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An autopilot scheme of volumetric-modulated arc therapy (VMAT)/intensity-
modulated radiation therapy (IMRT) planning with the guidance of prior knowl-
edge is established with recorded interactions between a planner and a commercial 
treatment planning system (TPS). Microsoft (MS) Visual Studio Coded UI is 
applied to record some common planner-TPS interactions as subroutines. The 
TPS used in this study is a Windows-based Eclipse system. The interactions of 
our application program with Eclipse TPS are realized through a series of subrou-
tines obtained by prerecording the mouse clicks or keyboard strokes of a planner 
in operating the TPS. A strategy to autopilot Eclipse VMAT/IMRT plan selection 
process is developed as a specific example of the proposed “scripting” method. 
The autopiloted planning is navigated by a decision function constructed with a 
reference plan that has the same prescription and similar anatomy with the case at 
hand. The calculation proceeds by alternating between the Eclipse optimization 
and the outer-loop optimization independent of the Eclipse. In the C# program, 
the dosimetric characteristics of a reference treatment plan are used to assess and 
modify the Eclipse planning parameters and to guide the search for a clinically 
sensible treatment plan. The approach is applied to plan a head and neck (HN) 
VMAT case and a prostate IMRT case. Our study demonstrated the feasibility of 
application programming method in C# environment with recorded interactions of 
planner-TPS. The process mimics a planner’s planning process and automatically 
provides clinically sensible treatment plans that would otherwise require a large 
amount of manual trial and error of a planner. The proposed technique enables us 
to harness a commercial TPS by application programming via the use of recorded 
human computer interactions and provides an effective tool to greatly facilitate 
the treatment planning process.
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I.	 INTRODUCTION

A clinical treatment planning software is a closed system and a task in treatment planning is 
realized through a series of operations (mouse clicks and/or keystrokes) within the software 
platform. While automation of many clinical tasks is highly desirable — such as generation 
of a customized treatment plan report for documentation purpose or production of a clinically 
sensible volumetric-modulated arc therapy (VMAT)/intensity-modulated radiation therapy 
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(IMRT) treatment plan — doing so is hindered by two major problems. First, there is a lack 
of means to “concatenate” the manual operations of the graphical user interface (GUI) of a 
commercial treatment planning system (TPS). Some vendors provide application program 
interface (API) toolkit, which is a set of routines, protocols, and tools for building software 
(e.g., in the form of a scripting), and this can be employed for certain applications.(1,2) But the 
availability and applicability of the API depend heavily on the vendor. On a more fundamental 
level, a programming environment that allows us to interact with the TPS, such as receiving 
data from the TPS, assessing the received data, and providing feedback to the TPS, is not 
generally available in API toolkit. 

The purpose of this work is two-fold. First, we investigate a technique to probe the GUI and 
data structure of a commercial TPS (or other clinical software system) in an independent C# 
programming environment. By doing so, we can interact with TPS continuously to extract the 
updated information of treatment planning. The need for interacting with the GUI of an applica-
tion software or Web application is quite prevalent, and there are software tools developed for 
the Windows and UNIX/LINUX systems. Using these tools, for example, one can develop a 
test method to click a hyperlink in a Web application, type a value in a text box, or branch off 
and take different testing actions based on a value in a field. In computer science, automated 
tests that drive the application through its user interface (UI) to examine the functionality of 
UI controls are known as Coded UI Tests and are widely employed to verify that the whole 
application, including its user interface, is functioning correctly. Coded UI Tests are particularly 
useful where there is validation or other logic in the user interface, and are also frequently used 
to automate an existing manual test. 

