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INTRODUCTION 
 

Freezing of gait (FOG) is a common symptom in the 

advanced stages of Parkinson’s disease (PD). FOG 

increases the risk of falls and fall-related injuries with 

devastating impact on the quality of life of individuals 

with PD, often triggering a downward spiral of frailty 

and leading to depression, social isolation, activity 

avoidance, and fear of falling [1–3]. While classically 

occurring in advanced PD, FOG and falls can be seen in 

earlier stages, particularly in individuals who suffer 

from the postural instability gait difficulty (PIGD) 

subtype, when compared to the tremor-dominant (TD) 

subtype [4–6]. 

 
The mechanism of FOG in PD has been intensively 

studied. The “interference model” describes function 

interruption between cortical structures and brainstem 
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ABSTRACT 
 

Changes in basal ganglia (BG) perivascular spaces (PVSs) are related to motor and cognitive behaviors in 
Parkinson’s disease (PD). However, the correlation between the initial motor phenotype and PVSs 
distribution/burden in PD freezing of gait (FOG) remains unclear. In addition, the normal-sized PVSs (nPVSs) 
have not been well-studied. With high-resolution 7T-MRI, we studied nPVSs burden in BG, thalamus, midbrain 
and centrum semiovale. The numbers and volume of nPVSs were assessed in 10 healthy controls, 10 PD 
patients without FOG, 20 with FOG [10 tremor dominant (TD), 10 non-TD subtype]. Correlation analyses were 
further performed in relation to clinical parameters. In this proof of concept study, we found that the nPVS 
burden of bilateral and right BG were significantly higher in freezers. A negative correlation existed between 
the tremor score and BG-nPVSs count. A positive correlation existed between the levodopa equivalent daily 
dose and BG-nPVSs count. The nPVS burden correlated with the progression to FOG in PD, but the distribution 
and burden of nPVS differ in TD vs. non-TD subtypes. High resolution 7T-MRI is a sensitive and reliable tool to 
evaluate BG-nPVS, and may be a useful imaging marker for predicting gait impairment that may evolve into 
FOG in PD. 
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regions involved in gait control possibly contributing to 

FOG [7, 8]. Similarly, the “decoupling model of FOG” 

suggests that a breakdown in coupling between posture 

preparation by the supplemental motor area and step 

initiation by the motor cortex may be responsible for 

the “start hesitation” in FOG [9]. It has been suggested 

that FOG may be due to a failure to generate adequate 

amplitudes of the intended movement [10]. The 

anatomical basis might be the failure of structural and 

functional integrity in the locomotion control system. 

For example, the widespread white matter damage 

involving sensorimotor-related and extramotor path-

ways was reported in PD-FOG patients. Individuals 

with diffused small vessel disease can frequently 

manifest Parkinsonian symptoms, while neuroimaging 

demonstrates diffused white matter hyperintensities 

(WMH). In addition, more severe WMH was found in 

the PIGD subtype of PD [11–14]. Left temporal WMH 

is related to falls in idiopathic PD [15]. Taken 

together, the white matter integrity and the subcortical 

network [involving regions such as the basal ganglia 

(BG), the thalamus and the mesencephalic locomotion 

center] are essential to maintain gait and balance. 

When damaged, FOG and balance impairment can 

occur. 

 

Perivascular spaces (PVSs) are pial-lined interstitial 

fluid-filled spaces surrounding the penetrating blood 

vessels, which are commonly observed in the BG, white 

matter centrum semiovale (CSO), midbrain and 

subcortical white matter regions [16, 17]. The 

mechanism of PVS dilation remains unclear. Previous 

studies have demonstrated that enlarged PVSs (ePVSs) 

are associated with normal aging [18, 19]; cerebral 

small vessel disease [20–23]; neurodegenerative 

diseases, such as Alzheimer's disease [18, 24, 25] and 

PD [16, 26, 27]; stroke [20, 28–30]; neuroinflammation; 

and demyelination [31, 32]. Within BG, ePVSs are 

closely associated with older age, cerebral atrophy, 

lacunar stroke and cognitive impairment [33–35]. In 

PD, ePVSs and the severity of the PVS in BG are 

related to the severity of motor symptoms [36, 37], 

cognitive dysfunction [27], and future cognitive decline 

in individuals with normal cognition [38]. 

