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Working memory is a fundamental feature of biological brains for perception, cognition,
and learning. In addition, learning with working memory, which has been show
in conventional artificial intelligence systems through recurrent neural networks, is
instrumental to advanced cognitive intelligence. However, it is hard to endow a simple
neuron model with working memory, and to understand the biological mechanisms that
have resulted in such a powerful ability at the neuronal level. This article presents a novel
self-adaptive multicompartment spiking neuron model, referred to as SAM, for spike-
based learning with working memory. SAM integrates four major biological principles
including sparse coding, dendritic non-linearity, intrinsic self-adaptive dynamics, and
spike-driven learning. We first describe SAM’s design and explore the impacts of critical
parameters on its biological dynamics. We then use SAM to build spiking networks to
accomplish several different tasks including supervised learning of the MNIST dataset
using sequential spatiotemporal encoding, noisy spike pattern classification, sparse
coding during pattern classification, spatiotemporal feature detection, meta-learning
with working memory applied to a navigation task and the MNIST classification task,
and working memory for spatiotemporal learning. Our experimental results highlight the
energy efficiency and robustness of SAM in these wide range of challenging tasks. The
effects of SAM model variations on its working memory are also explored, hoping to
offer insight into the biological mechanisms underlying working memory in the brain.
The SAM model is the first attempt to integrate the capabilities of spike-driven learning
and working memory in a unified single neuron with multiple timescale dynamics.
The competitive performance of SAM could potentially contribute to the development
of efficient adaptive neuromorphic computing systems for various applications from
robotics to edge computing.

Keywords: spike-driven learning, spiking neural network (SNN), working memory, meta-learning, dendritic
processing, neuromorphic computing
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INTRODUCTION

The fast and robust working memory is a fundamental ability of
the brain, which has been extensively explored by neuroscientists
due to its vital roles in cognition (Nakazawa et al., 2003;
Mizuseki et al., 2012; Alme et al., 2014; Taghia et al., 2018).
In the field of neuroscience, research findings have revealed
that working memory is the capability of maintaining and
manipulating information over short time periods, which plays
a vital role in accomplishing many cognitive tasks (Goldman-
Rakic, 1995; Fuster, 1997). This ability of the brain to include
working memory in their learning has been mimicked in artificial
intelligence and deep learning, e.g., through the long short
term memory (LSTM) model and its variants (Pulver and Lyu,
2017). In deep learning, one can explain the neural mechanisms
and learning processes for performing complicated tasks (Vogt,
2018). However, deep neural networks are putative to be power-
hungry and highly computationally intensive, which renders
them unsuitable for low-power systems with online learning
capability. Although efforts have been invested to solve these
problems, there is still a huge gap in efficiency and cognitive
abilities between the current deep learning models and their
biological counterparts. As a result, it is in high demand to
develop brain-inspired, energy-efficient spiking neural networks
(SNNs) that may bring us closer to the capabilities of the brain in
learning with working memory.

Inspired by the findings in experimental neuroscience, SNNs
are presented to harness the advantages of biological neural
systems (Dora et al., 2018; Liu and Yue, 2018; Yu et al., 2018,
2020; Lobo et al., 2020; Wang et al., 2021). In addition, the
concept of SNNs facilitate the development of neuromorphic
systems, such as Loihi (Davies et al., 2018), LaCSNN (Yang
et al., 2018a), Tianjic (Pei et al., 2019), and Braindrop (Neckar
et al., 2018). In order to reproduce the dynamical characteristics
of biological neurons in processing spikes, various spiking
neuron models such as Hodgkin-Huxley (Hodgkin and Huxley,
1952; Izhikevich, 2003), leaky integrate-and-fire (LIF) (Burkitt,
2006), and spike response model (Gerstner, 2008) are developed.
These models differ greatly in incorporating the biological
details of neural dynamics. Nevertheless, most SNNs use the
point neuron models, which are not able to take advantage of
the neuronal morphological properties, such as dendritic non-
linear processing. Neuroscience research has revealed that the
spiking activities of neural dendrites can change the integration
of synapses (Llinás et al., 1968; Wei et al., 2001; Sjostrom
et al., 2008), providing dendrites with powerful network-level
computational capabilities. For example, neural dendrites play
significant roles in coincidence detection and temporal sequence
detection (Larkum et al., 1999; Poirazi and Papoutsi, 2020). In
addition, physiological experiments have shown that dendritic
signals play critical roles in brain functions, such as spatial
navigation, perception processing, integration of sensory and
motor input, and motor learning (Fu et al., 2012; Lavzin
et al., 2012; Xu et al., 2012; Takahashi et al., 2016). Therefore,
researchers have begun to focus on the application of dendritic
computing in SNN modeling. Guerguiev et al. (2017) presented
an SNN learning model with segregated dendrites and applied

it to classification of the MNIST dataset. Urbanczik and Senn
(2014) presented an SNN model based on learning with
dendritic spike prediction. Their work provides a novel three-
factor learning rule based on dendritic spiking activities. Many
other works have also shown that dendritic processing can be
fundamental to SNN modeling for efficient information coding
and learning (Bar-Ilan et al., 2013; Lovett-Barron et al., 2014;
Urbanczik and Senn, 2014; Schiess et al., 2016; Bono and
Clopath, 2017; Guerguiev et al., 2017; Haga and Fukai, 2018).
Detorakis et al. (2018) presented the neural and synaptic array
transceiver (NSAT), a neuromorphic computational framework
for efficient and flexible embedded learning with spiking
dendrites. It can support different kinds of tasks, such as event-
based deep learning, event-based contrastive divergence for
supervised learning and voltage-based learning rule for sequence
learning. Therefore, a new comprehensive model may include
dendritic processing.

In addition, previous SNN models mostly rely on learning
algorithms and ignore the intrinsic adaptability of spiking
neurons. One of the most essential internal self-adaptive neuronal
mechanisms is spike-frequency adaption, which plays an essential
role in various types of cognitive functions, especially working
memory (Fitz et al., 2020). Spike-frequency adaption, which
reduces the excitability of a spiking neuron, may enhance the
computational power of SNNs by endowing them with short-
term memory capability. Although deep learning models with
memory, such as LSTM, have shown great learning performance
(Zia and Zahid, 2019), they are hand-crafted and cannot explain
how biological networks in human brain can achieve very
high performance on cognitively demanding tasks that require
integration of neural information processing from the recent
past into current processing. Due to the importance of having
working memory for learning complex tasks, Bellec et al.
(2018) presented the LSNN model with long short-term working
memory capability for spike-based learning to learn, which uses
spike-frequency adaptation for threshold adjustment along with
learning process.