The second purpose of this work is to present an effective strategy to autopilot the VMAT/
IMRT planning process by utilizing the functionalities of a commercial TPS and the capabili-
ties provided by the Coded UI. By recording the mouse clicks/keyboard strokes as executable 
subroutines for specific tasks during planning, we program applications in C#, in which the 
recorded actions are called back to accomplish a designated task without the planner’s inter-
vention. Clinically, treatment planning is largely a trial-and-error process and relies heavily 
on user software interactions. While it is desirable to automate the planning process through 
the development of intelligent optimization algorithm,(1,3-9) most systems are far from being 
ideal and multiple iterative interactions are necessary to obtain a clinically acceptable plan. 
There are multiple tradeoffs in plan selection as the inverse planning algorithm of a TPS gen-
erally contains a number of model parameters, such as the weighting factors for the involved 
structures. The influence of these parameters on the resultant dose distribution is not known 
until an optimization calculation is done, necessitating a manual trial-and-error determination 
of the final solution. Instead of attempting to improve the optimization algorithm, which is 
typically out of the control of a TPS user, the programming platform here allows us to develop 
a technique that is capable of mimicking a planner’s interactive planning and decision-making 
process to search for a sensible solution using a commercially available system. The utility of 
the approach in facilitating VMAT/IMRT plan optimization is demonstrated by using previ-
ously treated clinical cases. 

 
II.	 MATERIALS AND METHODS

A. 	� Recording a planner’s action during planning as a subroutine for  
subsequent applications 

Microsoft Visual Studio Coded UI is employed to record the operations of a TPS user.(10,11) Coded 
UI is targeted at providing UI accessibility and facilitating the automation of GUI manipula-
tion. It provides a unique framework for application programming in C# or other programming 
environment (Coded UI property providers support both Win32 and NET programs), and 
allows us to probe, identify, and manipulate UI elements of another application such as TPS. 
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The application programming environment allows automation of the UI functionality testing 
and manipulations, and beyond this, definitions and implementations of functionalities that are 
independent of their respective implementations. Specific to medical physics applications, one 
of the important implications of the approach is that it enables us to access existing clinical 
software tools through a computer program and facilitate investigation of new ideas. This type 
of “plug-in” software is also useful to streamline the execution of a series of tasks for improved 
workflow. The strategy may also assist otherwise distinct applications with sharing data, which 
can help to integrate and enhance the functionalities of the applications.

A commercial Eclipse TPS (Varian Medical Systems, Palo Alto, CA) is used in this study. We 
first construct a library that includes specifications for routines, data structures, object classes, 
and variables. Each of the commonly used human software interactions of mouse clicks and/or 
keyboard stroke (KS) is recorded using Visual Studio Coded UI automation engine and saved 
as action subroutine into the library. To be specific, in Table 1 we list some key examples useful 
for subsequent autopiloted planning.

B. 	 Playing back stored action subroutines
A C# programming environment is employed to utilize the recorded human TPS interactions to 
facilitate VMAT/IMRT planning process. In this environment, execution of a planning action 
described in Table 1 is realized by simply calling the recorded subroutine(s). A planning task is 
accomplished by executing a chain of prerecorded modules, as well as syntax that analyze the 
intermediate results for algorithmic decision-making. To illustrate the utility of the proposed 
programming technique, the following presents a specific implementation of an autopiloted 
VMAT/IMRT planning.

Table 1. A list of some useful recording and playback actions for autopiloted planning.

	 Function	 Eclipse Operation	 Action in Coded UI & Application in C#

	 3D dose	 F5	 Record the “F5” and playback the code when
	 calculation		  dose distribution needs to be updated.

	 Open an	 F10	 Record the “F10” and playback the code to
	optimization window	  	 change the Eclipse optimization parameters.

	 Adjust weighting	 Manually entering values	 Record the action of moving the mouse indicator
	 factors or other	 into the textbox after	 to the textbox and entering new values.
	 parameters	 clicking “F10”	 Playback with new input values. 

	 Start an	 Click “Optimize” button	 Record the action of clicking “optimize”.

	 optimization	 after clicking “F10”	 Playback when Eclipse optimizer needs to be
			   executed with updated optimization parameters.

	 Export DVH to	 Pull down the textbox	 Record the DVH export process. Call the

	 a file 	 “show DVH view” and select	 subroutine when updated Eclipse DVHs
		  “export DVH in tabular format”	 of the involved structures are needed.  

