the 
movements.

Second, social scientists have studied synchrony within spontaneous, conversational 
interactions of dyadic partners (e.g., Bernieri, 1988; Fujiwara & Daibo, 2016). However, 
stemming from fields such as dynamic systems and physics, synchrony is more rigidly 
defined as a rhythmic, repetitive phenomenon (Bente & Novotny, 2020). That is, what is 
called synchrony in daily conversations might refer more to a metaphoric ‘social harmony’ 
(e.g., feeling in sync) rather than a truly cyclical, oscillatory phenomenon, such as the 
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spontaneous coordination of metronomes affixed to a common support (Bente & Novotny, 
2020). As such, participants in the current study performed a repetitive martial arts rou-
tine, thus allowing for the appropriate use of available synchrony measures given this strict 
definition.

Third, previous research on synchrony has based analyses on data protocols that are 
not conducive to precise measurement of movements of specific body parts. For example, 
MEA (motion energy analysis; Ramseyer & Tschacher, 2011) is a commonly used tech-
nique that quantifies movement activity as changes in video pixels over time. To meas-
ure synchrony between dyads, MEA allows a comparison of two videos of interactants in 
terms of their movement activity across time. Though this procedure has been validated 
and is well-established, it fails to allow for measurement of more granular movements and 
specific postural information, thus offering less descriptive data in terms of richness (see 
Bente, 2019). Instead, we base movement analyses upon a full-body motion capture proce-
dure, which we call the Standardized Animated Motion Capture Protocol (SAMCP). This 
protocol addresses the stated concerns with MEA by allowing export of rich positional 
and/or rotational data of individual body parts (e.g., head nods, hand waving) while also 
allowing aggregation of motor activity across multiple body parts (Bente, 2019).

In sum, the contributions of the current research are (a) to illuminate which measures of 
synchrony align with observer perceptions (arguably the most important facet of synchrony 
for inducing social outcomes) while (b) showcasing the advantages of motion capture and 
character animation methodologies via the SAMCP, which circumvents methodologi-
cal issues related to physical confounds, within-dyad biases, and imprecise data protocols 
on which to base synchrony analyses. In the following sections, we discuss interpersonal 
synchrony broadly, including its associated definitions, functions, key measures, and out-
comes. We then present a study that uses a novel character animation/motion capture meth-
odology (SAMCP) to compare objective synchrony measures of full-body motion capture 
data with observer ratings of synchrony. These measures include Pearson correlations, 
mutual information, dynamic time warping, phase synchrony, rolling window time-lagged 
cross correlations, and a new measure: dynamic pose similarity, which compares moment-
to-moment changes in the positions of specific body parts between two individuals.

Interpersonal Synchrony

Definitions

Broadly, the concept of interpersonal or behavioral synchrony has been used to describe 
the mutual attunement of biological and behavioral rhythms between interactants (Bernieri 
et  al., 1988; Burgoon et al., 2007). Evidence for synchrony is found in the alignment of 
the amplitude (strength) and frequency (rate) of bio/behavioral cycles such as heart rate 
(Mitkidis et al., 2015), breathing rate (Müller & Lindenberger, 2011), affect (Rafaeli et al., 
2007), speech, and other expressive behaviors (Cappella, 1981), as well as body move-
ments (Wiltermuth & Heath, 2009). Restricting the current research’s consideration of syn-
chrony to the nonverbal domain, interpersonal synchrony is defined as the temporal coor-
dination of motor behavior rhythms between interaction partners (Bente & Novotny, 2020; 
Bernieri et  al., 1988; Delaherche et  al., 2012). Beyond timing, the form of interactants’ 
movements may also be similar, though this is not a requirement for classification as syn-
chrony. Interpersonal coordination types characterized by occasional matching of postures 
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or movements are better subsumed by the term mimicry (Chartrand & Bargh, 1999). A 
combination of behavioral matching in rhythmic and form has been dubbed ‘perfect syn-
chrony’ (e.g., perfect unison of a marching band), whereas general synchrony only requires 
a match in timing (e.g., an orchestra; Hale, 2017).

Functions: Why Synchronize?

Multiple explanations exist regarding the ubiquity and utility of interpersonal synchrony 
in human behavior. One perspective holds that engagement in and/or observation of syn-
chrony produces a perceptual phenomenon that enhances social bonding (Hove & Risen, 
2009; Lakens et al., 2016). Here, synchronous movement functions to blur self-other per-
ceptual boundaries in the minds of those involved. This means that when one actor wit-
nesses another moving to the same rhythm, the neural representation of ‘self’ and ‘other’ 
becomes temporarily indistinguishable (Paladino et  al., 2010). Moreover, as Aron et  al. 
(1991) argue: “…to the extent a partner is perceived as part of oneself, allocation of 
resources is communal (because benefiting other is benefiting self)” (p. 242). As such, 
the self-other merging created from synchrony fosters cooperation and social coordination 
(Galinsky et al., 2005), positive outcomes that could explain our propensity to synchronize.

A second explanation for synchrony is the brain optimization principle (Koban et al., 
2019), which holds that performing or perceiving synchronous actions requires minimal 
neural energy compared to performing or perceiving asynchronous actions, thus creating 
an economically optimal neural state. Optimization of brain functionality is based on the 
free energy principle, which refers to the brain’s tendency to minimize coding costs when 
predicting and representing environmental stimuli (Friston, 2010). Neural networks have 
been compared to man-made electronic devices in that they are constructed to facilitate 
minimization of energy cost (Laughlin & Sejnowski, 2003). The optimization principle 
proposes that during an interaction where two people’s perceptual systems are linked (i.e., 
they can see or hear each other) synchronization is likely to develop because the brain 
requires less effort to represent the other’s behavior if it is similar to that of the self. As 
such, an implicit desire for less mental energy stimulates synchronized movements, and 
subsequently, through properties of dynamic systems (Schmidt et al., 1990), a stable state 
can emerge where interactants’ behaviors remain in synchrony. Moreover, Koban et  al. 
posit that the reduced effort involved in synchrony is experienced as rewarding. The desir-
able emotional states deriving from synchrony become associated with the interaction part-
ner, leading to positive bonding variables such as rapport and cooperation.

These principles explain spontaneous interpersonal synchrony; however, humans also 
intentionally leverage these principles in ritual behaviors that lead to synchrony and its 
associated benefits. From a cultural perspective, synchrony has been noted for its abil-
ity to enhance well-being and survival within the human social species (McNeill, 1995; 
Wiltermuth & Heath, 2009). Historically, many cultures have developed rituals that foster 
synchrony: From tribal dances around a campfire, to religious practices involving concur-
rent bowing and kneeling, to vibrant hopping at modern rave festivals. Such activities are 
thought to increase cooperation and bonding among group members, as well as identify 
potential “free-riders,” or members of the group who do not pull their weight in terms of 
coordinating toward group goals (Wiltermuth & Heath, 2009). In the cultural perspective, 
movement synchrony is thus a way of enhancing group entitativity, or the degree to which 
a collection of entities is perceived as a unit (Lakens, 2010).



489Journal of Nonverbal Behavior (2022) 46:485–517 

1 3

Throughout these explanations for synchrony winds a common thread: the perception 
of synchrony, not just synchrony per se, is vital to the experience of synchrony as well 
as accompanying psychosocial outcomes (e.g., trust, rapport, cooperation, etc.; Bernieri 
et  al., 1988; Tamborini et  al., 2018; Wiltermuth & Heath, 2009). Increased attention to 
the behavior of other participants has been shown to moderate the impact of synchrony on 
cooperation, for instance (Reddish, 2012). Notably, perception of another person’s move-
ments does not necessarily need to be done consciously for synchrony to occur; for exam-
ple, visually coupled pairs have demonstrated the tendency to unknowingly synchronize 
cyclical movements (Richardson et al., 2005). Still, conscious or non-conscious, some level 
of perception of another’s movements is a requirement for spontaneous synchrony to occur 
(Oullier et al., 2008) and to produce the related outcomes.