 

Since ePVSs are correlated with PD motor and 

cognitive impairment, one can postulate that the 

distribution and volume of the normal-sized PVSs 

(nPVSs) may have certain clinical significance in PD. 

Previous studies have mainly focused on ePVSs due to 

limits in imaging resolution. NPVSs are typically 

invisible due to small size in the range of 0.13-0.96 mm 

[39]. Seven Tesla (7T) MRI, with increased spatial 
resolution and signal-to-noise ratio, increases the 

detection of nPVSs [40, 41]. The 7T sequences have 

been optimized to provide detailed assessment of 

distributions of nPVSs in the white matter and 

subcortical nuclei [42]. 
 

In this proof of concept study, with 7T MRI, we 

investigated the clinical and neuroimaging significance 

of nPVS in important locomotion centers, including the 

BG, thalamus, midbrain, and CSO in PD freezers with 

different motor phenotypes. We hypothesized that the 

count and volume of nPVSs in BG may be different 

compared to those of age-matched healthy controls 

(HCs). The nPVSs burden of BG could potentially serve 

as a biomarker for PD gait impairment, and may further 

be a factor in distinguishing the motor subtypes in PD 

patients. 

 

RESULTS 
 

Demographic and clinical characteristics 
 

The demographic and clinical characteristics of the 

HCs, PD patients without FOG [FOG(-)], PD patients 

with FOG tremor dominant subtype [FOG(TD)], and 

those with FOG, but non-TD type [FOG(TD-)] are 

shown in Table 1. There were no significant differences 

found in age, sex ratio, vascular risk factors, WMH 

burden and education level among the four groups. A 

majority of participants in the two FOG groups had 

moderate to severe degree of FOG (Table 1). Among 

the three PD groups, tremor score was significantly 

higher in the FOG(TD) group. The axial motor score, 

akinetic score, Levodopa equivalent daily dose (LEDD), 

Hamilton Depression Scale (HAMD) and Hamilton 

Anxiety Scale (HAMA) scores were higher in the 

freezers. 
 

Analysis of the nPVSs in basal ganglia 
 

With 7T MRI, the resolution of the images was high 

enough to allow analysis of nPVS burden (Figure 1). 

NPVS number and volume calculation of PD subgroups 

and HCs groups were performed (Table 2). Test-retest 

reliability using the two-way mixed model for absolute 

agreement over a one-month interval reached 0.79 and 

0.80 for nPVSs number and volume of BG region, 0.72 

and 0.74 of thalamic region, 0.89 and 0.93 for the CSO 

region, and 0.77 and 0.83 of the midbrain, respectively. 
 

The nPVS numbers of the right and bilateral BG were 

significantly higher in the FOG(TD-) group than the rest 

of the groups using one-way ANOVA (Table 2 and 

Figure 2). The volume of the nPVS of FOG(TD-) group 

was significantly higher than the other groups when 

compared unilaterally, bilaterally or choosing a single 

slice with the highest count (Table 2). No differences 

were detected in thalamus, CSO, or midbrain regions 

among the groups. No moderate or severe nPVS burden 
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Table 1. Demographic and clinical characteristics of the participants. 