	 Create a Boolean	 Go to “Contouring” section,	 Record the process (including “and”, “or”, 
	 structure of two	 identify the structures, and	 “xor”, “sub”, and “not”). Call the subroutine
	 structures	 perform a Boolean operation 	  when a Boolean structure needs to be created. 

	 Convert an	 Right clicking “dose” on the left	 Record the process. Playback to iteratively	 isodose region	 side menu and select “convert	 refine an Eclipse-optimized plan. 	 into a structure	 isodose level to structure” 	

	 Refresh patient	 Clicking “Save All” and	 Record the action. Call the subroutine when

	 information	  “Reload All” under the	 existing patient information needs to be
		  file pull-down menu 	 refreshed or to move the planning to next stage.
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C. 	 Autopiloted VMAT/IMRT treatment planning
Figure 1 shows the flowchart of an autopiloted VMAT/IMRT plan optimization process with 
the use of recorded Eclipse actions. After the planning target volume (PTV) and other involved 
structures are segmented, a reference plan with similar anatomy and prescription is chosen from 
a library to guide the search for a clinically sensible treatment plan. Here, some predefined 
geometric criteria are employed for the selection of reference plan. Similar to the work done 
by Chanyavanich et al.,(12) the images of current case are overlaid with a candidate reference 
plan from a library of previously treated patients. The candidate reference plans are first filtered 
according to anatomical site, physical target volume(s), corresponding structure names, and 
prescribed dose. For each structure, the signed difference of the contour points of the current 
and reference plans is computed.(13) In computing the signed difference, we first introduce a 
polar coordinate system with its origin located at the center of mass of the structure. Ray lines 
starting from the origin are introduced with an angular resolution of 2.5°. The points for a ray 
line to be in and out of the structure are recorded (for the PTV, generally, the ray intercepts 
with its contour once). The signed difference of an intercepting point is given by subtracting 
the radial distance of the point in the current case from that of the reference case. A plan is 
not considered as a good reference if the signed difference of any intercepting point in any 
structure is greater than 1–3 mm for a small structure such as the optic nerve and 5–15 mm for 
a large structure such as the skin contour. While the metric can certainly be further improved 
by introducing some heuristic weightings of the structures and points in the future, the scheme 
here captures the main features of the similarity assessment. In an ideal situation for two iden-
tical cases, the signed difference for all points becomes zero. In our study, a visual inspection 
of the coincidence of the current and reference cases is also performed to ensure the quality of 
selected reference case. 

Fig. 1.  An architectural overview of the autopiloted VMAT/IMRT plan optimization scheme implemented using the 
proposed technique. An outer-loop calculation (indicated by the dashed rectangular box) analyzes the generated Eclipse 
plan and feeds the Eclipse optimizer with updated parameters for improved dose distribution. The gray boxes are realized 
through the use of recorded Eclipse actions stored in a library.
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Generally speaking, the computational effort could be reduced if the information gained dur-
ing the course of solving an optimization problem closely related to the current one is utilized 
in solving the problem at hand. In order to speed up the calculation, in this study, the beam 
and optimization parameters of the reference plan are used as the starting point of optimiza-
tion, which is often referred to as a “warm-start” of optimization. However, it is noted that a 
“warm-start” is not necessary to find the optimal plan. Our calculation proceeds in analogous 
to the planning process of a human planner, with the resultant dose distribution assessed by a 
decision function each time after the Eclipse optimization is done.(3,5) The algorithm is formally 
described by the following equations: 

		  (1)
	

TPS objective function with constraints

where the optimization of TPS objective function with consideration of constraints is done on 
the Eclipse TPS,  and  are the doses of the j-th segment of the DVH curve of structure  
for the current and reference plans, respectively.  is the allowed deviation defined for the 
DVH segment of the structure .