Measurement

Interpersonal synchrony has spawned many measurement techniques over the course of its 
study, ranging from the most basic (Gestalt ratings by human observers; Bernieri, 1988) to 
the most complex measures assessing the intricate dynamics of dyadic interactions. In the 
following sections, we focus on behavioral rating as a basic measure, followed by Pearson 
correlations, rolling window time-lagged cross correlations, (see Cheong, 2019), mutual 
information, dynamic time warping, phase synchrony, and dynamic pose similarity. This 
range of measures addresses different ways to consider synchrony, from an overall aggrega-
tion of similarity to fine pattern recognition.

Observer Ratings

A basic measure of interpersonal synchrony is conducted through human observation and 
identification (Bernieri, 1988). Pioneers of interpersonal postural congruence research cre-
ated coding systems to identify specific body part locations in video film frames (Condon 
& Ogston, 1966; Scheflen, 1964). More recently, scholars have invented new, less labo-
rious means of rating synchrony. For instance, Bernieri (1988) conceived of synchrony 
as a Gestalt-level behavior, identifiable not from specific movements per se but from the 
degree to which an interacting dyad generally shares tempos, meshes behaviors smoothly, 
performs movements simultaneously, and assumes similar postures. As Bernieri (1988; 
Bernieri et  al., 1994) contends, synchrony can be accurately assessed from observations 
of dyadic video, thus not requiring rigorous movement coding or computational analy-
ses. It remains to be seen, though, which aspects of synchronous movement drive these 
perceptions.

This observation technique typically involves observers watching videos of real interact-
ants in conversation or some other dyadic activity. The videos are muted, and observers are 
instructed to judge synchrony and/or rapport, a dyadic-level construct characterized by a 
pair of partners really ‘clicking’ with one another during an interaction (Grahe & Bernieri, 
1999). Rapport is related to synchrony, as it is partially embodied by the physical expres-
sion of motor coordination. In fact, rapport has been conceptualized as primarily a non-
verbally derived phenomenon, and is thought to consist of mutual attentiveness, positiv-
ity, and coordination of behaviors in interaction (Tickle-Degnen & Rosenthal, 1990). Like 
synchrony, rapport is characterized as readily observable from nonverbal behavior (Grahe 
& Bernieri, 1999). Indeed, stable impressions of rapport can be formed from “thin slices” 
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of human behavior (Ambady & Rosenthal, 1992), even within ten seconds (Bernieri et al., 
1996).

A limitation of behavioral ratings of synchrony is the subjugation of measurement pre-
cision for more abstract assessment. Bernieri argues that synchrony can be observed from 
an abstract viewpoint, but this approach does not answer questions pertaining to specific 
movement patterns (in timing or form) that drive perceptions of synchrony or rapport. 
Thus, the explanatory power of this method regarding parameters that drive synchrony is 
relatively limited. Further, this method is confounded by appearance-based variables of 
the stimulus dyads (see Bente, 2019, p. 11). Bernieri et al. (1994) created a video mosaic 
method to account for a different appearance-based confound (smiling behaviors being 
linked to positivity, thus disrupting measures of synchrony per se), but it is evident from 
viewing these stimuli that gender and race are still interpretable (Bente, 2019). Other 
procedures, such as the SAMCP we introduce in this paper, avoid these confounds and 
enhance precision.

Pearson Correlation

The Pearson product-moment correlation, or simply Pearson r, is a widely used and sim-
plistic measure that assesses the strength of association between two continuous variables 
(Puth et al., 2014) without making causal predictions. Though Pearson correlation can also 
be used to compare the time series made by human observers’ coding of the two dyad 
members’ movements, in the current research, this correlation was calculated between the 
two time series measurements of dyad members’ movements as made by the automated 
procedure software. This measure is easy to interpret but is limited in (a) its susceptibil-
ity to outliers and (b) its assumption that data are stationary across a time series (Cheong, 
2019). To account for these issues, extensions of the correlation, such as cross correlations 
and windowed cross-lagged correlations, have been developed (Boker et al., 2002; Coco & 
Dale, 2014). Still, the basic Pearson r is useful as a straightforward first look at the associa-
tion between systems.

Rolling Window Time‑Lagged Cross Correlations

One prevalent time series analysis is the rolling window time-lagged cross correlation 
(RWTLCCs; Boker et  al., 2002; Cheong, 2019), which provides correlations between 
two data streams across different time lags. Rather than only calculating the movement 
similarity between person A and person B at an inter-subject lag of 0 (‘on the spot’), the 
RWTLCC provides correlations for each of a range of lags specified by the researcher. 
RWTLCCs improve over correlations alone in that the latter assumes that time series 
data are stationary—that is, that the mean and variance of a parameter are relatively sta-
ble throughout an interaction (Hendry & Juselius, 2000, 2001; Jebb et al., 2015; Moulder 
et  al., 2018). As many unstructured dyadic interactions are not stable in this regard, the 
RWTLCC’s advantage lies in its flexibility in analyzing non-stationary data. RWTLCC is 
used over short windows of time (whose measures can later be aggregated), thus allowing 
for granular inspection of fluctuations in measurement patterns, rather than producing cor-
relations across a lengthy time series (which results in higher measurement reliability at the 
expense of measurement sensitivity; see Boker et al., 2002, p. 5). Lastly, the different lags 
can be compared in terms of highest inter-subject correlations, thus providing a measure 
of how tightly two people were aligned temporally. For instance, if the optimal movement 
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activity similarity correlation occurred at a lag of 0 for two partners, those two participants 
were most often aligned in movements with no lag between them.

The rationale for using RWTLCCs over measures like standard correlations is that 
the former tolerates a wider range of possible contingencies between two data streams, 
whereas the latter is limited to only on-the-spot correlations. Thus, RWTLCC provides a 
more holistic representation of dynamic data patterns. RWTLCC output can be used to cre-
ate heat maps, or figures that indicate correlation strength (over time and across different 
lags) via different colors. Inspecting the heat maps, one can identify at which time lags cor-
relations are strongest throughout an interaction, thereby depicting fluctuations in patterns 
of leader and follower behavior. This is in contrast to global observer ratings, which might 
be useful for obtaining a general overview of a dyad’s coordination but less functional for 
identifying leader and follower fluctuations or onset/offset patterns of synchrony. A disad-
vantage of RWTLCCs is the difficulty or arbitrariness of selecting values for the required 
parameters, such as the size of the time window within which correlations are conducted. 
Researchers should look to prior literature in their respective fields (e.g., Schoenherr et al., 
2019; Tschacher et  al., 2018) and infer from theory which time lags and window sizes 
should be used, as well as the how much lag between systems could still be considered 
‘synchrony.’ Another potential disadvantage is that the RWTLCC’s assumption of local 
stationarity (i.e., that the mean and variance are stable throughout a window) can be vio-
lated, driving down estimates of correlations.

Mutual Information

Mutual information (MI, Moddemeijer, 1989; Shannon, 1948) is a measure of how much 
the behavior of one discrete or continuous variable can predict that of another (Ince et al., 
2017). Derived from Shannon’s mathematical theory of communication, the central meas-
ure in MI is entropy (1948), which indicates the amount of information (in Shannons or 
bits, typically) provided by an event in relation to all other possible events. All else equal, 
more possibilities in terms of outcomes (i.e., more uncertainty) equals higher entropy. 
Entropy is, thus, the degree of uncertainty regarding an outcome of an event (Shannon, 
1948), and MI is a measure comparing entropy between two variables.