 HCs (n=10) PD FOG(-) (n=10) FOG(TD) (n=10) FOG(TD-) (n=10) P valuea P valueb 

Sex (M/F) 5/5 5/5 2/8 6/4  0.33 

Age (years) 61.36±4.40 66.27±4.69 65.23±4.92 66.23±5.05  0.09 

Hypertension, n 7 6 3 5 0.40  

Hyperlipidemia, n 1 0 2 0 0.60  

Diabetes Mellitus, n 1 0 0 2 0.60  

Stroke, n 0 0 0 0   

Cardiac disease, n 0 0 0 0   

Cigarette, n 3 2 0 1 0.46  

WMH score 3.50±2.80 4.70±1.95 4.80±2.49 5.20±4.29 0.62  

Disease duration (years) NA 8.20±6.09 11.50±6.34 9.40±2.67 0.38  

FOG duration (years) NA NA 3.18±3.53 2.70±2.75 0.34  

UPDRS total NA 51.70±18.51 61.30±15.76 63.40±14.37 0.25  

UPDRS-III (OFF) NA 36.67±10.79 38.00±3.16 42.25±5.42 0.25  

UPDRS-III(ON) NA 29.00±3.61 27.50±5.74 26.50±6.61 0.83  

Improvement (%) NA 18.25±14.74 27.90±11.96 35.44±21.22 0.40  

Tremor score NA 6.00±4.59 7.60±4.70 1.70±1.34 <0.01*  

Axial motor score (OFF) NA 4.50±2.07 9.25±5.06 9.67±3.00 <0.01*  

Axial motor score (ON) NA  5.50±1.93 6.00±2.83 0.66  

Improvement (%) NA  40.54±36.91 38.43±21.03 0.83  

Rigidity score NA 7.30±3.37 7.80±1.62 8.70±4.27 0.63  

Akinetic score NA 13.10±5.22 13.10±5.00 17.70±2.98 <0.05*  

Akinetic-Rigid score NA 20.40±7.59 20.90±5.99 26.40±6.19 0.10  

NFOGQ score NA 0 23.50±3.17 20.70±7.15 0.01*  

LEDD (mg/day) NA 506.95±299.24 647.45±256.15 841.55±311.66 0.04*  

MMSE score 26.70±2.87 23.60±4.33 20.90±6.23 21.00±6.25  <0.05* 

HAMD score 2.80±2.35 6.70±5.14 12.60±923 9.00±6.38  <0.01* 

HAMA score 2.40±2.37 9.90±7.25 10.70±4.19 8.50±5.62  0.01* 

Data were presented as mean ± SD. FOG, Freezing of Gait; FOG(T-), FOG without tremor; FOG(T+), FOG with tremor; PD-FOG 
(-), PD without FOG; UPDRS, Unified Parkinson's Disease Rating Scale; NFOGQ, New Freezing of Gait Questionnaire; LEDD, 
Levodopa Equivalent Daily Dose; MMSE, Mini-Mental State Examination; HAMD, Hamilton Depression Scale; HAMA, Hamilton 
Anxiety Scale, NA, Not Applicable. 
Tremor score, the sum of UPDRS item 16 (arms tremor identified by history), 20 (face and four limbs tremor at rest), 21 (arms 
action or postural tremor); Axial motor score, the sum of UPDRS item 13 (falling), 14 (freezing), 15 (walking), 29 (gait), 30 
(postural instability); Rigidity score, UPDRS item 22 (rigidity of neck and four limbs); Akinetic score, the sum of UPDRS item 23 
(finger tap), 24 (hand movement), 25 (hand rotation), 26 (feet flexibility), 31 (body bradykinesia), akinetic-rigid score (sum of 
items 22–26 and 31).*, p<0.05. A 30% improvement in UPDRS-III was considered good levodopa response with levodopa 
challenge. 
a. Comparison among PD groups. 
b. Comparison among PD groups and age-matched healthy controls. 

was seen in the thalamus or midbrain using the scale 

system previously described (Figure 2) [43]. 