The autopiloted plan scheme involves the following key steps: 1) optimizing the Eclipse 
plan, 2) comparing the Eclipse solution with reference data, 3) deriving a new set of Eclipse 
optimization parameters, and 4) updating the Eclipse optimization parameters and reoptimizing 
the beams. The DVHs of the involved structures are exported into a .csv file upon completion 
of an Eclipse optimization using a prerecorded Eclipse function (see Materials and Methods 
section A). The file is then read into the C# program and compared with the corresponding 
DVHs of the reference plan. The weighting factors of Eclipse, which represent the priorities 
of dosimetric objectives of different structures, are assessed based on the difference between 
current and reference DVHs. For computational purpose, the DVH file is discretized with the 
maximal dose resolution of 0.001 Gy. The adjustments of the weightings are made toward the 
direction of decreasing the discrepancy between the two DVHs. Note that, while Dmin, Dmax, 
and Dmean are stored in the headers of the DVH file for each structure, dose volume constraints 
such as V95 are listed in a tabular format following the headers. A subroutine is thus written to 
extract the dose and volume values from the DVH file for each structure. The autopilot plan-
ning process stops if the constraints in Eq. (1) with predefined { } are met (in our calculations, 
the value of  is set to be 3% of the value in the reference plan) or if the number of iterations 
of the outer-loop optimization is greater than 50. To ensure that the autopiloted planning does 
not stop at the reference plan when there is a room for improvement, at the end of calculation, 
we let each resultant DVH segment to make a trial movement toward better PTV coverage or 
organ at risk (OAR) sparing, even if the benchmarking goal of the segment set by the refer-
ence plan is met. The trial movement is accepted if the dose to any of other DVH segments is 
not worsened. By means of this last step, the autopilot process is made less dependent on the 
“perfect selection” of the reference plan.

The introduction of an outer-loop decision function based on prior clinical experience forms 
the basis for the autopilot algorithm. The iterative interactions of the decision function and TPS 
pilots the search toward a clinically sensible solution. From the perspective of optimization, the 
strategy here is similar to a sequential optimization of an overall objective,(14,15) but the objective 
functions for the two stages (i.e., the TPS optimization and the outer-loop determination of the 
TPS parameters) are different. This process is along the line of our earlier work in automated 
weighting factors and model parameters determination.(6,16,17) Instead of simply using prior 
knowledge extracted from previous clinical treatment plan(s) as a “class solution” or as upper/
lower bounds to examine the results of the optimization calculation,(18-24) in our approach, the 
reference information is utilized throughout the plan selection process. During the process, the 
parameters used in the Eclipse optimizer are constantly updated through the comparison of 



194    Wang et al.: Autopilot of VMAT/IMRT treatment planning	 194

Journal of Applied Clinical Medical Physics, Vol. 17, No. 6, 2016

current and prior knowledge characterized by reference plans. Generally speaking, it is a fun-
damental rule of estimation theory that the use of prior knowledge will lead to a more accurate 
estimation. An inclusion of even partial information could lead to more effective search of the 
solution space and eliminate some unnecessary uncertainties in the estimation process.(25-27) 

D. 	 Case studies
The above technique is applied to plan four clinical cases: three VMAT head and neck (HN) 
cases and a fixed gantry IMRT prostate case. The selected reference plan for a three-arc HN 
study is displayed in Fig. 2. This is a clinically challenging case with 50 Gy prescribed to V95 
of the PTV. To meet the dosimetric constraints of the eyes, optic nerves, and chiasm, a sagittal 
arc is used along with two full coplanar arcs. The photon energy for the arcs is 6 MV. The other 
two HN cases have 70 Gy prescribed to V95 of the PTV at 2.12 Gy/fraction. Two full coplanar 
arcs of 6 MV were used. For the prostate study, a typical five-field IMRT plan with similar 
anatomy is used as the reference (Fig. 3). In the reference plan, 6 MV photon energy is used 
for all beams and the beam angles are 0°, 50°, 100°, 260°, and 310°, respectively. 78 Gy is 

Fig. 2.  Isodose distributions in axial, coronal, and sagittal planes and DVHs of the involved structures of the reference 
for the first head and neck plan.

Fig. 3.  Isodose distributions in axial, coronal, and sagittal planes and DVHs of the involved structures for the reference 
prostate plan.
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prescribed to cover V95 of the PTV in 39 fractions. For comparison, the resultant dose distribu-
tions of the autopiloting scheme are compared with the corresponding plans used for clinical 
treatments, which were obtained manually by a dosimetrist (signed off by a physician) and 
were deemed to be clinically optimal. 