Mutual information has been utilized as a measure of synchrony mainly within the psy-
chophysiological literature as an indicator of the synchrony between humans’ auditory and 
visual systems (Hershey & Movellan, 2000; Prince et  al., 2004). In the case of Hershey 
and Movellan (2000), MI was calculated for the synchrony between an audio signal and 
a spatially localized video signal. As Prince et al. (2004) note, “The HM [i.e., Hershey & 
Movellan] algorithm is relatively general, detecting temporal synchrony between two time-
based input streams” (p. 89). Though little research has used mutual information to meas-
ure interpersonal motor synchrony, its generality in this respect gives it potential. In sum, 
MI is a previously established method with possible application to different synchrony sce-
narios. One could use this measure to provide an aggregate measure of total alignment in 
time of two motor systems, though it is not useful for uncovering specific dynamic patterns 
in the data (e.g., leader–follower relationships).

Dynamic Time Warping

Dynamic time warping (DTW) is a technique that measures similarity between two time 
series while accounting for time shifts and speed differences (Sakoe & Chiba, 1978). DTW 
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realigns two time series by plotting their data arrays against each other in a matrix and 
comparing each time series’ data points to those of the other (Mueen & Keogh, 2016; 
Pouw & Dixon, 2020). It involves calculation of a warp line, or a path through the matrix 
that connects all the lowest values (i.e., smallest distances between data points). This warp 
line can be compared to the ideal diagonal to indicate how closely the two time series are 
aligned and visualizes any temporal differences or time shifts between the two. Data from 
two people who were perfectly synced would generate a warp line that was very close to 
the ideal diagonal. A final distance value can be computed that sums all the minimum 
values, providing an aggregate representation of overall difference between the two time 
series. DTW can be useful for measuring synchrony between two data signatures that are 
different time lengths; however, it can be inaccurate and difficult to interpret compared to 
other measures (Silversides & Melkumyan, 2016).

Phase Synchrony

Derived from dynamic systems research (Rosenblum et  al., 2001; Schmidt & O’Brien, 
1997; Schmidt et al., 2012), phase synchrony measures the relationship between two time 
series in terms of their phase. Along with period, frequency, and amplitude, phase is a fea-
ture of an oscillating system’s (a system whose parts show a periodic behavior) cycle that 
defines its dynamic behavior. Phase is the point in a cycle at which the oscillator is located 
at a given time. A pendulum’s cycle could be thought to start at 0º on the left endpoint, 
swing to 180 º on the right endpoint, and then restart the cycle at the left again. Phase 
synchrony, then, represents the relation between phase angles of two oscillating systems 
that are coupled. In the case of interpersonal synchrony, coupling refers to an interdepend-
ent relationship facilitated through a shared visual or auditory space (Oullier et al., 2008; 
Schmidt et al., 1998). It has been shown that once in action, coupled systems stabilize to 
either an in-phase (same phase angle) or anti-phase (opposite angles, e.g., 0° and 180°) 
angle, and remain in this state robustly (Schmidt et al., 1990).

Phase synchrony is a useful measure when researchers are interested in the alignment 
of rhythms between two systems. It is advantageous in that it can identify synchronous 
rhythms between even noisy and nonstationary systems (Rosenblum et  al., 2001). For 
example, in a conversation in which movements are not repetitive or cyclical, phase syn-
chrony can still identify interdependencies of phases. However, phase synchrony operates 
independently of the amplitude of the systems, thus not giving meaningful information 
about the magnitude of behaviors.

Dynamic Pose Similarity

For the current study, we created a new measure known as dynamic pose similarity (DPS) 
that compares the positions of each of 15 joints over time. Whereas other measures here 
make use of overall movement activity (i.e., changes in position), this measure serves as a 
dynamic comparison of the specific locations of two actors’ body parts in a 3-D space. In 
this way, it can be thought of as a measure of the ‘perfect synchrony’ (rhythmic matching 
as well as form matching) discussed earlier in this manuscript (Hale, 2017). In addition, the 
output of this measure gives a lag offset measure similar to that of the RWTLCC.

DPS is useful for any researcher interested in both rhythm and form of synchronous 
dyads. However, for a researcher who is only interested in rhythm/timing of move-
ments (such as the timing of overall movement activity shifts), this measure would offer 
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superfluous positional information. Given its recent creation, it has not been applied 
in other synchrony research to date. In the current study, this measure provides the only 
instance of form-similarity. As such, if only this measure relates to perceived synchrony, 
these findings would suggest that similar movement form is indeed vital to people’s per-
ceptions of synchrony. Table 1 summarizes the measures covered in this section.

Study Overview

The following study examines how objective measures of synchrony relate to its percep-
tion, which we have argued as essential to understanding the experience and effects of 
synchrony. As a source of full-body motion capture data, we refer to a previous unpub-
lished experiment (Novotny, Tamborini, & Bente, 2019) that measured synchrony in dyads 
performing a martial arts routine and tested the impact of this synchrony impact on trust 
toward racial outgroup members. The resulting motion data allowed for (a) calculations 
of various objective synchrony measures and (b) the creation of stimulus videos depicting 
the movements via neutral computer characters (i.e., characters whose appearance lacked 
age, race, gender, or cultural cues, which can confound judgments; see Bente, 2019), via 
the Standardized Animated Motion Capture Protocol (SAMCP). A series of these stimulus 
clips was presented to a sample of participant observers, who judged both synchrony and 
the leader–follower relationship (the perception of which partner’s actions primarily pre-
ceded the other’s) of each dyad. The ratings generated from this study provided a compari-
son measure against which to judge the objective operationalizations (Bernieri et al., 1988; 
Cappella, 1981). If synchrony is a readily perceivable phenomenon at the Gestalt-level, and 
currently available measures capture synchrony validly, we should see a high correlation 
between subjective observer ratings and the various objective synchrony measures.

Attempting to find just this, researchers (Schoenherr et al., 2019) conducted a study to 
validate various time series analytic methods by comparing them to human coder ratings. 
Using a therapist-patient context, they found that only in an artificial condition (compar-
ing person A’s movements with a time lagged version of his/her own movements) were 
time series methods reliably correlated with human ratings. Conversely, in more natural-
istic conditions (where person A’s movements were compared with person B’s), the algo-
rithms did not agree highly with raters in terms of identifying synchrony. As the authors 
explain: “Our study revealed that a lot of algorithms with very high identification quality in 
the artificial configuration failed in the naturally embedded configuration. This could mean 
that the algorithms had another synchrony concept than the human raters in our study” (p. 
17). This comparison between algorithms and coders will be retested in the current study, 
though with an improved means of measuring movements. Notably, Schoenherr et al. used 
motion energy analysis (MEA; Ramseyer & Tschacher, 2011) as the technique to extract 
time series measures.

Similarly, Fujiwara et al. (2021) recently compared automated and manual coding meth-
ods for specific nonverbal behaviors, including gesture, posture, and nodding behavior, also 
using MEA to quantify movement activity. They found moderate correlations between the 
two methods. These findings were encouraging in planning the current study. However, 
as mentioned, MEA evidently lacks precision with respect to analyzing specific body part 
locations throughout an interaction (Bente, 2019). As Fujiwara et al. (2021) note in their 
limitations, they failed to find a relationship between manually coded nodding similarity 
and automatically coded (through cross-wavelet analysis; Fujiwara & Daibo, 2016), stating 
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that “This could be because the targeted region in MEA (i.e., the whole body) was too 
rough to capture the behaviors” (p. 15). In contrast, the use of full-body motion capture in 
the current study should further illuminate the relationship between objective synchrony 
measures of finer-grained behaviors and human observer ratings. Thus, we ask:

RQ1: Which objective measures of synchrony relate most highly with global percep-
tions of synchrony?