 

Correlation between BG-nPVS burden with clinical 

features and WMH burden 

 

In PD freezers, a significantly negative correlation 

existed between the tremor score and BG-nPVSs count 

(r = -0.49, p = 0.04, Figure 3A), and a positive 

correlation was found between the LEDD and nPVSs 

count of BG (r = 0.47, p = 0.04, Figure 3B). An overall 

positive correlation between WMH burden and BG-

nPVS (r = 0.37, p = 0.02, Figure 3C) for all 40 

participants was found. There were no correlations 

between nPVS burden and the UPDRS-III as well as 

other clinical parameters. There were no correlations 

between BG-nPVS volume and clinical parameters. 

There was no difference in the nPVS count and burden 

in the other areas assessed, nor was there any clinical 

correlation detected. 
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DISCUSSION 
 

In this proof of concept study, we investigated the 

utility of ultra-high field 7T MRI to assess nPVS burden 

and determine whether nPVS counts and volume could 

serve as imaging tools to distinguish motor phenotypes 

in PD freezers. First, we established that 7T MRI could 

be a reliable tool in assessing nPVS. The significance of 

 

 
 

Figure 1. Comparison of imaging resolution between 7T and 3T MRI for nPVS. Example of comparisons of resolution of nPVSs on T2 
weighted images acquired by 7.0T MRI vs 3.0T MRI on the same study participant. (A, B) Indicate centrum semiovale with red square; (C, D) 
indicate yellow squares for basal ganglia and blue squares for thalamus; (E, F) is midbrain with green squares. nPVS, normal-sized perivascular 
space. 
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Table 2. NPVSs count and volume in basal ganglia. 

 HCs FOG(-) FOG(TD) FOG(TD-) p-value 

nPVSs count      

Left  6.30 ± 0.99 8.50 ± 1.20 9.50 ± 1.46 11.90 ± 2.11 0.08 

Right 6.20 ± 0.57 9.60 ± 1.77 13.20 ± 1.78 18.70 ± 2.11 <0.001* 

Bilateral 12.50 ± 1.18 18.10 ± 2.27 22.70 ± 2.15 30.60 ±3.56 <0.001* 

Slice with highest count  7.70 ±0.60 11.60 ± 1.42 13.80 ± 1.65 19.10 ± 2.01 <0.001* 

nPVSs volume (mm3)      

Left 74.26 ±8.54 52.27±6.14 81.48±8.53 89.07±9.57 0.02* 

Right 57.41±8.39 54.12±6.48 65.02±11.57 99.73±13.33 0.03* 

Bilateral 131.67±15.29 106.40±10.09 146.49±17.46 188.79±20.73 0.01* 

Slice with highest count 22.71 ± 3.71 24.40 ± 2.51 28.80 ± 4.12 40.51 ± 3.75 0.005* 

Data were presented as mean ± SEM. nPVSs, normal-sized perivascular spaces; HCs, healthy controls; 
FOG, freezing of gait; FOG(-), PD patients without FOG; FOG(TD), PD patients with FOG whose motor 
phenotype was tremor dominant; FOG(TD-), PD patients with FOG whose motor phenotype was PIGD or 
indeterminate. 
*, p<0.05, one way ANOVA. 
And nPVS volume is calculated and presented as: left, unilateral slice with the highest number of nPVS 
at the left side and two slices below and above; right, unilateral slice with the highest number of nPVS at 
the right side and two slices below and above; bilateral, the sum of the above left and right; slice with 
highest count, nPVS analysis on the single slice with the highest number of nPVS bilaterally. 

normal sized nPVS in BG has not been well studied 

partially due to the challenges associated with nPVS 

quantitation using lower resolution MRI scanners. 

Conversely, using a 7T MRI scanner with the higher 

field strength makes it possible to quantitate nPVSs. 