 
III.	 RESULTS 

A. 	 HN VMAT cases
In Fig. 4, we show the progressive improvement of the PTV and OAR doses as a function of 
outer-loop iteration for the first HN case. The improvement in doses of the involved structures is 
most prominent in the first few iterations. The dosimetric differences of the PTV and the spinal 
cord between the current and reference plans saturates after about eight iterations. However, the 
brainstem dose continues to improve until a later stage. The DVHs of a few relevant structures 
at different stages of iterative calculation are displayed in Fig. 5, which provides an overall 
picture of the iterative optimization process of the system. 

For comparison, the VMAT plan used for the patient’s treatment is presented together with 
the current result. A comparison of DVHs between the clinical and autopiloted planning is 
shown in Fig. 6. 

Figure 7 shows the DVH comparison between the clinical and autopiloted planning for the 
second HN case. Figure 8 shows the isodose distributions of the two plans. Similarly, Figs. 9 

Fig. 4.  Change of a few dosimetric quantities as a function of outer-loop iteration. Each iteration consists of tuning 
optimization parameters, decision making, optimization, dose calculation, and saving parameters to file. Panel (a) shows 
the percent coverage of prescription dose of PTV; Panel (b) shows the percent deviation of the maximum dose of PTV 
between the current and reference plans; Panel (c) shows the percent volume of the spinal cord covered by 42 Gy; Panel 
(d) shows the mean dose of the brainstem.
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and 10 show the DVH and isodose comparisons between the clinical and autopiloted planning 
for the third HN case. 

It is interesting to see the minor discrepancy in the autopiloted and clinical plans. The former 
is obtained under the guidance of the reference solution, whereas the clinical plan was generated 
by a human planner independently. Clinically, it is known that interplanner variation occurs 
frequently in treatment planning, especially in some sophisticated cases like the one presented 
here. In reality, it is important to use high quality reference plan in autopiloted planning, even 
though post-autopilot refinement of the treatment is feasible.

Fig. 5.  DVHs of a few structures at iteration #1 (dotted blue), #10 (dashed red), and #20 (solid blue). A systematic improve-
ment in the DVHs of the brainstem and spinal cord is observed.

Fig. 6.  Final DVH of autopilot planning compared with clinical planning for the first HN VMAT case.
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Fig. 7.  Final DVH of autopilot planning compared with clinical planning for the second HN VMAT case.

Fig. 8.  Side-by-side comparison of the isodose distributions of autopiloted (right) and clinical (left) plans for the second 
HN case.
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B. 	 Five-field prostate IMRT
It takes ~ 20 iterations for the calculation to reach the optimum. The final solution is similar to 
the reference plan in terms of the overall isodose distribution. It is noted that, after the system 
reaches to its optimal solution, a small variation (1% to 3%) in one or more Eclipse parameters 
does not cause a noticeable change in the final dose distribution and DVHs, suggesting that 
the final solution is stable. The final optimal isodose distribution and DVHs for the case are 
shown in Fig. 11. Further improvement in the OARs could not be achieved without seriously 
sacrificing the target dose homogeneity. The bladder DVH of the resultant plan approaches to 

Fig. 9.  Final DVH of autopilot planning compared with clinical planning for the third HN case.

Fig. 10.  Side-by-side comparison of the isodose distributions of autopiloted (right) and clinical (left) plans for the third 
HN case.
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that of the reference plan easily because of more favorable anatomy. The rectum in the case 
under study is geometrically closer to the PTV as compared with that of the reference case, 
thus its dose shows a slightly larger variation from the reference plan.