Beyond capturing the degree of synchrony, we are also interested in the role of the 
leader–follower relationship (LFR) in a synchronous interaction. This is often the prod-
uct of the entrainment of the relationship as outlined earlier. In a strict leader–follower 
type interaction, one person mimics the behavior of another with some delay, whereas in 
a reciprocally adaptive interaction, each person synchronizes through mutual prediction 
and reaction in real-time (Konvalinka et  al., 2010). The nature of this relationship has 
been shown to impact the smoothness or performance of the involved partners (Noy et al., 
2011). If LFR is a central defining factor of a synchronous interaction, and synchrony can 
ostensibly be perceived by observers, then objective measures that can accurately identify 
leader–follower patterns should align with observers’ ability to detect these same patterns:

RQ2: Which objective measures of synchrony relate most highly with observer rat-
ings of leader-follower relationships (LFRs)?

Method

Generation of Movement Database

In a previous unpublished study, Novotny et al. (2019) used Optitrack Motive-based motion 
capture data from 38 dyads performing a Tai-Chi routine (a martial art characterized by 
smooth, flowing movements of the whole body), which provided the foundation for stimu-
lus generation in the current study. The details of this procedure are in Appendix A (see 
Figs. 1 and 2).

Generation of Video Stimuli

Using the motion database, we created stimulus videos of dyadic partners performing the 
Tai-Chi routine side by side. This process involved rendering the motion capture data as 
standardized virtual characters and producing a video for embedding into the final survey.

We used Motionbuilder animation software (Autodesk Motionbuilder, 2018) to attach 
each participant’s motion capture data (exported from Motive) to standardized avatars via 
the SAMCP. These avatars (a) disguise the identities of participants in a controlled man-
ner, (b) preserve the fidelity of the human movement (cf. Bente, 2019), and (c) prevent 
confounds typically associated with synchrony ratings, such as smiling and eye contact, 
which could affect observer ratings (Bernieri et al., 1994). Next, these animated avatars of 
partners were rendered into a single stimulus video for each dyad. Here we ensured that 
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Fig. 1  Motion capture to character animation procedure

Fig. 2  Visualization of two participants’ movement data. Figures are constrained at the hips and standard-
ized in size
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the two actors’ movements generally shifted in the same lateral direction as one another 
throughout their interaction.1

The resulting files averaged about 2 min and 27 s. Next, we segmented each AVI file 
into three parts that represented the first three cycles of the Tai-Chi routine (as not all dyads 
completed all five cycles). This segmentation was done to provide more stimuli for the sur-
vey, as well as to provide more appropriate time durations for observers. Segments were 
created by noting the time frame at which a participant’s Tai-Chi cycle restarted. Because 
one dyad had an erroneous third segment resulting from a capture error, the final stimulus 
pool featured 113 videos (38 dyads × 3 segments, minus 1 faulty segment), with an average 
segment length of 24 s. A screenshot of a stimulus video participants viewed is demon-
strated in Fig. 3.

For data analysis, data were exported using a custom Python script (Leuschner, 2010) 
which allowed us to export movements as a batch file. Before exporting animation data 
in ASCII format, characters were scaled to a uniform size and the hips were snapped in 
the global origin and frozen so the positions of joints were relative to this root node (see 
AMAB procedure by Poppe et al., 2014).

Fig. 3  Still image of a stimulus video from the observer survey

1 In the dyadic interactions, 21 pairs performed opposite movements (A’s right hand moves while B’s 
left hand moves; i.e., mirrored posture) whereas 17 performed same-direction movements (A’s right hand 
moves while B’s right hand moves; i.e., rotational posture). If they were mirrored rather than rotational, 
we corrected this by mirroring Participant B’s movements across the y-axis. For instance, if Participant A 
typically swung her arm to the left and Participant B swung hers to the right, we flipped B’s movements 
so that both swung to the left (though stimuli always faced toward the observers in either case). While it is 
an empirical question whether the direction of imitation matters for perceptions of synchrony, we did not 
wish to test this variable in the current research; feasibly, observers could witness a highly syncing dyad 
who was mirrored (rather than rotational), and this could impact the synchrony ratings differently compared 
to a highly synchronizing dyad who mimicked rotationally. In sum, control of the visual stimuli was more 
important in the current research than testing the effect of movement direction.
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Measures

Perceived Synchrony

Perceived synchrony was measured as a single item, which used a slider scale from 0 (no 
synchrony) to 100 (perfect synchrony) for each video. A single item was utilized to reduce 
participant fatigue (compared to requesting responses to an index after each video). Partici-
pants received the following instruction:

After each video, we will ask you (a) how "in sync" the pairs were, and (b) whether 
one person led the interaction (versus a more balanced interaction).  "In sync" just 
refers to how smoothly and similarly the two moved together in time (’high coordina-
tion’.) On our slider scale, 100 = perfect sync. The opposite of "in sync" would be 
clumsy, out of tune, or awkward (’poor coordination’). On our scale, 0 = no sync.

Perceived Leader–Follower Relationships (LFR)

The perceptions of the leader–follower relationship of the dyad were judged for each video 
through the following multiple-choice item: “Was one person leading the interaction, or 
was it fairly balanced?” Possible responses to this question were: “Person A (on the left) 
led mostly,” “Person B (on the right) led mostly,” “It was fairly balanced,” and “Not sure.” 
The frequency of each response option (e.g., the number of times “Person A led mostly” 
was selected for a given stimulus) was divided by the total number of responses to that 
stimulus to provide (1) the proportion A or B led per stimulus and (2) the proportion of 
balanced ratings per stimulus.

Synchrony

Two variables were used to quantify synchrony: the similarity of shifts in overall move-
ment activity (used for Pearson correlations, MI, phase synchrony, and RWTLCC) and the 
similarity of position (used in DPS).

Overall movement activity. For most of the various synchrony measures outlined below, 
the variable of interest is the overall movement activity exhibited by a single dyad member 
with respect to their partner. Rather than focusing on the form of movements, for example 
in behavioral mimicry research (Lakin & Chartrand, 2003), this approach focuses on the 
timing of general movement activity, the variable more central in the concept of synchrony 
(Hove & Risen, 2009). First, using data from each dyadic partner in a given dyad, the x, y, 
and z translation (change in location from time n to time n + 1) of 14 primary body loca-
tions joints was targeted as suggested by Poppe et al. (2014). These included: Chest, left 
arm, left forearm, left hand, right arm, right forearm, right hand, head, right upper leg, 
right leg, right foot, left upper leg, left leg, and left foot. Next, an average was conducted 
across joints to give a single “movement activity” score for each time frame. This score 
served as the y-axis variable that fluctuates in the various time series measures used in this 
study (except for DPS).

Positional difference. Rather than implementing the changes in overall movement as a 
measure of synchrony, this variable represents a comparison of specific positions of two 
actors’ body parts in a shared global space. Specifically, it is the difference in Euclidean 
distance (x, y, and z translation) between all 14 joints of two actors. This was conducted by 
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using the difference between a body part of partner A at time 1 and the body part of Partner 
B at time 1, with the aforementioned normalization in space providing a mutual root from 
which to measure coordinates. A lower difference of positions indicates higher positional 
similarity, which, when looked at over time and with different lags, gives us the DPS meas-
ure detailed below.