In this article, we present a novel biologically plausible
spiking neuron model, called self-adaptive multicompartment
(SAM), which integrates non-linear dynamics of spiking neurons
with two important aforementioned features, i.e., neural self-
adaption and dendritic non-linear processing capability. In
addition, SAM includes sparse coding and spike-driven learning,
which are two other important features of biologically plausible
neural network models. Sparse coding enables low-power
computation in the brain, and is promising to deliver the
same advantage in neuromorphic systems. Spike-driven learning
uses the timing and rate of spikes to govern synaptic weight
changes, which is believed to be the way in which information
is processed in the brain.

We apply SAM in a simple recurrent SNN architecture
for a series of learning tasks, including supervised learning of
the MNIST dataset using sequential spatiotemporal encoding,
noisy spike pattern classification, sparse coding during pattern
classification, spatiotemporal feature detection, meta-learning
with working memory applied to a navigation task and
the MNIST classification task, and working memory for
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FIGURE 1 | Morphological structure of a neuron with dendrites, which inspires the design of the SAM model. (A) Biological neuron with dendrites. (B) The SAM
neuron model.

TABLE 1 | Parameter settings of the SAM model.

Parameter Value Parameter Value

Rm 1 � Re
m,Ri

m 1 �

τv 20 ms Vinh, Vexc 0 mV

dinput, diinput, deinput 5 ms drec, direc, derec 5 ms

η 1.8 τ0 0.01

τa 700 ms ginh, gexc 1 nS

spatiotemporal learning. The main contributions of this work are
as follows:

1) A novel neuronal model, SAM, is introduced for
efficient learning in SNN architectures. Due to its
simplified computational integrate-and-fire form, SAM can
be efficiently implemented in both software and hardware.
2) We propose a sparse, SAM-based recurrent SNN
architecture, along with spike-driven learning algorithms in
supervised and meta-learning frameworks.
3) The learning performance of the SAM-based SNN
model is evaluated on a broad range of learning tasks,
including classification of the sequential MNIST dataset,
spatiotemporal spike pattern classification, spatiotemporal
feature detection, meta-learning in agent navigation tasks,
and meta-learning in MNIST classification.
4) We demonstrate that SAM has spatiotemporal working
memory for a store and recall task, which has been shown
in a few previous SNN models (Pals et al., 2020; Kim and
Sejnowski, 2021).

Overall, the proposed SAM model provides a new perspective
for better understanding the computational principles of learning
with working memory in human brain, especially from the
neuron-level point of view. Such understanding is helpful
for bridging the gap between microscopic neuronal level and
macroscopic network level in the field of neuroscience.

The remainder of this article is structured as follows. Section
“Materials and Methods” introduces SAM, as well as the
proposed SNN architecture and learning algorithm. Section
“Experimental Results” presents the experimental results. And
finally, the discussions and conclusions are proposed in sections
“Discussion” and “Conclusion,” respectively.

MATERIALS AND METHODS

Self-Adaptive Multicompartment Neuron
Model
Previous studies have revealed that the precise timing and
location of active dendrites can significantly influence neuronal
functions. While dendritic excitation can drive action potential
spiking, dendritic inhibition serves as an opposing force to
gate excitatory activities (Grienberger et al., 2017; Muñoz
et al., 2017; Poleg-Polsky et al., 2018; Ranganathan et al.,
2018). Figure 1A shows the morphological structure of
a biological neuron, in which dendrites deliver excitatory
and inhibitory inputs from different paths, simultaneously.
Figure 1B shows the proposed SAM neuron model. The
soma of the neuron has the spike adaptation mechanism,
which can vary the threshold according to the neuron’s firing
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FIGURE 2 | Network architecture for learning and memory based on the proposed SAM model. This architecture is comparable to a two-layer network of point
neurons. In the hidden layer, dendrites and soma of different neurons are randomly connected with lateral inhibitory synapses. The gray circles in the input and
output layers represent the input and output spiking neurons, respectively, which are not SAM neurons. The input and output coding styles are determined based on
the tasks, which will be described in the section of experimental results.

pattern. Inspired by this morphological structure of biological
neurons, we proposed the SAM neuron model. SAM has
three compartments, including two dendrite and one soma
compartments. It utilizes the spatial layout of different dendritic
compartments to receive excitatory and inhibitory inputs.
It also uses dendritic and somatic compartments to receive
and send spikes, respectively. Compared with conventional
point neuron models, the non-linear information processing
capability of the active dendrites in SAM can enhance the
learning capability of the low-resolution synaptic patterns
(Cazé and Stimberg, 2020).

The membrane potentials of soma and dendrite
compartments evolve using the following formulas:

τvV̇j (t) = −Vj (t)+ RmIj (t)+ ginh
(
Vden,i
j (t)− V inh

)
+ gexc

(
Vden,e
j (t)− Vexc

)
τvV̇den,i

j (t) = −Vden,i
j (t)+ RimI

i
j (t)

τvV̇den,e
j (t) = −Vden,e

j (t)+ RemI
e
j (t)

(1)

where τv represents the membrane time constant and Rm
represents the membrane resistance of soma. Remand Rimrepresent

the membrane resistance of the excitatory and inhibitory
dendrites, respectively. Variables V(t), Vden,i(t), and Vden,e(t)
are the membrane potentials of soma, inhibitory dendrite and
excitatory dendrite, respectively. The parameters ginh and gexc
represent the synaptic conductance of inhibitory and excitatory
dendrites, respectively. The parameters Vexc and Vinh represent
the reversal membrane potential of excitatory and inhibitory
dendrites, respectively. Neuron index j represents the jth neuron
to be updated, and it emits a spike at time t when it is currently
not in a refractory period.

The input current, Ij(t), is defined as the weighted sum of
spikes from external inputs and other neurons as:



Ij(t) =
n∑
j=1

Win
ij αi(t − dinputij )+

n∑
j=1

Wrec
ij βi(t − drecij )

Iij (t) =
n∑
j=1

Wiin
ij αi(t − diinputij )+

n∑
j=1

Wirec
ij βi(t − direcij )

Iej (t) =
n∑
j=1

Wein
ij αi(t − deinputij )+

n∑
j=1

Werec
ij βi(t − derecij )

(2)

where, Win
ij , Wiin

ij , and Wein
ij represent the synaptic weights of

soma, inhibitory dendrite and excitatory dendrite, respectively.
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FIGURE 3 | SAM membrane potential (left plots) and dynamic threshold (right plots) behavior in response to negative and low positive external currents.
(A) I(t) = −0.1. (B) I(t) = 0.01. (C) I(t) = 0.05. (D) I(t) = 0.1.

Wrec
ij , Werec

ij , and Wirec
ij , on the other hand, represent the recurrent

synaptic weights of soma, excitatory dendrite and inhibitory
dendrite, respectively. The constants dinputij , diinputij , deinputij , drecij ,

direcij , and derecij represent the delays of input and recurrent
synapses for soma, inhibitory dendrite, and excitatory dendrite.
The spike trains αi (t) and βi (t) are modeled as sums of Dirac
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FIGURE 4 | Changes of the firing rate and threshold value in response to changes in the external input currents. (A) Somatic firing rate. (B) SAM dynamic threshold
0(t).

pulses, which represent the spike trains from input neurons and
neurons with recurrent connections, respectively.