PVSs are microscopic but visible on MRI when 

enlarged with the widely used 1.5 and 3T scanner. PVSs 

are commonly seen in healthy adults, in BG and CSO  

in up to 60% of individuals [44]. There is clinical 

relevance to PVS. PVSs that relate to small vessel 

 

 
 

Figure 2. Semi-quantitative assessment of nPVSs severity. nPVS severity was assessed using a semi-quantitative scale (none/mild = 0/1, 

moderate = 2, frequent/severe = 3/4). The severity is shown in the basal ganglia (A), CSO (B), midbrain (C) and thalamus (D). nPVS, normal-sized 
perivascular space; BG, basal ganglia; CSO, centrum semiovale; FOG, freezing of gait; TD, tremor dominant; HCs, healthy controls; FOG(-), PD 
patients without FOG; FOG(TD), PD patients with FOG TD subtype; and FOG(TD-) PD patients with FOG, but non-TD subtypes. 
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diseases are contributing factors to stroke and dementia 

[45, 46]. It has also been proposed that ePVS is relevant 

to the development of neurodegenerative disease [47]. 

In PD patients, periventricular WMH, brain atrophy, 

and BG-ePVSs have been noted to impact motor and 

cognitive functions [16, 26]. A previous study has  

 

 
 

Figure 3. Correlation between BG nPVS burden with 
clinical features and WMH score. (A) Correlation between 

the tremor score and BG nPVSs count; (B) correlation between 
LEDD and nPVSs count of BG; and (C) correlation between WMH 
score and nPVSs count of BG. BG, basal ganglia; nPVs, normal-
sized perivascular space; WMH, white matter hyperintensity; 
LEDD, levodopa equivalent daily dose. 

shown that vascular factors might be involved in the 

pathophysiology of PIGD motor phenotype [48]. 

Postural and gait control involves integration of 

sensorimotor, BG, thalamus and cerebellum circuitries 

[49]. A recent study exploring the association between 

small-vessel diseases and motor symptoms of PD 

showed different clinical association. A close 

association between ePVS in BG and the tremor score, 

as well as between deep WMH and the axial motor 

score were seen [50]. However, this study did not 

explore the correlations with FOG. 

 

The current study demonstrated a link between motor 

phenotypes and BG-nPVS burden. We first showed that 

nPVS burden in the BG was significantly higher in PD 

patients with FOG than those without FOG and the 

control group. The nPVS burden was significantly 

higher in right BG and bilateral BG among the PD 

freezers. Lateralization of the structural and functional 

connectivities in the human brain was reported in 

multiple studies of FOG, and it was noted that FOG was 

strongly related to structural deficits in the right 

hemisphere’s locomotor network [51–54]. Right 

hemisphere PD pathology has been associated with 

more impairments in multiple cognitive domains, 

including verbal recall, semantic verbal fluency, 

visuospatial analysis, and attention span [55]; it is also 

related to slower gait [56] and poorer axial mobility 

[57]. Functional connectivity was reduced within the 

executive-attention network in FOG patients within the 

right middle frontal gyrus [58]. In our study, it is hard to 

conclude whether the lateralization is significant due to 

the small sample size. 

 

We observed a less severe nPVS burden with the initial 

motor phenotype being TD subtype than the non-TD 

subtypes in PD freezers. The negative correlation 

between the tremor score and the nPVS number of BG 

may partially explain why the TD subtype carries a 

better prognosis. Response to levodopa therapy differs 

in PD subtypes, and it is known that axial symptoms, 

i.e. gait and balance tend to be less responsive to 

dopaminergic agents [59, 60]. The higher LEDD dose in 

the freezers and the positive relationship between 

LEDD and BG-nPVS number are consistent with the 

previous observations that poorer levodopa response 

occurs when higher damage to the neurocircuitry is 

evident in the PIGD subtype. 