Behavioral data‑based synchrony measures

The following measures were collected using a combination of Python codes, based pri-
marily on a synchrony measurement suite created by Cheong (2019). The final program is 
available upon request from the author.

Pearson correlation. To compute a Pearson correlation between two time series, the 
program calculates the average movement activity score across a given time series and cor-
relates it with the average value of a second time series.

Mutual information. Mutual information (MI) was calculated by a Python program 
(https:// stack overfl ow. com/ quest ions/ 20491 028/ optim al- way- to- compu te- pairw ise- mutual- 
infor mation- using- numpy; McIntosh & Jadzinsky, 2017) that was appended to the original 
program by Cheong (2019). Using the formula mentioned earlier: MI(x,y) = H(x) + H(y)-
H(x,y), where MI is the mutual information, and H(x) is the entropy of time series x, H(y) 
is the entropy of time series y, and H(x,y) is the joint entropy (shared by both systems).

Dynamic time warping. Dynamic time warping (DTW) is a measure of interdepend-
ency between time series irrespective of overall segment length. It is computed by mini-
mizing the distance between two time series’ data points in a matrix and comparing the 
resulting diagonal line to an ideal diagonal. The package dtw (https:// github. com/ pierre- 
rouan et/ dtw) was used to visualize the DTW matrix and provide overall distance scores for 
each dyad. These distance scores indicate the distance of the diagonal to the ideal line; a 
smaller distance indicates higher synchrony.

Phase synchrony. The phase angles of two time series can be compared for a measure 
of interpersonal synchrony. First, one must transform the movement data using a Hilbert 
transform, which separates a time series signal into its phase and power (Zayed, 1998). 
Then, the phase angles are plotted along a time series and inter-subject comparisons can be 
made. To obtain a score of phase synchrony, the program compares the phase angles by the 
following:

where PS is phase synchrony, a1 is the phase angle of time series A at a given point, and a2 
is the phase angle of time series B at a given time point. Finally, this PS score is averaged 
over a whole time series to give a measure of overall phase synchrony, to be used for cor-
relations with other variables.

Rolling windowed time-lagged cross correlation. The program executes Pearson 
correlations between two time series over given windows of time and smoothes out  this 
process with a more continuously sliding window. In the current study, we used a win-
dow size of 75 frames (3 s) for correlations and a step size of 15 frames (0.6 s). In this 
way, the resulting time series graph gives a smoothly rolling output that is more visually 
interpretable.

Dynamic pose similarity. This measure aggregates the position (rather than overall 
movement activity) of one participant’s joints in x, y, and z directions of translation, and 
compares these values with those of their dyadic partner. The difference in position is then 

PS = 1 − sin(|(a1 − a2)∕2|)

https://stackoverflow.com/questions/20491028/optimal-way-to-compute-pairwise-mutual-information-using-numpy
https://stackoverflow.com/questions/20491028/optimal-way-to-compute-pairwise-mutual-information-using-numpy
https://github.com/pierre-rouanet/dtw
https://github.com/pierre-rouanet/dtw
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plotted over a time series with a range of time lags along the y-axis (as with RWTLCCs). 
The lag offset at which positional differences are the smallest (i.e., most similar) is plotted 
in a separate graph, and will be used as the aggregate measure of positional similarity for 
correlation with other variables.

Observer Survey

Participants

Participants were 115 individuals (MAge = 23.3, SDAge = 10.92, 54% female, 78% White) 
recruited from two sources. The first set of participants (NGroup1 = 13, MAge = 46.0, 
SDAge = 17.62, 54% female, 85% White) consisted of acquaintances of the researcher, 
who were provided a survey link via email. These participants were blind to the research 
questions of the researcher and received only thanks for participation. The second set 
(NGroup2 = 102, MAge = 19.89, SDAge = 1.50, 50% female, 74% White, 14% Asian, 12% 
other races) consisted of undergraduates from a large public university in the midwestern 
United States. This group participated to fulfill optional research credits for a communi-
cation course of their choice. A Welch’s t-test, which tests for two-sample group differ-
ences when sample sizes are unequal, was performed to check for differences in mean per-
ceived sync scores. There was no significant difference between groups, MGroup1 = 45.71, 
SDGroup1 = 28.94, MGroup2 = 45.23, SDGroup2 = 27.53, t(113) = -0.06, p = 0.96. As such, data 
from Group 1 and Group 2 were combined and will be referred to as a single sample for 
the remainder of this manuscript. All procedures were approved by the institutional review 
board at the university from which the second sample was drawn.

Survey

A survey was created in Qualtrics survey software. The survey presented to participants a 
random series of 30 videos to view and rate (with a cap of 30 views set). Resulting from 
this randomization, the total views of each video ranged between nine and 30. Notably, it 
was possible due to this randomization that observers could view multiple segments from 
a single dyad. We chose not to restrict the randomization in this way so as not to limit the 
number of available videos per observer. The survey asked participants to watch each video 
until it auto-advanced to the next page, which instructed them to rate both synchrony and 
LFR. Demographics, which appeared at the end of the survey, included age, race/ethnicity, 
and gender questions.

Procedure

A link to an online consent form was distributed to friends and family via email, and to 
undergraduates through a participant pool management software. Upon consenting to par-
ticipation, participants were rerouted to the observer survey. Due to coronavirus-related 
quarantine procedures, participants filled out the survey from a location of their choosing 
rather than a computer laboratory. The survey guided participants through viewing and rat-
ing of 30 stimulus clips.
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Programming Script

A custom Python program was adapted from Cheong (2019). In the original code, this 
program calculates Pearson correlations, phase synchrony, dynamic time warping, and 
rolling  window time-lagged cross correlations. A custom script that computes Z-trans-
formations of selected joints, and which additionally calculates mutual information, was 
appended to this code. The script begins firstly by importing necessary packages and defin-
ing the variables to be measured. Second, one selects the variables for which they would 
like to view figures and descriptive statistics. Third, once the measures are selected, the 
program looks for a list of CSV files (described in the previous section) from which to 
derive data. In the current study, this list includes 38 files for participant As and 38 files 
for participant Bs. Fourth, the “movement activity” score for each time frame is conducted 
in the means described in the Overall movement activity section. Fifth, a filter of the user’s 
choosing is applied. We used a lowpass filter set to 0.5 Hz (1/50th of a second) to smooth 
the data. Finally, when the program runs, it outputs text files of descriptive data for selected 
measures (e.g., distance scores for DTW for each dyad) as well as a PDF of all figures.

Results

Observer Judgments

Synchrony Ratings

An average synchrony score (perceived sync) between 0 and 100 was calculated for 
each of the 113 stimulus videos: M PerceivedSync = 44.47, SD PerceivedSync = 16.18, Max 
PerceivedSync = 73.84 (Dyad 11), Min PerceivedSync = 21.20 (Dyad 30). The synchrony means 
were also broken down by averaging synchrony across the three segments for each  
dyad: MSegment1PerceivedSync = 44.49, SDSegment1PerceivedSync = 16.48; MSegment2PerceivedSync = 44.26, 
SDSegment2PerceivedSync = 18.23; MSegment3PerceivedSync = 43.64, SDSegment3PerceivedSync = 17.15. The 
three segments correlated highly in terms of perceived sync scores within dyads, segments 
1 and 2: r = 0.78; segments 1 and 3: r = 0.78; segments 2 and 3: r = 0.86, and showed high 
reliability, Cronbach’s α = 0.93. An ANOVA was conducted to test whether these three seg-
ments differed statistically from each other (in other words, to see if there was a change in 
synchrony ratings throughout the duration of a dyad’s routine). The difference between time 
segments was non-significant, F(2, 112) = 0.054, p = 0.947, partial  eta2 = 0.001, suggesting no 
change in ratings over the course of the three segments of dyadic interaction. Thus, practice 
effects (i.e., improving in synchronizing over time) were not apparent from our data.