We discretize the SAM model with a time step1t = 1 ms. The
neural dynamics in discrete time can be, therefore, formulated as:


Vj(t +1t) = µVj(t)+ (1− µ)RmIj (t)+ (1− µ)Vden,i

j (t)

+ (1− µ)Vden,e
j (t)− 0j(t)zj(t)1t

Vden,e
j (t +1t) = µVden,e

j (t)+ (1− µ)RemI
e
j (t)

Vden,i
j (t +1t) = µVden,i

j (t)+ (1− µ)RimI
i
j (t)

(3)

where, µ = exp(−1t/τv). Variable zj(t) represents the spike
train of neuron j assuming values in {0, 1/1t}. The dynamics of
0j(t), representing the firing rate of neuron j, is changed with each
spike, and is defined as:

0j(t) = τ0
j + η · τj(t) (4)

where, η represents a constant that scales the deviation τj(t) from
the baseline τj

0. The variable τj(t) can be formulated as:

τj(t +1t) = λjτj(t)+ (1− λj)zj(t) (5)

where, λj = exp(−1t
/
τa,j) and τa,j represents the adaptation

time constant. If Vj(t) > 0j(t), the SAM neuron omits a spike.
The parameter values of the proposed SAM model are listed in
Table 1.

Self-Adaptive Multicompartment in
Spiking Network Architecture
We apply SAM in a spiking network architecture and test it
in various types of learning tasks. The network architecture
based on the SAM model is illustrated in Figure 2. It contains
three layers, including input layer, hidden layer and output
layer. The encoding schemes of the input and output layers are

selected according to the task to be performed. The blue solid
lines and green dotted lines represent feedforward and lateral
inhibitory synaptic connections, respectively. In the hidden layer,
dendrites and soma of different neurons are connected with
lateral inhibitory synapses, randomly and sparsely. Dendrites
of the SAM model receive the neural information from the
input layer, and soma of the SAM model outputs the spikes to
the output layer.

In the proposed SAM-based SNN architecture, the initial
network weights are set based on a Gaussian distribution Wij∼
w0√
nin

N (0, 1), where nin represents the number of spiking neurons
in the considered weight matrix. N(0,1) represents the zero-mean
unit-variance Gaussian distribution, whilew0 =1t/Rm represents
a weight-scaling factor that depends on the membrane resistance
Rm and 1t. This scaling factor is used to initialize the proposed
network with a realistic firing rate needed for efficient training.

A deep rewiring algorithm is utilized since it can maintain
the sign of each synapse during learning (Bellec et al., 2017).
The sign is therefore inherited from the initialization of the
network weights. As a result, an efficient weight initialization
for the given fractions of inhibitory and excitatory neurons is
required. To do so, a sign ki∈{−1,1} is generated randomly
for neuron i by sampling from a Bernoulli distribution. In
order to avoid exploding gradients, the weights are scaled
to make the largest eigenvalue lower than 1. Thus, a
large square matrix is generated and the required number
of rows with uniform probabilities is selected. This dense
matrix is then multiplied by a binary mask in order to
produce a sparse matrix, as part of the deep rewiring
algorithm, which maintains the level of sparse connectivity
by dynamically disconnecting some synapses and reconnecting
other synapses. In the deep rewiring algorithm used, the L1-
norm regularization parameter is set to 0.01 and the temperature
parameter is set to 0.
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FIGURE 5 | Effects of critical parameters in the SAM model on the saturated threshold value, 0(t). The figures show the comprehensive effects of changes of (A) η

and τ0, (B) Rm and τ0, (C) τv and τ0, (D) η and Rm, (E) τv and Rm, and (F) τv and η.

Spike-Driven Learning of the
Self-Adaptive Multicompartment-Based
Spiking Neural Network Model
In conventional ANN models, the gradients of the loss function
are obtained with respect to the network weights using
backpropagation. Nevertheless, the backpropagation training
method cannot be used directly in SNNs because of the non-
differentiability of the spiking outputs. Gradients are required to
be propagated either through continuous time or several time
steps if time is discretized. For learning using the SAM model,
a pseudo-derivative method is utilized as presented in previous
studies (Courbariaux et al., 2016; Esser et al., 2016), which can be
formulated as:

dzj (t)
dvj (t)

= kmax
{

0, 1−
∣∣vj (t)∣∣} (6)

where, k = 0.3 (typically less than 1) is a constant that can dampen
the increase of back propagated errors through spikes by using
a pseudo-derivative of amplitude to achieve stable performance.
The variable zj(t) is the spike train of neuron j assuming values
in {0, 1}. The variable vj(t) represents the normalized membrane
potential, which is defined as:

vj (t) =
Vj (t)− 0j (t)

0j (t)
(7)

where, 0j represents the firing rate of neuron j. In order to
provide the proposed network model with the self-learning
capability required for reinforcement learning, the proximal
policy optimization algorithm is utilized (Schulman et al., 2017).
This algorithm is simple to implement and brings the self-
learning capability. The clipped surrogate objective of proximal
policy optimization is defined as OPPO (θold, θ, t, k). The loss
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FIGURE 6 | Effects of the critical parameters in the SAM model on the stable firing rate. The figures show the comprehensive effects of changes of (A) Rm and τ0,
(B) Rm and τ0, (C) τv and τ0, (D) η and Rm, (E) τv and Rm, and (F) τv and η.

function with respect to θ is then formulated as:

L (θ) = −
∑

k<K
∑

t<T O
PPO (θold, θ, t, k)
KT

+µf
1
n

∑
j

∣∣∣∣∣
∣∣∣∣∣
∑

k,t zj
(
t, k
)
− f 0

KT

∣∣∣∣∣
∣∣∣∣∣
2

(8)

where, f 0 represents a target firing rate of 10 Hz and µf is a
regularization hyperparameter. Variables t, k, and θ represent the
simulation time step, total number of epochs, and the current
policy parameter as defined in the previous research (Schulman
et al., 2017). For each training iteration, K = 10 episodes of
T = 2,000 time steps are generated with a fixed parameter θold,
which is the vector of policy parameters before the update as
described in Schulman et al. (2017). In each iteration, the loss
function L(θ) is minimized with one step of the ADAM optimizer

(Kingma and Ba, 2014). This yields an instantaneous weight
change of the form:

1W =
∑
k<K

∑
t<T

∂L (θ)
∂Wx

ij
(9)

where Wx
ij represent {Win

ij , Wiin
ij , Wein

ij , Wrec
ij , Werec

ij , Wirec
ij }.