C. 	 Computation time
Computationally, it takes about 3 hrs to complete a plan selection process, but this can be 
improved with more efficient programming, and, in the future, better integration with the Eclipse. 
We find that about 70% of the time is spent by the Eclipse on tasks such as optimization and 
dose calculation, 15% for reading from files and computation, 10% for inputting new values, 
and 5% for buffering among actions. An algorithm that iteratively modifies the beams and 
objective function parameters altogether should, estimated based on the number of outer-loop/
inner-loop calculation, be 15 times more efficient, but this would entail tackling/modifying the 
objective function of the commercial TPS and becomes practically impossible. Nevertheless, 
comparing with the current manual trial-and-error planning process, which could take days of 
a dosimetrist’s time for clinically challenging cases, the proposed method eliminates the need 
for modifying the optimization parameters and other time-consuming tasks, such as adding 
Boolean structures and converting isodose curves into structure necessary to shape dose distri-
bution toward meeting the clinical expectation. The entire calculation is done without any user 
invention. It thus represents a step forward in inverse planning technique. 

 
IV.	 DISCUSSION

In current practice, treatment planning involves testing a large number of physically realiz-
able solutions. Intertwined interactions of TPS optimization and planner’s adjustment of TPS 
planning parameters are needed to obtain a sensible plan. While it is desirable to automate the 
planning process through development of more intelligent optimization algorithm,(3-5,8,9,28,29) 
most TPS systems are far from being ideal and multiple trial and errors are necessary to obtain 
a clinically acceptable plan.(3,4,29) How to make TPS better comprehend the planner’s goal has 

Fig. 11.  Panel (a) shos the final DVH of autopiloted planning as compared with manual planning for the prostate IMRT 
case. Panels (b)–(d): the isodose distributions of the autopiloted plan. The isodose distribution of the plan used for this 
patient’s treatment is almost identical to the autopilot plan and is thus not shown here.
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been an active research topic since the early days of inverse planning research(3,4,6,25,30-36) and 
its perspective remains elusive. Instead of attempting to improve the optimization algorithm 
of the TPS, which is clearly out of the control of a user, the proposed platform and the use of 
an out-of-the-TPS decision function here allows us to imitate a planner’s interactive planning 
process to search for the optimal solution that would otherwise require much more manual effort. 
The approach is quite general and should be applicable to facilitate the treatment planning of 
other modalities such as brachytherapy,(37) proton therapy,(38,39) station parameter optimized 
radiation therapy (SPORT),(29,40) gamma knife,(41) breast planning(42) or similar. 

As described in the Material and Methods section C, autopilot planning entails the use of a 
reference plan to drive the optimization process toward a clinically sensible solution. How to 
better define a set of clinically relevant geometric criteria for finding the best possible refer-
ence case(s) is an on-going research issue in knowledge-based planning. This can be realized 
in our study by selecting a reference plan(s) that leads to positively signed difference for points 
entering the OARs (meaning that the “distance of the OAR to the PTV” in the current plan 
is larger than that of the reference plan). Based on our clinical experience, being able to pilot 
the planning process to a point that is sufficiently close to be clinically reasonable/acceptable 
takes up the most portion of the planning efforts and thus represents the single most challenging 
aspect of clinical inverse treatment planning process. Even if a reference plan is not the optimal 
solution, it is useful to guide us to the proximity of optimal plan. In practice, refining a plan 
that is “almost there” requires much less effort as compared to planning from “scratch”. In our 
implementation, we have made effort to make the autopiloted planning to generate a plan that 
may exceed the quality of the selected reference plan.

We note that knowledge-based treatment planning has been one of the subjects actively 
studied recently.(5,43-45) The approach can be roughly classified into three categories: 1) those 
that predict the weighting factors for different structures using machine learning algorithms; 
2) those that generate initial solutions for the “warm start” of the subsequent optimization; and 
3) those that estimate the desired DVH curves to be achieved by the subsequent optimization. 
Practically, none of the three categories provides a turn-key solution to automate the treatment 
planning, as the beam parameters that produce the best possible dose distribution still need to 
be optimized for patient treatment. In the future, it seems to be useful to combine the autopilot 
planning framework proposed here and the knowledge-based estimation of reference plan(s) 
to make the autopiloted planning more computationally efficient. 