Perceived Leader–Follower Relationships

Two average proportions for each stimulus video (N = 113 videos) were calculated: (a) the 
percentage A or B was rated as leading and (b) the percentage of ratings indicating a bal-
ance of leadership/followership. Pearson correlations were conducted to check for covari-
ation between perceived sync and the perceived proportion that A led (LFR_AB) or that 
there was an even LFR (LFR_E). Perceived sync was positively correlated with LFR_E, 
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r = 0.576, p < 0.001, and had the inverse of that correlation with LFR_AB, r = -0.576, 
p < 0.001. This suggests that the perception of a balanced LFR is highly related to per-
ceived synchrony.

Behavioral Data

For each of the objective synchrony measures, we provide a comparison of figures between 
Dyad 11 (the highest LFR_E, or most balanced dyad) and Dyad 38 (the lowest LFR_E, 
or least balanced dyad). A juxtaposition of these figures demonstrates how each measure 
showcases the range of synchrony from high to low (see Figs. 4, 5, 6, 7, 8, 9). The raw 
Motive data and video files are available on https:// osf. io/ 49cwh/.

Pearson Correlations

The average correlation of movement activity between participant A and B was calcu-
lated for each dyad with an inter-subject lag of 0 frames, MPearson = 0.28, SDPearson = 0.27. 
Though a range of lags could be used for Pearson r, these would fall under the category 
of a time-lagged cross-correlation, which is discussed in the RWTLCC measurement 
section. The correlation between participants in Dyad 11 was r = 0.69, p < 0.01. The 
correlation for Dyad 38 was r = 0.02, p = 0.13. The time series of general movement 
activity featuring these correlations can be seen in Fig. 4a, b.

Fig. 4  a and b Pearson correlations over time for Dyad 11 (a) and 38 (b). Higher correlations indicate 
higher synchrony, which is indicated by a close matching of the gray (Participant A) and black (Participant 
B) lines. Dyad 11’s lines overlap temporally more often than Dyad 38

https://osf.io/49cwh/
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Optimal Lag (from RWTLCC)

This measure indicates the amount of lag between participants at which synchrony 
of movement activity was the highest. The average lag offset in frames, given by the 
RWTLCC, was MLag = 21.21, SDLag = 18.85. For Dyad 11, lag = 6 frames, and for Dyad 
38, lag = 42 frames. The RWTLCC graphs can be found in Fig. 5a, b, and a comparison 
of these dyads’ lag offsets can be found in Fig. 6a, b.

Mutual Information

MI indicates the information we can predict from one system based on observations of 
another system. The average MI for all dyads was MMI = 10.64, SDMI = 0.16. For Dyad 
11, MI = 10.76, and for Dyad 38, MI = 10.63. This indicates that Dyad 11 had a slightly 
higher MI score than Dyad 38, aligning with higher synchrony exhibited by Dyad 11.

Fig. 5  a and b Rolling window time-lagged cross correlations (RWTLCCs) for Dyads 11 (a) and 38 (b). 
Darker colors indicate negative correlations, lighter colors indicate positive correlations. The midline for 
Dyad 11 (0 offset) shows that the highest positive correlation (i.e., synchrony) occurred almost on the spot. 
This was not the case for Dyad 38
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Dynamic Time Warping

The average distance (DTW) for all dyads was MDTW = 6221.92, SDDTW = 1132.20. For 
Dyad 11, DTW = 5674.25, and for Dyad 38, DTW = 6356.17. The lower score for Dyad 
11 indicates higher synchrony compared to Dyad 38. A comparison of these dyads’ 
DTW scores can be found in Fig. 7a, b.

Phase Synchrony

This measure indicated the degree to which the phase angles of two participants’ overall 
movement activity were aligned. The average phase synchrony was MPhase Sync = 0.0.75, 
SDPhase Sync = 0.06. For Dyad 11, Phase Sync = 0.83, and for Dyad 38, Phase Sync = 0.65. 
A comparison of these dyads’ phase synchrony can be found in Fig. 8a, b. The higher 
Phase Sync score of Dyad 11 indicates that Dyad 11 was more temporally aligned in the 
cycles of their movements compared to Dyad 38.

Fig. 6  a and b. Optimal lag from rolling-window time-lagged cross correlations (RWTLCC) for Dyad 11 
(a) and Dyad 38 (b). The optimal offset for Dyad 11 was 6 frames and for Dyad 38 was 110 frames (indi-
cated by the dotted lines). Left of the solid black line would indicate that Subject A leads, and right of the 
solid black line would indicate that Subject B led. The smaller optimal offset for Dyad 11 compared to 
Dyad 38 suggests a more temporally aligned dyad with respect to overall movement activity. Also note the 
difference in maximum correlation values on the y-axes of the two graphs
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Dynamic Pose Similarity

Dynamic pose similarity represents the similarity of positions of two actors’ joints over 
time. Here we show calculations of DPS for Dyads 11 and 38 (see Fig. 9a, b). Further, 
the optimal offset of DPS (i.e., the time lag value at which positional differences were 
smallest) was calculated (see Fig.  10a, b). The average lag offset in frames, given by 
the DPS, was MLag = 36.79, SDLag = 41.60. For Dyad 11, lag = 7 frames; for Dyad 38, 
lag = 21 frames. The absolute values of these lags were used in correlations, as the sign 
should not impact the strength of association.

Research Questions

To address the research questions, first, correlations were run among the various objec-
tive and subjective synchrony measures as well as LFR_E. The results of these correla-
tions can be seen in Table 2. For ease of understanding, we inverted the scoring of the 
DTW, RWTLCC, and DPS variables so that higher scores indicate higher synchrony for 
all variables in the correlation matrix.

In response to RQ1, which asked which measures of synchrony relate to perceived 
synchrony, perceived sync correlated significantly with all measures, though most 
strongly with Pearson r, r = 0.85, p < 0.001, and phase synchrony, r = 0.77, p < 0.001.

Regarding RQ2, which asked which objective measures of synchrony relate to 
observer ratings of leader–follower relationships (LFRs), the proportion of equal (i.e., 
balanced) leader–follower relationship ratings was correlated significantly with phase 
synchrony (r = 0.56, p < 0.01), Pearson r (r = 0.46, p < 0.01), and RWTLCC offset 
(r = 0.39, p < 0.05).

Discussion

The goal of this research was to illuminate which objective measures of interpersonal 
synchrony best relate with global perceptions of synchrony. Results indicated that 
numerous measures including phase synchrony, Pearson correlations, rolling window 
time-lagged cross correlations, dynamic time warping, mutual information, and dynamic 
pose similarity are all linked to global synchrony perceptions for this interaction type. 
Next, a balance in LFR was related to phase synchrony, Pearson r, and RWTLCC offset.