We apply the reinforcement learning capability of the SAM-
based SNN model in an agent navigation task, as described in
previous studies (Duan et al., 2016; Wang et al., 2016). An agent
is required to learn to find a target in a 2D area, and to navigate to
this target from random positions in this area subsequently. This
task is related to the well-known neuroscience paradigm of the
Morris water maze task to study learning in the brain (Richard,
1984; Vasilaki et al., 2009). In this task, information of the current
environmental state, s(t), and the reward r(t) are received by
the neurons in the input layer of the SAM-based network at
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TABLE 2 | Results of spatiotemporal pattern classification on sequential MNIST.

Model Displayed time (ms) Connectivity (%) #Neurons Dendrites (E/I) Mean accuracy (%) Maximum (%)

LSTM 1 100 128 – 79.8 98.5

LSTM 2 100 128 – 48.2 98.0

RNN 1 100 128 – 71.3 89.0

RNN 2 100 128 – 30.0 67.9

RSNN 1 12 220 – 60.9 63.3

RSNN 2 12 220 – 34.6 51.8

SWD 1 12 220 – 76.5 77.8

SWD 2 12 220 – 72.3 74.6

LSNN 1 12 220 – 94.2 94.7

LSNN 2 12 220 – 93.8 96.4

LSNN 1 100 220 – 92.0 93.3

LSNN 2 100 220 – 90.5 93.7

SAM 1 12 220 1.0/0.6 95.1 98.4

SAM 2 12 220 1.0/0.6 94.85 98.4

SAM 1 50 220 1.0/0.6 94.6 97.7

SAM 2 50 220 1.0/0.6 94.35 97.7

SAM 1 80 220 1.0/0.6 94.1 99.2

SAM 2 80 220 1.0/0.6 94.25 98.4

SAM 1 12 220 0.6/0.1 94.1 98.4

SAM 2 12 220 0.6/0.1 93.35 97.7

The bold values means the results of this model.

each time step. The environmental state s(t) is represented by
the coordinate of the agent’s position. The position coordinate is
encoded by input neurons according to a Gaussian population
rate code. A coordinate value is assigned to each neuron in the
input layer with the firing rate of rmax exp(−100(ξ i-ξ )2), where
ξ i and ξ represent the actual coordinate value and the preferred
coordinate value, rmax is set to be 500 Hz, and the instantaneous
reward r(t) is encoded by two groups of input neurons. Neurons
in the first group spike synchronously when a positive reward
is received, and the second group spike when the SAM model
receives negative reward. The output of the SAM network is
represented by five readout neurons in the output layer with
the membrane potentials λi(t). The action vector ζ(t) = [ζx(t),
ζy(t)]T , which is used to determine the movement of an agent
in navigation tasks, is calculated from a Gaussian distribution
with mean µx = tanh[λ1(t)] and µy = tanh[λ2(t)], and variance
8x = σ[λ3(t)] and 8y = σ[λ4(t)]. The output of the last readout
neuron λ5 is calculated to predict the value function µθ (t).
It predicts the expected discounted sum of the future rewards
�(t) = 6t ′>tγ

t ′−tω(t’), where γ = 0.99 represents the discount
factor and ω(t’) represents the reward at time t’. In addition, small
Gaussian noise with mean 0 and standard deviation 0.03 is added
to the SAM model at each time step. Based on our experiments,
adding noise improves our model’s performance in navigation.

EXPERIMENTAL RESULTS

In this section, we first examine the dynamical properties
of the proposed SAM model. We consider the dynamical
activities and threshold variable of the SAM model under
different levels of external currents, and investigate the impacts
of critical parameters on the dynamical characteristics of

SAM. Additionally, we show more simulation results, including
supervised learning on sequential spatiotemporal patterns in
different tasks and transfer learning with memory using SAM.
Next, we examine the meta-learning capability of SAM in a
reinforcement learning framework for a navigation task. Finally,
we explore the high-dimensional working memory capability of
SAM and the effects of critical settings on memory performance.

Dynamical Analysis of Self-Adaptive
Multicompartment Model
In the first analytical experiment, we evaluate the evolution of
membrane potentials of soma as well as excitatory/inhibitory
dendrites, and investigate the variation in threshold in response
to different levels of the external stimulation. As shown in
Figure 3A, when the external current is negative, the somatic
membrane potentials is inhibited and there is no spike and no
change in the threshold variable 0(t). As shown in Figures 3B–
D, the dynamic changes along with the external input current
increasing. It should be noted that the external current to soma
only exists in the recurrent connection, and the soma cannot
receive the external current from the feedforward pathway. In
contrast, the dendrites can receive the feedforward external
current. The detailed connection is shown in Figure 2. It is
useful and meaningful for further separate the information flow
between recurrent and feedforward pathways. With the increase
in the input current, the amplitude and the firing rate of the
neuronal soma are both increased along with0(t). The amplitude
of the excitatory and inhibitory dendrites are also increased when
the stimulation current is increased.

In our second analytical experiment of the dynamics of SAM,
we examine the relationship between the external input current
and the steady-state spiking rate or saturated threshold value, as
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FIGURE 7 | The performance investigation of learning accuracy and power efficiency of SAM compared to state-of-the-art sequential encoding methods.

FIGURE 8 | Robustness of the SAM and RSNN models on spatiotemporal
spike pattern classification. We use RSNN for comparison because the
proposed model is based on the RSNN architecture, with the spiking neurons
replaced by the SAM neuron model. The RSNN architecture is based on
reference (Pyle and Rosenbaum, 2017).

shown in Figure 4. Figure 4A depicts the change in the firing
rate of the SAM soma in response to external currents including
only excitatory, only inhibitory and simultaneous excitatory and
inhibitory inputs. It shows that inhibitory input depresses the
firing activity of the soma, while the increase in the external
excitatory current up to 0.65 nA increases the firing rate until it
saturates at 135.5 Hz. The firing activity saturates at 0.77 nA when
simultaneous inhibitory and excitatory currents are applied. The
evolution of the dynamic threshold 0(t) is also shown with
respect to the change in the input currents, in Figure 4B. The
saturation value of threshold 0(t) equals to 0.1585 and the
inflection points with excitatory and simultaneous inputs happen
at 0.65 and 0.78 nA current values, respectively.