 

We have shown a positive correlation between WMH 

burden and BG-nPVS. Given the known correlation 

between WMH and gait deficit in PD [11–14], and the 

evolving evidence of BG-ePVSs and motor symptoms 
[36, 37], and cognitive dysfunction [27, 38] in PD, our 

study suggested that increased nPVS in the BG region 

may act as a biomarker of gait decline if this finding 
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holds in a larger study. Whether such changes relate to 

disruptions of the neural circuitry for gait control 

warrants further investigations with structural and 

functional connectivity studies. There was no 

association between CSO nPVS burden and PD motor 

symptoms, which is consistent with previous studies 

that the severity of axial motor impairments was not 

associated with the intensity of the periventricular 

WMH, suggesting certain functional distinctions 

between BG PVS and CSO PVS [61, 62]. Although not 

well studied, nPVS distribution and burden may also 

reflect the similar degenerative processes with ePVS. 

The advance in recent imaging technologies make it 

possible to assess such microstructural changes in vivo, 

especially with high-field MRI scanners. Such 

assessment in relation to clinical parameters can 

potentially serve as biomarkers to monitor disease 

progression and more precisely differentiate disease 

phenotypes. 
 

The strengths of our study include application of a 

novel tool to assess a potential imaging marker for PD. 

Although the literature on PVS in PD are growing, and 

there are more evidence to show the link between 

higher BG PVS burden and future cognitive decline 

[38] and motor manifestations [36]; using high 

resolution 7T MRI to compare the distribution and 

volume of nPVS in BG, and identifying how these 

parameters correlate with motor phenotype in PD is 

novel. We established a method and identified the role 

of nPVS in a specific group of PD patients, with a focus 

on the most disabling motor symptom, FOG. With 

technology advancing rapidly, building on knowledge 

and expertise with better imaging tools will aid further 

development in the field. We speculate that the research 

work with 7T MRI scanners will bring new insights, 

and soon add new knowledge to clinical practice. This 

proof of concept study encourages further investigation 

in future large-scale studies when 7T MRI scanners are 

more readily available. There are some limitations. This 

is a single-centered proof of concept study with 

relatively small sample size. Further, this study has a 

focus on FOG since it is one of the most disabling 

symptoms in PD and the mechanism is not fully clear. 

Due to these factors, we cannot extrapolate the findings 

to all PD patients, or explore the sex differences. Future 

large prospective studies will provide more insight to 

further investigate the utility of 7T MRI in evaluating 

nPVS as an imaging biomarker for disease phenotyping 

and trajectory. 

 

CONCLUSIONS 
 

We proposed a method using a high resolution 7T MRI 

to evaluate nPVS in BG to provide a potential imaging 

marker for predicting gait impairment in PD. The 

current study demonstrates that the nPVS burden 

correlates with the progression to FOG in PD patients, 

but the distribution and burden of nPVS may differ in 

people with or without tremor as initial motor 

presentation. High resolution 7T MRI is a sensitive and 

reliable tool to evaluate BG-nPVS, and may be a useful 

imaging marker for predicting gait impairment that may 

evolve into FOG in PD. 

 

MATERIALS AND METHODS 
 

Study participants 

 

Twenty PD patients with FOG, 10 FOG(TD), 10 

FOG(TD-), 10 PD(FOG-), and 10 age- and sex-

matched HCs were recruited from the Department of 

Neurology of Sir Run Run Shaw Hospital (Table 1). 

The study was approved by the ethic committee of Sir 

Run Run Shaw Hospital of Zhejiang University School 

of Medicine (Ethics No. 20200908-30). All patients 

were diagnosed with PD by a movement disorders 

neurologist based on the UK Parkinson’s Disease 

Society Brain Bank criteria [63], and FOG was defined 

as a score of one or more on item 3 of the New FOG 

questionnaire (NFOG-Q) [64] or by history and 

examination by two experienced movement disorders 

neurologists. All participants were examined by 

experienced neurologists with a full neurological 

examination. Patients with gait issues secondary to 

visual impairments, sensory ataxia, and orthopedic 

issues were excluded. We also excluded patients with 

atypical Parkinsonism. All participants with moderate 

to significant small vessel disease were excluded, and 

HCs reported no history of neurological or psychiatric 

disorders. Clinical assessment included Unified 

Parkinson’s Disease Rating Scale (UPDRS) for PD 

motor symptoms and NFOG-Q for FOG severity, 

respectively. Cognitive function and mental health 

were evaluated using Mini Mental State Examination 

(MMSE), HAMD and HAMA. LEDD was calculated 

[65]. Other inclusion criteria of the study included 

disease duration ≥ 5 years, and Hoehn-Yahr stage < 4. 