Findings Pertaining to Research Questions

The first research question inquired which measures of synchrony would relate most 
highly to the subjective measure perceived sync. In order of correlation strength from 
strongest to weakest, Pearson r, phase synchrony, DPS, RWTLCC, and MI all were sig-
nificantly related to perceived sync. Beginning with phase synchrony, the strength of 
this measure’s association with perceived sync may stem from the repetitive nature of 
this study’s interaction routine. The phase of an interaction is a feature of its periodic or 
cyclic nature; the more aligned two systems’ phases are, the more rhythmic they can be 
said to be. Despite the fact that the interaction type in the current study was not regular 
(in the sense that it did not feature a standard rate of movements), the repetitive and 
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scripted nature of the Tai-Chi routine likely improved participants’ ability to achieve 
phase synchrony. In more spontaneous interactions, such as free-flowing conversations, 
it might be more difficult for the phase synchrony measure to identify rhythmic regulari-
ties like these. Accordingly, this measure is often used for scripted or regular interac-
tions (Ouwehand & Peper, 2015; see for exceptions Fujiwara & Daibo, 2016; Schmidt 
et al., 2012).

Next, DPS was associated with perceived sync. This shows that the position of the 
limbs in space, not just the timing alone, could be related to perceptions that a dyad is 
in synchrony. The strength of this measure’s correlation with perceived sync shows that 
perhaps people look for ‘perfect synchrony’ (timing and form matching; Hale, 2017) 
when making judgments. In sum, in the type of synchronous interaction shown in this 
study, the form of the movements evidently played some role in shaping judgments.

Moving to Pearson r and MI, these aggregate measures were also associated with per-
ceived sync. For this type of interaction, these measures serve as strong indicators of global 
synchrony, and are a good starting point for synchrony research involving relatively station-
ary data. The fact that they showed association with perceived synchrony in a highly com-
plex dataset such as this one points to their robustness in identifying synchrony. However, 
for researchers interested in (a) non-stationary data types or (b) the dynamic patterns in a 
dataset, these measures simply will not suffice. As we saw from this study, the leader–fol-
lower relationship in a synchronous interaction ties in closely to perceptions of global syn-
chrony, so researchers interested in the LFR would require more dynamic measures. Fur-
ther, examination of figures produced by dynamic measures, such as the RWTLCC chart, 
can reveal patterns in the data that may be otherwise missed by aggregate measures. For 
instance, imagine a dyad that was—visually—highly coordinated in their movement 
dynamics, but that had one participant leading the other by five frames. If correlations were 
conducted only ‘on the spot’ (i.e., with no inter-subject lag), the result may indicate that 
there was an absence of synchrony. By looking at the patterns throughout the range of time 
lags, a strong association could be found beyond the on-the-spot portion of the interaction 
graph. Regardless of definition of synchrony as simultaneous or simply coordinated, many 
researchers would likely still be interested in the alignment of this dyad. As such, aggregate 
measures are advisable, but not sufficient in cases where dynamics are of interest.

The second research question asked which measures would correlate with a balance in 
leader–follower relationship, as measured by the item LFR_E. A balanced LFR correlated 
with several measures including phase synchrony, Pearson r, and lag offset (RWTLCC). 
Many synchrony ratings and measures thus seem to be inextricably related to a balance of 
leadership and followership in an interaction, even though there are types of synchrony in 
which leader and follower roles are not balanced (i.e., unilateral synchrony). When leader 
and follower roles are fixed, and there is an accompanying delay in the follower’s move-
ments (i.e., mimicry), LFR is not balanced—though the movements themselves are still 
somehow coordinated in timing. Future studies should continue to investigate the role of 
balanced LFR in perceptions of synchrony—is it an essential component, or just something 
that enhances the synchronous experience?

Fig. 7   a and b Dynamic time warping distance matrix for Dyads 11 (a) and 38 (b). The x-axis is one par-
ticipant’s timeline whereas the y-axis is their partner’s timeline. The white line traces the minimum distance 
between participants’ movement activity at each time point. A white line more approximating a perfect 
diagonal represents a smaller distance, or higher synchrony. Dyad 11’s distance is less than that of Dyad 38

▸
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Implications

The first major implication of this research is that it established and compared the valid-
ity of different measurement techniques for assessing interpersonal synchrony. Many syn-
chrony measures, perhaps predictably, were related to global perceptions of synchrony. 
This study thus demonstrated the convergent validity between several of the available syn-
chrony measures and observers’ subjective impressions of synchrony. These results suggest 
that in terms of global perceptions of synchrony, judgments made by human raters can be 
as accurate as state-of-the-art objective measures. However, if a researcher is interested in 
more specific movements (e.g., judgments of which body parts were most synchronized 
during an interaction), automated methods might provide more accuracy as well as reduc-
ing the time and effort required by human raters.

Moreover, our findings may be peculiar to the type of interaction used in the pre-
sent research. We used a practiced, cyclical movement routine as a basis for synchroni-
zation among dyadic partners. Other researchers may be more interested in spontaneous 

Fig. 8   a and b Phase synchrony for Dyad 11 (a) and Dyad 38 (b). The top graph for each dyad shows the 
angle at each timepoint, with the light gray line representing one actor and black the other. The bottom 
graph for each dyad shows phase synchrony (from 0 to 1) continuously throughout the interaction. Dyad 11 
more often shows phase synchrony scores approximating 1.0, whereas Dyad 38 shows this less often



509Journal of Nonverbal Behavior (2022) 46:485–517 

1 3

synchrony that does not feature a cyclical aspect, but instead is linked by mutual adjust-
ments in the timing of movements generally (e.g., Fujiwara & Daibo, 2016). Different 
interaction types could then lead to differences among the available synchrony measures. 
For instance, in a dyadic conversation where both participants are standing, dynamic pose 
similarity could be low, whereas phase synchrony could be high (if the participants’ exact 
body parts are not similarly postured, but their movement timing is aligned). We thus 
encourage other synchrony researchers to consider their studies’ interaction types, and to 
justify their use of measures over others accordingly.

Another implication is our methodological advancement in measuring synchrony. 
Several aspects of the SAMCP methodology render it an improvement over other extant 
methods. First, the use of character animation allows researchers to either alter or con-
trol the appearance of stimuli, while preserving the fidelity of the real human movements 
(Bente, 2019). This balance between control and realism is ideal. Second, the use of full-
body motion capture is relatively rare in synchrony research. Many studies in this domain 
rely on motion energy analysis (Ramseyer & Tschacher, 2011), which leverages changes 
in video pixels as a measure of broad movement activity shifts. As noted earlier, this tech-
nique lacks the precision and granularity of the current method that locates the movements 
of specific joints on the human body, which can subsequently be aggregated. Thus, this 
research is a showcase of the power of combining character animation and motion capture 

Fig. 9   a and b. Dynamic pose similarity of Dyads 11 (a) and 38 (b). The x-axis represents the timeline of 
the interaction, and the y-axis represents the inter-subject lags. The darker coloring around the horizontal 
midline for Dyad 11 indicates a low difference in positions between the two actors when lag = 0. This is less 
evident for Dyad 38, whose coloring was less consistent in this regard. This suggests that the positions of 
Dyad 11’s actors’ body parts were more aligned when lag = 0 compared to those of Dyad 38
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in nonverbal communication research involving observations of movement parameters (see 
Bente, 2019).