The effects of the critical parameters of the SAM model on
the saturated threshold value and steady-state spike frequency
are further explored in Figures 5, 6. These parameters include
η, τ0, τv, and Rm. Here, we examine SAM’s spiking behaviors
by changing two of these parameters while setting the others to
the standard value as listed in Table 1. Our results reveal that
the increase of η, τ0 and Rm will increase the value of saturated
threshold 0(t) as shown in Figures 5A,B,D. 0(t) reaches around
0.2 when τ0 = 0.15, Rm = 1.25, or η = 2.4. When τ0 = 0.02,
Rm = 0.55, or η = 1, the value of 0(t) will be decreased to
0.05. However, 0(t) increases when τv decreases as shown in
Figures 5C,E,F. This means that there is a positive correlation
between the saturated threshold 0(t) and the critical parameters
η, τ0, and Rm. In addition, the relationship between the saturated
threshold 0(t) and τv is negative. Figure 6 demonstrates the
impact of the critical parameters on the steady-state spiking
frequency. As shown in Figures 6A,C,F, an increase in η, τ0,
and τv decreases the spiking frequency of SAM. By contrast,
the spiking frequency will increase in response to an increase
in Rm, as shown in Figures 6B,D,E, which demonstrates a
positive correlation between the SAM spiking frequency and
Rm.

The above experiments on dynamical behaviors of SAM
provide us with a more understanding of the mechanisms
through which SAM’s intrinsic parameters control its dynamical
characteristics.

Supervised Learning of the MNIST
Dataset Using Sequential
Spatiotemporal Encoding
SNNs are believed to be able to produce brain-like cognitive
behaviors because spikes are able to encode spatiotemporal
information. By contrast, most ANN models lack timing
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FIGURE 9 | The network dynamics during sequential spatiotemporal learning task of spike patters. (A) The raster plot of the SAM neurons in the hidden layer.
(B) The adaptive threshold values of the SAM model evolving with time in the hidden layer.

FIGURE 10 | Performance analysis in a spatiotemporal feature detection task.
(A) Images in the feature detection task. (B) Performance comparison
between SAM and RSNN models.

dynamics. Here, we show how a SAM-based SNN outperforms
existing ANNs on the classification of the MNIST.

In the experiments, the pixels of an image in the MNIST
data are input sequentially to the SAM-based SNN in 784 time
steps, because each image has 28 × 28 = 784 pixels. The input
encoding method assigns a particular threshold to each input
neuron that receives its corresponding pixel grayscale value.
The network output is determined by the average of the output

readout over 56 time steps after the digit input. The network is
then trained by minimizing the cross entropy error between the
label distributions and the softmax of the averaged readout.

As shown in Table 2, the mean classification accuracy of
the SAM-based SNN model on MNIST outperforms the LSTM,
a recurrent neural network (RNN), and a recurrent spiking
neural network (RSNN) models in the previous studies (Greff
et al., 2016; Huh and Sejnowski, 2017; Sherstinsky, 2020).
The parameter numbers of these different models are set to
keep the number of parameters in the SAM and LSTM/RNN
models constant. It is worth noting that, we have not used
the convolution neural network because it does not have
the recurrent architecture and cannot explain and have the
capability of working memory. The best performance is achieved
when the SAM-based SNN model uses rewiring with a global
12% connectivity by optimizing a sparse network connectivity
structure. The result suggests that only part of the parameters
in the SAM-based model is finally utilized in comparison
with the RNN and LSTM networks. Besides, it reveals that
twice longer input duration (2 ms) has significantly lower
destructive impact on the learning performance of the SAM
model compared to other models. This can be attributed to
the SAM model working memory capability, which can store
and process more information. In addition, we conduct the
ablation studies by removing the dendritic part of the model,
called SAM without dendrites (SWD) model. We compare
the proposed SAM model with the LSNN model presented
by Bellec et al. (2018) and the SWD model. Table 2 shows
that the learning accuracy of the proposed SAM model is
superior to the LSNN model and the SWD model. The reasons
can be summarized in two aspects. The spiking dendrites
provides powerful non-linear computation capability to deal
with the information flow, which is useful for the learning
process. In addition, the spiking dendrites in the SAM model
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FIGURE 11 | Meta-learning based on the SAM model in a navigation task. The orange points show the navigation path during the task. (A) Before learning.
(B) During learning. (C) After learning. (D) Destination reached per iteration during learning. (E) The navigation loss function L(θ) during learning. (F) The average path
length to the destination during learning.

helps to separate the information flow in the feedfward and
recurrent pathways. Therefore, this architecture solves the
credit assignment problem in these two pathways during the
learning process.

As the next step, we studied the energy efficiency of our
proposed SAM-based SNN when classifying MNIST data using
sequential spatiotemporal encoding. In neuromorphic hardware,
only active connections in a SNN model induce a synaptic
operation (SynOps). Thus, the number of SynOps for a given
accuracy can be used to demonstrate the learning efficiency
and potential energy consumption. It is worth noting that,
one SynOps in neuromorphic systems can potentially consume
significantly lower power compared to a multiply-accumulate

(MAC) operation in a general purpose digital processor (Yang
et al., 2021c).

Figure 7 shows that the SNN with our proposed SAM
model has fewer SynOps compared to RSNN and segregated
dendritic learning (SDL) model proposed by Guerguiev et al.
(2017). The figure depicts that the SAM-based model can reach
the same accuracy as the SDL model with almost 10M fewer
SynOps. It also shows that almost 30% higher accuracy can be
obtained by the SAM model in comparison with an RSNN model
with the same number of SynOps. These results confirm the
significant energy efficiency of our proposed SAM-based model
compared to state-of-the-art models using sequential encoding
for classification of the MNIST data. This is mainly because
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FIGURE 12 | Meta-learning capability of the proposed SAM model in the test of five paths. (A) Destination reached per iteration in five paths. (B) Average path
length in five paths.

the SDL model uses a rate-based encoding strategy, while the
SAM model uses a spatiotemporal approach to encoding neural
information. This encoding induces fewer spikes, which helps
SAM achieve a lower power consumption and better accuracy.
It is worth noting that a network accuracy-based adjustment
of the sensitivity in the error-coded compartment may further
improve the learning accuracy of our model. In this study,
however, we focused on the methodology rather than pursuing
higher accuracy. Modifications and more complicated learning
principles, such as adaptation of the momentum and learning
rate, are left for future studies. As presented in Equations (3)–(5),
the SAM model is required to compute the membrane potential
and update the value, which seems to be more complicated than
conventional LSTM. However, the SNN has a superior advantage,
i.e., event-driven computation. It means that the spiking neurons
will be triggered until the events accumulated to a certain level.
The SNN model is sparsely coded, which means that the synaptic
events within and communicated with the SNN model is sparse
enough. In contrast, the LSTM model is frame-driven, which
means the model has to update in each frame. Therefore, in
previous work, Neftci et al. (2017) has presented the comparison
with the number of MAC operations required for reaching a

TABLE 3 | Comparison with the related SNN model.

Model Neuron
number

Connectivity Goal
reached
number

Convergence
period

LSNN 400 20% 25 ∼300 k

SAM 220 12% 112 ∼30 k

given accuracy with the number of SynOps in the spiking network
for the MNIST learning task based on their dendrite-based
learning algorithm for SNN with spiking dendrites. It suggests
that a SynOp in dedicated hardware potentially consumes much
less power than a MAC in a general purpose digital processor.