Generally, Coded UI does not rely on the absolute coordinates of the DVH data or GUI control 
buttons on the screen to perform the recording/playback, which is different from an alternative 
approach recently proposed by Tol et al.(36) Instead, it relies on the relative positions of the but-
tons. Therefore, controls can change their physical locations (layout) as long as their relative 
locations are maintained. If the GUI is modified in a version change of TPS to the point where 
certain controls are interchanged, or deleted or new controls are added, then even a manual 
planner would need to be trained again. In this scenario, we would need to rerecord some of 
the actions. Recording a new action can easily be added to the preexisting library, since the 
code is automatically generated in Coded UI. Consistent naming of structures with approach 
consistent with the emerging ontology convention is important. We note that, while Coded UI 
is designed for the Windows environment, the principles and strategies proposed here are quite 
broad. The research experience gained in this platform can be translated to other platforms by 
other researchers to improve the manual trial-and-error process of inverse planning. 

Other operating systems, such as Unix and Linux, have similar record-and-playback services 
(UNIX Session Recorder, Sikuli, Linux Desktop Testing Project).(46) In practice, Windows 
platform is employed by a large number of TPS and other clinical application software. Thus, 
the presented strategy can be applied directly to facilitate clinical tasks or workflow. Finally, 
in our approach the C# program acts like a human planner, iteratively interacting with the 
TPS. Thus, similar to the fact that a computer used by a manual planner is not expected to 
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concurrently run other tasks, the TPS computer cannot be used for other purposes while the 
C# program is running.

In our implementation, the data (such as the DVHs data) exchange between the inner- and 
outer-loop optimizers are realized mainly through export/import. In addition to these options, 
assertion statements can be used to extract the state of the Eclipse system. The information 
updates us in real time about which operations are complete, which still on-going, and which 
are running into an error. It also helps to capture the cause and effect of different actions before 
moving the calculation to the next step. 

The reported method may have useful implications to medical physics research and clinical 
practice. Currently, the development of treatment planning algorithm(s) in research community 
is often done in simplified software platforms(47,48) without the knowledge of some important 
geometric and physical factors,(47,49) which makes it difficult to experimentally validate the 
results using the clinical linacs, to compare the results with current practice, and to translate the 
research into clinical practice. The gap between research and clinically used TPS has increased 
dramatically over the years and TPS becomes essentially a black box to the researchers. The 
approach here enables researchers to leverage the sophisticated software subroutines existing 
already in a commercial TPS. The described technique enables us to utilize various software 
subroutines/functions in a clinical grade TPS without going into the details of their implemen-
tations, which may take years of professional engineers’ efforts to develop and validate. With 
the proposed approach, researchers can focus their efforts in testing their new ideas instead of 
spending a huge amount of efforts to “redevelop” the software subroutines/functions that already 
exist in a commercial TPS. By avoiding “reinventing the wheels” or repeating some well-known 
tasks, such as dose calculation and image registration, the researchers can focus their efforts on 
high-level research issues. The programming environment described here is highly interactive, 
which makes it easy when it comes to principle testing and prototyping. Another important 
advantage of the technique here is that it may facilitate the translation of research to clinical 
practice because of the elimination of intermediate layers/issues as mentioned above. In terms 
of applications, the implemented two-loop optimization represents only one of many possible 
applications of the proposed strategy. Coded UI is designed to interact with the user interface 
in the Windows environment, thus the approach is applicable to streamline other clinical tasks 
that require a series of operator software interactions in TPS. 

 
V.	 CONCLUSIONS

We have demonstrated the use of recorded user software interactions for a commercial TPS in 
autopilot of VMAT/IMRT treatment planning. The approach makes it easy to utilize the software 
tools of a clinical TPS for development of new applications and presents an uncharted area for 
research and applications. The strategy allows programmatically controlled execution of tasks 
that require a series of commands and should thus improve the clinical workflow. An autopilot 
optimization algorithm with incorporation of prior knowledge is implemented in combination 
with Eclipse TPS. The algorithm presents a practical way to mimic the decision-making pro-
cess of a planner and to pilot the plan optimization toward the reference plan, thus reducing 
the need for trial and error in treatment planning. The autopilot method promises to simplify 
the clinical treatment planning. Finally, the approach should be extendable to the automation 
of other tasks in using a software tool. 
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