Lastly, given the relative ubiquity of findings stating that synchrony improves social 
outcomes, it remains to be seen which types/qualities of synchrony drive these improve-
ments. Do spontaneous interactions induce different outcomes than planned ones? Does 
the form of movements matter, or just the rhythm? These questions cannot be ignored 

Fig. 10 a  and b. Offset of dynamic pose similarity for Dyads 11 (a) and 38 (b). The solid black line is on-
the-spot, and the dashed line is the lag at which peak similarity was exhibited for the dyad. Dyad 11 shows 
a lag closer to 0 compared to Dyad 38, indicating that for Dyad 11 movement similarity was highest when 
there was a smaller delay, compared to Dyad 38 (for which movement similarity was highest when there 
was a large lag)

Table 2  Correlations of major variables

** . Correlation is significant at the 0.01 level (2-tailed)
* . Correlation is significant at the 0.05 level (2-tailed)

1 2 3 4 5 6 7

1. Leader/Follower
2. Perceived Sync .58**
3. Pearson r .46** .85**
4. Mutual Info .39* .42** .35*
5. DTW .16 .41* .33* -.08
6. Phase Sync .56** .77** .76** .57** -.15
7. Optimal Lag (RWTLCC) .39* .46** .43** .30 -.03 .51**
8. Optimal Lag (DPS) .29 .65** .60** .10 -.27 .41* .32
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by lumping all interaction types together and dubbing them ‘synchrony.’ The current 
research brought these issues to the forefront so they may be addressed going forward. 
Future research would ideally compare these aspects of synchrony in terms of their 
outcomes; for instance, one might expect perfect synchrony, compared to general syn-
chrony, to produce stronger social effects, given that shared timing and form have been 
shown to contribute independently to social outcomes.

Limitations

The first limitation of this study was that it did not compare multiple types of synchro-
nous interactions. A direct comparison between reciprocal and unilateral interactions, or 
between regular versus irregular routines, for example, could be useful in further uncover-
ing the utility of the various available measures. Still, this study was a first step toward 
establishing the need for further research on this topic. We urge future researchers to exam-
ine relationships between objective measures and global synchrony perceptions during dif-
ferent types of synchronous routines.

A second limitation was the exploratory nature of this research. Strong theoretical back-
ground warranting the use of certain measures over others is lacking in the communication 
science literature, as well as in other domains that study synchrony. As such, addressing 
research questions instead of hypotheses seemed more appropriate for the current study. As 
differences among measures and their relationships to qualities of synchrony continue to be 
discovered, the grounding for theoretical advancement will become more plausible.

A third limitation was that this study did not encapsulate all available measures of syn-
chrony. Other methods have emerged, such as cross-recurrence quantification analysis 
(Coco & Dale, 2014; Shockley et al., 2002) and spectral approaches like the cross-wave-
let analysis (Fujiwara & Daibo, 2016; Schmidt et al., 2014). Moreover, additional factors 
comprising perceived synchrony, compared to our single item assessing movement simi-
larity, could reveal more nuanced findings. Facets of synchrony such as tempo similarity 
and simultaneous movement (see Bernieri & Rosenthal, 1991), if measured, might lead 
to distinct judgments. Future studies should incorporate these alternative measurements to 
observe how they align with the current findings.

Lastly, the scripted routine we used in the current study does not reflect the types of 
spontaneous interpersonal synchrony one might witness in the real world. Instead, the 
advantage of our routine was to facilitate a type of synchrony that observers could eas-
ily recognize from body movements alone. Constraining the type of routine across dyads 
also enables observers to compare the level of synchrony achieved by dyads without the 
influence of movement routine differences (e.g., one dyad is jumping up and down while 
another is having a laid-back conversation). As such, we chose the route of control over 
broad generalizability to all types of dyadic movement interaction.

Conclusion

Interpersonal synchrony can be found in different shapes and scopes throughout the natural 
world. Disentangling how a metronome differs from a human, how a religious ritual dif-
fers from a conversation, and how instruction differs from spontaneity are all key ques-
tions for synchrony researchers. For humans, at least, perception appears to be a common 
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thread linking synchrony to outcomes. Our research used a state-of-the-art methodology to 
showcase how movement data can be assessed free from confounds while preserving preci-
sion, and compared these assessments to human perceptions. Several measures were able 
to detect synchrony differences that corresponded with variation in general perceptions. 
Future research may find that more unintentional and spontaneous interactions show dif-
ferent results with respect to synchrony measures. Indeed, we may wonder, does synchrony 
in a free-flowing conversation even exist in the same vein as two partners rocking back in 
forth in chairs stably? Answers to such questions must wait for the next wave of synchrony 
research.

APPENDIX A: Motion Capture Procedure

The OptiTrack Motion Capture system was used to collect full-body motion data from 38 
dyads. Motion capture took place in two divided square cells (15’ × 15’) in a laboratory. 
Twelve optical cameras were suspended from a truss system in each cell. These cameras 
detect motion through transmission of infrared light from reflective markers on the par-
ticipants’ body suits. The suits are composed of tight-fitting black Nylon, and feature 37 
passive Velcro markers placed throughout the participant’s body. Motive, the software that 
operates the OptiTrack system, enabled recording and storage of the motion tracked time 
series data.

The motion capture procedure was divided into four phases. In phase one, participant 
dyad members entered separate rooms in a laboratory and donned motion capture outfits 
before completing a pre-test outgroup trust measure. Next, (phase two), they separately 
learned and mimicked a Tai-Chi routine from a virtual avatar appearing as a gender- and 
race-neutral wooden mannequin (‘Woody’). This instructor, who appeared on a large wall 
projection, performed five repetitions of a 30-s routine, thus providing the training neces-
sary for the next phase. In phase three, participants were instructed to perform the same 
routine they just learned, but now with a Black or White virtual avatar (the avatar’s ostensi-
ble race being the main manipulation; this race manipulation did not appear in the current 
study) appearing on the wall – who was in fact embodied by their dyadic partner. Spe-
cifically, the movements of the phase three avatars were generated in real-time by relaying 
the live movement data of one partner to an animation software (Autodesk Motionbuilder, 
2018) that displayed a Black or White avatar onto the partner’s wall projected screen. 
Importantly, unlike phase two, where participants simply followed along to a pre-recorded 
routine, phase three did not have strict leader-follower roles; rather, the two partners’ task 
was to co-construct the routine using each other as references, allowing a mutually con-
structed synchrony to develop. Figure 1 demonstrates the routine in phase three. Notably, 
this was the stage in which the participants’ movement data (body part locations in 3-D 
space at each time frame) were collected via motion capture for the current study. Finally, 
in stage four participants completed a post-test outgroup trust measure to assess the effect 
of partner group and synchrony on this outcome.

Spatial Normalization.

A spatial normalization procedure of motion capture data was performed as recommended 
by Poppe et al. (2014). This is advised for comparing motion capture data between actors 
of different sizes and with different starting positions. To begin, we merged the motion 
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capture files of two dyadic partners using Motionbuilder. We then applied a pre-rendered 
character to each actor’s motion capture data for visualization purposes. Once character-
ized, we scaled uniformly each character according to the average size of a male (1.75 m 
or 5′9″) and female (1.62 m or 5′4″) in the United States. After scaling, we translated each 
actor’s root node (the hip joint) to the origin of the scene: the point where x, y, and z 
are all set to 0 m in Motionbuilder’s viewer window. Next, we ‘snapped’ the two actors’ 
hips to this origin; that is, throughout the scene, the translation of both actors’ hips were 
constrained to the origin point while the rest of their bodies moved freely as in real life. 
The last step was to set the starting orientation (at frame 0) of each actor to the front of 
the scene by rotating the Woody’s hip joint to 0º around the y-axis. The resulting scene 
shows two identically sized characters, both facing forward, and their hips fixed together. 
See Fig. 2 for a still image of this result.

Motion Data Export

The movement data were exported, with one data file per dyadic partner, via the tool 
Export Global Data (Leuschner, 2010) for Motionbuilder. This tool outputs the movement 
data as a spreadsheet in which the rows are time frames (at 25 Hz) and the columns are the 
movement translation in x, y, and z dimensions of 15 key body parts as advised by Poppe 
et al. (2014). Given a dyadic routine lasting 2.5 min, this would result in a rich dataset of 
168,750 cells (3750 frames × 45 body part translation columns) per partner.
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