Noisy Spike Pattern Classification
In another experiment, we study the ability of the SAM model in
discriminating different spatiotemporal spike patterns. For this
purpose, we designed a five-class classification task and construct
one template spike pattern for each category. Each template is
randomly generated and kept fixed thereafter. Each spike pattern
contains neurons firing certain numbers of spikes across time. To
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FIGURE 13 | Meta-learning capability of SAM model on sequential MNIST data set.

investigate the effect of noise, spike patterns of each category are
then instantiated by adding a jitter to the template pattern, which
means each spike of the pattern is jittered by a random Gaussian
noise with zero mean and an standard deviation of δ = 500 or
800 ms. As shown in Figure 8, SAM is much more robust than
the RSNN. This is mainly because the self-adaptive mechanism
of the SAM model enables more robustness during learning. In
addition, the dendritic non-linearity endows the SAM neuron
model with better learning performance in the presence of noise.

Sparse Coding During Pattern
Classification
Sparse coding is a representative feature of SNN models. Figure 9
shows the raster plot of the proposed SAM-based SNN model
in the classification task of spike patterns. These patterns are
encoded by population coding through the firing probability
of 80 input neurons. An additional input neuron is activated
when the presentation of the spike patterns are finished to
prompt an output from the SAM network. The raster plot of
the somatic activities in the hidden layer, which includes 220
neurons, after training are plotted in Figure 9A when the input
pattern is sequentially presented. It reveals that the SAM-based
SNN model processes the neural information using very sparse
neuronal spikes, which results in low power consumption on
neuromorphic hardware. The dynamics of the firing thresholds
of SAM neurons in the hidden layer are plotted in Figure 9B.
During the learning of the sequential spike patterns, the adaptive
thresholds are adjusted and stabilized at a final saturation level.

Feature Detection Capability of
Self-Adaptive Multicompartment
Previous studies have shown that SNN models can detect features
from background activities by using a spike-based processing

strategy (Masquelier et al., 2008). Here, we examine SAM’s ability
in a feature detection task. In this task, we created eight image
patterns each representing one direction pattern, including 0◦,
22.5◦, 45◦, 67.5◦, 90◦, 112.5◦, 135◦, and 157.5◦. Each image
contains 729 (27× 27) pixels, of which 10% are randomly selected
to receive Gaussian noise as shown in Figure 10A. Figure 10B
shows the learning performance of the SAM and RSNN models
in detecting the features in each of these patterns. The figure
shows that SAM capability in spike-driven learning with memory
leads to successful detection of features in different patterns. In
addition, the results suggest that the SAM model is more robust
in detecting patterns with features contaminated by background
noise and when 40 or 80% of spikes are deleted randomly with a
defined probability, to train neurons for the spike deletion noise.
The performance of the proposed SAM model is significantly
improved as compared to the conventional RSNN model, because
the dendritic non-linear processing mechanism can better learn
the information in the input spike signals. The spiking patterns
are also learned and stored by the self-adaptation mechanism of
the soma in the SAM model, which adapts to the spatiotemporal
features with different types of noise.

Self-Adaptive Multicompartment Model
for Meta-Learning With Working Memory
In this section, we show that SAM can be used for meta-learning.
We demonstrate this by applying SAM to two types of meta-
learning tasks, which are meta-learning in a navigation tasks
and meta-learning for MNIST classification. Both tasks require
the meta-learning capability of the SNN, which means their
performance depends on the guidance of the past experience.

We first consider the learning performance of the SAM model
in meta-learning of a navigation task. Figure 11 shows the meta-
learning capability of our proposed SAM model for flexible
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planning in the navigation task. A virtual agent is simulated
and shown as a point, in the simulation environment of a 2D
arena. The agent is controlled by the SAM-based SNN model.
At the beginning of an episode and after the agent reaches a
destination, the position of the agent is set randomly with a
uniform probability within the search arena. At each time step,
the agent selects an action by generating a small velocity vector
of the Euclidean norm. After the agent reaches the destination,
it receives a reward of 1. Figures 11A–C demonstrate that the
SAM-based agent learns to navigate to the correct destination
point after learning. Figure 11D shows the number of successful
instances of the agent reaching the destination per learning
iteration. Each iteration contains a batch of 10 episodes, and the
weight are iteratively updated across these episodes. The figure
demonstrates that the navigation performance drops between
1,000 and 2,000 iterations, and eventually reaches its max at 3,000
iterations. This trend is also shown in the navigation loss function
L(θ), which reaches zero and remains at zero most of the time
after 300 iterations, as shown in Figure 11E. Finally, the agent
learns to find the shortest path to the destination after learning
the navigation task, as shown in Figure 11F. A fluctuation occurs
in the 1,800th iteration during training, but it quickly converges
to a stable state again. This reveals that the SAM-based agent has
the meta-learning capability in the navigation task because of its
self-adaptive mechanism with dendritic non-linearity to process
input information.

Next, we investigate SAM-based network behavior before,
during, and after meta-learning in another navigation task. In
this task, the start and destination locations are randomly set
to form five paths. The result is shown in Figure 12. Here, the
objective is to maximize the number of destinations reached in
each episode. For that, a family F of tasks is defined according
to the infinite set of possible destination positions. For each
episode, an optimal agent is required to explore until it reaches
and memorizes the destination position, and exploits its previous
knowledge to find the shortest path to the destination. The
training in the first path uses back propagation through time
(BPTT) (Werbos, 1990), with deep rewiring algorithm in the
surrogate objective of the proximal policy optimization (PPO)
algorithm. Figure 12 reveals that an agent based on the proposed
SAM model is able to autonomously navigate based on its
powerful meta-learning capability. Table 3 shows the comparison
between SAM and LSNN model by Bellec et al. Four factors
are considered to be compared, including neuron number,
connectivity, goal reached number and learning convergence
period. As shown in Table 3, neuron number used by SAM
is lower than LSNN, and the connectivity of SAM is more
sparse than LSNN. It results in the lower power consumption
by SAM than LSNN. In addition, the SAM model reaches more
goals than LSNN, demonstrating more powerful meta-learning
capability. Convergence period of SAM is lower than LSNN,
which means SAM can learn more fast in a reinforcement
meta-learning framework. The reasons contain two aspects.
Firstly, the non-linear computation of spiking dendrites helps to
encode the precise location of the agent. Secondly, the pathway
separation by the spiking dendrites of the proposed SAM model
helps to deal with the credit assignment problem, therefore

further improves the learning performance in the reinforcement
learning framework.