Patients with significant cognitive deficits that prevent 

them from signing consent, and motor symptoms that 

were secondary to other etiologies were excluded. 

Based on the initial motor phenotypes, PD-FOG 

patients were divided into two groups, FOG(TD) and 

FOG(TD-) (PIGD and indeterminate) [4]. Patients’ 

motor function was assessed during the defined off-

medication state after dopaminergic medications were 

on hold for more than 12 hours. Repeat motor 

examination was performed after patients reported ON 

with a supra-ON dose of LED (150% of the regular 

morning dose in Levodopa/carbidopa formula). 

Cognitive examination and other questionnaires were 

acquired during ON state. 
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MR imaging acquisition and analysis 

 
MR images were acquired with a 7T Magnatom 

research system (Siemens Healthcare, Erlangen, 

Germany) with a T2-weighted turbo spin echo (TSE) 

sequence (voxel size: 0.5 × 0.5 × 2.4 mm3, TR = 7000 

ms, and TE = 66 ms), and two rapid gradient echoes 

(MP2RAGE) sequence (voxel size: 0.7 × 0.7 × 0.7 

mm3, TR = 5000 ms, TI1/TI2 = 900/2750ms, TE = 2.3 

ms, α1/α2 = 5°/3°). The nPVS burden, nPVS number 

and volume, were calculated with the axial T2-weighted 

TSE images via ITK-SNAP Software version 3.8 

(http://www.itksnap.org/) by a neurologist blinded to 

the participant’s diagnosis and clinical features. For 

nPVS volume assessment, the border of each nPVS in 

the chosen slice was drawn manually. The nPVS 

volumes within the border were calculated 

automatically by the toolbox. The number of nPVSs 

were counted in the BG, thalamus, midbrain and CSO 

regions (Figure 1). For BG, thalamus, and CSO, nPVSs 

were assessed on the slice unilaterally with the highest 

number for left or right side, followed by the sum of 

both sides. We then assess a single slice with the 

highest total nPVS count. For midbrain, given it is a 

small structure, nPVSs were counted within all slices 

showing midbrain. A 4-point visual rating scale (0 = no 

PVSs, 1 = PVSs < 10, 2 = 11-20 PVSs, 3 = 21-40 PVSs, 

4 = PVSs > 40) were used to grade the severity of PVS 

[66]. PVSs severity was then assessed using a semi-

quantitative scale (none/mild = 0/1, moderate = 2, 

frequent/severe = 3/4) [43]. All patients were included 

for test-retest reliability testing. The WMH burden for 

all participants was assessed by using a semi-

quantitative rating scale [67]. 

 
Statistical analysis 

 
Statistical analysis was performed with SPSS statistics 

(Version 22, IBM Corporation, Armonk, NY, USA). 

Categorial variables were analyzed with Fisher’s exact 

test. Continuous variables were analyzed with One-

way ANOVA. Correlation analyses between nPVS 

burdens, nPVS number and volume, and clinical 

features, namely MMSE, HAMA, HAMD, UPDRS-III 

and LEDD, were conducted using spearman 

correlation analysis. In addition, we also analyzed the 

correlation between nPVS number of BG and WMH 

burden. P < 0.05 was considered to define statistical 

significance. 

 
With SPSS, intra-class correlation coefficients (ICC) 

was calculated. The ICC analysis assessed the  

test-retest reliability via the 2-way mixed model for 

absolute agreement. It was defined that ICC  

between 0.60-0.74 as good, and above 0.75 being 

excellent. 

Abbreviations 
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