The transfer learning capability of the SAM model is also
studied for the MNIST classification. In order to demonstrate this
capability, we divide the sequential MNIST training dataset into
two parts for supervised learning. The first part contains 30,000
images of 0–4 digits, while the second part includes 3,000 images
of 5–9 digits. In the first learning process, the first part of the
MNIST data set is used to train the SAM-based SNN model. After
the first learning process, the second part of the data set is used
for the SAM-based SNN model training, i.e., the second learning
process. Figure 13 shows that the learning performance of the
second learning process is better than the first one. This can be
attributed to the transfer learning capability of the SAM model. In
addition, the figure shows that the SAM-based SNN model in the
first and second learning processes outperforms the conventional
RSNN model. The RSNN model has poor learning performance
in the first learning process. In addition, higher learning speed,
and convergence rate is shown in the second learning process of
the SAM-based SNN model. This result suggests that the SAM-
based SNN model has powerful transfer learning capability in the
learning of spatiotemporal patterns.

Working Memory for Spatiotemporal
Learning
To further test the working memory capability of the SAM
model, we developed a store & recall task with working memory
similar to Wolff et al. (2017). In this task, the SAM-based SNN
model receives a sequence of frames, each represented by 10
train of spikes in a specific period of time, to represent input
#1 and input #2 using input neurons 1–10 and 11–20 spiking
activities, respectively. For instance, the first frame in input
#1 consists of 10 spike trains between 200 and 350 seconds
as shown in Figure 14A. Besides, the figure shows that the
SAM-based SNN input neurons receive random store and recall
commands using neurons 21–30 and 31–40, respectively. The
store command means direct attention to a particular frame
of the input stream. The goal of this task is to reproduce this
frame when a recall command is received. To perform the
store and recall operation, a SNN with 20 SAM neurons in its
hidden layer and 20 output sigmoid neurons is trained. This is
similar to previous research such as Roy et al. (2019). Figure 14
shows a sample segment of a test with the spiking activities
of the SAM neurons at the beginning of the training, which
reveals that the SAM-based SNN cannot accomplish the store
and recall function without training. Here, Figure 14B shows
random spiking activities in the 20 SAM neurons before any
learning, while the activity of the sigmoidal output neurons
(Figure 14C) and the threshold of the 20 SAM neurons show
no specific behavior before learning starts. However, after the
training process is completed and as shown in Figure 15, the
SAM-based SNN can successfully realize the working memory
function. In addition, it shows that the dynamic thresholds
change more consistently after training in the store & recall task.
This kind of working memory exhibited by the SAM model refers
to the activity-silent form of working memory in human brain,
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FIGURE 14 | Working memory capability of the proposed SAM model at the beginning of the training process. (A) Spiking activities of the input neurons for the store
and recall commands as well as the feature vectors #1 and #2. (B) Spiking activities of the SAM model in the proposed SNN architecture. (C) Traces of the activation
of the sigmoidal readout neurons. (D) The temporal evolution of the firing threshold 0j (t) of SAM model.

which has been explored in the neuroscience study by Wolff et al.
(2017).

Critical Parameters of Self-Adaptive
Multicompartment in Working Memory
In this section, we explore the effects of critical parameters on
the working memory performance of the SAM model, when
applied to the store & recall task mentioned in the previous
section. As shown in Figure 16, two values for β, the sum of
Dirac pulses, which represent the spike trains from neurons
with recurrent connections are considered as β = 0.8 and
β = 3. This shows that a high value of β = 3 will decrease
the working memory capability of the SAM model. In addition,
high values of τv, the SAM membrane constant, will also
reduce the working memory performance, significantly. When
the connectivity conductance of the dendrites are decreased to
ge = 0.6 and gi = 0.1, the learning convergence speed is decreased
compared to the original parameter settings of ge = 1.0 and

gi = 0.6. The SAM model with lower values of β and higher
level of the membrane resistance of soma, Rm, will maintain the
memory performance of the original settings. Finally, Figure 16
also shows the SAM model with τv = 10 enhances the learning
convergence speed. Since the membrane constant τv has a
negative correlation with the saturated threshold value and the
stable spiking frequency, it reveals that a higher stable spiking
frequency and a saturated threshold value of the SAM model
will further improve the learning convergence speed in working
memory tasks. In contrast, the lower coupling strength of the
dendrites will decrease the learning convergence speed.

DISCUSSION

A critical open problem in computational neuroscience is to
understand how brains process and learn the neural information
based on not only the current situations, but also the recent
past experience (Lansdell and Kording, 2019). This mechanism
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FIGURE 15 | Working memory capability of the proposed SAM model after training. (A) Spiking activities of the input neurons for the store and recall commands as
well as the feature vectors #0 and #1. (B) Spiking activities of the SAM model in the proposed SNN architecture. (C) Traces of the activation of the sigmoidal readout
neurons. (D) The temporal evolution of the firing threshold 0j (t) of SAM model.

is related to working memory in the field of neuroscience, which
has been revealed to play vital roles in perception, cognition
and learning (Reinhart and Nguyen, 2019). Learning with
working memory has been implemented by LSTM models in the
field of artificial intelligence, but the neuron-level mechanisms
underlying this formulation have not been fully explained by
neuroscience because it is difficult to separate mechanisms of
working memory from the computational principles of the SNN
models. In this article, a novel unified spiking neuron model,
named SAM, for integrating learning with memory is presented.

The proposed SAM model is motivated by two critical
mechanisms in addition to the basic integrate-and-fire neural
principle. These mechanisms include dendritic non-linear
processing, and the self-adaptation properties of spiking
neurons. For the first time, this study considers both the
excitatory and inhibitory dendrites in a single neuron model,
which demonstrates high performance in information processing

and learning in an SNN framework. The critical self-adaptation
mechanism, spike-frequency adaptation, is introduced in
the soma of the SAM model. This adaptation mechanism
provides the capability of long short-term memory for
the proposed model.

SAM presents a cellular mechanism for working memory on
short timescales, where information is stored and maintained
in physiological processes that govern neural excitability as a
function of experience. SAM’s membrane potential dynamics
with neural adaptation mechanism have longer time constants,
as shown in Figure 17. Information coded into spiking activity
is encoded into slow dynamics of membrane potential, which
means writing into memory. Therefore, dynamic threshold of
the somatic membrane act as memory registers that store
real information, and they are the physical address of the
memorandum. Memory traces can persist in the absence of
sustained spiking, excitatory feedback, or synaptic plasticity and
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FIGURE 16 | Investigation of the impacts of the critical parameters on the working memory capability of the SAM model applied to the store-recall task.

are not influenced by membrane reset or the integration of
new information into the membrane state. Because adaptation
dynamics are coupled to the membrane potential of SAM,
memory traces continuously exert an impact on the active
membrane to read from memory. This kind of cycle with
encoding and retrieval between coupled dynamic variables with
different timescales can result in the basis of a neurobiological
read-write memory (Fitz et al., 2020). That is to say, the rapidly
changing membrane dynamics transforms an analog input to
a binary output, and slower neural dynamics with adaptive
threshold provides information storage in the working memory.
Therefore, memory, computation, and learning can be integrated
and implemented within a single neuron by the proposed SAM
model, and the functional distinction is dependent on the
multiple timescales accordingly.

Neuroscience studies have argued that the brain learns the
spiking patterns in a sequential spatiotemporal form, other than
the static formation of the processing strategies by conventional
ANNs (Rolston et al., 2007). To examine this, we investigated the
spatiotemporal learning capability of our SAM model. As shown
in Table 2, SAM has superior learning accuracy on the sequential
MNIST dataset with both 1 ms and 2 ms time delays. In addition,
Figure 7 shows that a lower SynOps number is required by SAM,
when compared to the RSNN model and the SDL model by
Guerguiev et al. (2017). In fact, the SDL model is a representative
work to utilize the dendritic processing in the efficient learning
of SNN models. Our study demonstrates that the self-adaptation
mechanism used in the soma of the SAM model, in addition to
the dendritic processing that is similar to Guerguiev et al. (2017),
can further cut down the number of SynOps produced by the
SNN models, which could be a vital potential mechanism for
the low power consumption of biological brains. Considering

the significantly lower SynOps, SAM can result in lower power
consumption in neuromorphic hardware.

Classification is a common task to examine the learning
capability of an intelligent system. Two categories of
classification tasks were used in this study, including spike
pattern classification and feature detection. Besides, a robustness
test was conducted in these two tasks by adding two types
of noise, namely Gaussian jitter noise and spike deletion
noise. As shown in Figures 8, 10, the proposed SAM model
is robust to different noise types. Since one SAM neuron can
be designed to produce different output spike numbers for
different categories of input spike patterns, it can therefore
enable a single-neuron multi-class classifier. In addition, SAM’s
efficiency and robustness makes it superior to previous model as
a spike-based classifier for real-world classification tasks when
proper encoding strategies are used.

Recent neuroscience studies have revealed that dendritic
processing is critical for spontaneous neuronal sequences for
single-trial learning, pathway-specific gating, shaping neural
plasticity, and fear learning (Bar-Ilan et al., 2013; Lovett-
Barron et al., 2014). Bono and Clopath (2017) investigated
how dendrites enable multiple synaptic plasticity mechanisms
to coexist in a single neuron by implementing biologically
plausible neuron models with dendritic compartments. Their
findings reveal that memory retention during associative learning
can be prolonged in SNNs by containing dendrites. Haga and
Fukai (2018) explored the robust single-trial learning with
plasticity of dendritic-targeted inhibition, which demonstrates
that dendritic computation enables somatic spontaneous firing
sequences for rapid and robust memory formation. Schiess
et al. (2016) demonstrated that the dendrites of cortical neurons
can non-linearly combine synaptic inputs by evoking local
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FIGURE 17 | Neurobiological computation of the SAM model with working memory on multiple timescales, including short timescale of membrane potentials (top
panel), medium timescale of dendritic activities and input spikes (right middle and bottom panels), and long timescale of spike frequency adaptation (left bottom
panel). Sustained neural spiking activity can be considered as a computation form on short timescales. However, physiological processes of the neuronal dendrites
other than the evolving somatic membrane potential provide the mechanism for information on successively longer timescales. The spike-frequency adaptation
mechanism of the soma in the SAM model, has the longest timescales with slower dynamic variables. The functional distinction between memory and computation
is dependent on the multiple timescales of dynamic variables.

dendritic spikes, which show that non-linearity can enhance
the computational power of a single neuron. Inspired by these
studies, as already explained, we designed SAM to contain two
dendritic compartments for excitatory and inhibitory synaptic
inputs. In addition, the neuronal self-adaptation mechanism was
also considered in the proposed SAM model. Previous studies
have revealed that the self-adaptive threshold mechanism could
contribute to the working memory of SNN models (Fitz et al.,
2020). Information is encoded in spike trains and maintained
within memory through sustained spiking activities that are
supported by properly tuned synaptic feedback or neuronal
multistability (Wang, 2001; Zylberberg and Strowbridge, 2017).
By integrating both dendritic dynamics and the self-adaptation
mechanism for working memory into SAM, it performed well
in meta-learning in two complex tasks of agent navigation
and MNIST meta-learning. As shown in Figures 11, 12, the
proposed SAM model shows good performance in autonomous
navigation of intelligent agents. Figure 13 further shows the
meta-learning capability of SAM in MNIST classification,
where the past experience of learning of the first half of
the training set results in faster learning of the second

half of the training set. Working memory for spatiotemporal
learning is a vital mechanisms in human brain for realizing
high-level cognitive functions. The spatiotemporal working
memory capability of SAM model is shown in Figures 14, 15.
It shows that the store-recall task can be completed by
the dynamically changing membrane threshold along with
BPTT learning rule.

Neuromorphic engineering is a promising approach toward
artificial general intelligence. Previous studies have presented
various types of neuromorphic systems (Azghadi et al., 2014,
2020), aiming at both engineering and neuroscience applications
(Hodgkin and Huxley, 1952; Izhikevich, 2003; Azghadi et al.,
2017; Lammie et al., 2018; Neckar et al., 2018; Yang et al.,
2018a,b,c, 2019, 2021a,b; Frenkel et al., 2019; Pei et al., 2019). Due
to the simple integrate-and-fire formation, the proposed SAM
model can be easily implemented on neuromorphic hardware,
which has the advantage of low power consumption. For
instance, current implementations of neuromorphic hardware
use only a few nJ or even pJ for routing a single spike. In our
future research we aim to implement the SAM model on our
LaCSNN neuromorphic system to apply it to various categories
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of applications, including embedded intelligent robots, internet
of things, unmanned aerial vehicles, and edge computing.

CONCLUSION

In this article, we proposed a novel neuron model, SAM, with
learning and working memory capabilities. SAM implements
four essential brain-inspired mechanisms, including sparse
coding, dendritic non-linearity, intrinsic self-adaptive dynamics,
and spike-driven learning. Experimental results showed SAM’s
higher learning accuracy compared to the state-of-the-art models
in supervised learning of the MNIST dataset using sequential
spatiotemporal encoding, noisy spike pattern classification,
sparse coding during pattern classification, and spatiotemporal
feature detection. Furthermore, desired properties such as
robustness, power efficiency, and meta-learning capability of
SAM were demonstrated in two complex task of agent navigation,
and meta-learning of MNIST classification. Working memory
capability of the SAM model was also explored for spatiotemporal
learning, where SAM showed great performance. In addition, we
thoroughly investigated the effects of SAM’s critical parameters
on its working memory performance. Due to its integrate-
and-fire and spike-driven neural architecture, SAM can be
conveniently implemented in neuromorphic hardware and
bring high-performance learning with working memory while
consuming low-power to various applications from intelligent
robots, internet of things, and edge computing, to neuroscience
studies investigating meta-learning and working memory.
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