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Feline immunodeficiency virus (FIV) causes AIDS in the domestic cat (Felis catus) but has not been explicitly
associated with AIDS pathology in any of the eight free-ranging species of Felidae that are endemic with
circulating FIV strains. African lion (Panthera leo) populations are infected with lion-specific FIV strains
(FIVple), yet there remains uncertainty about the degree to which FIV infection impacts their health.
Reported CD4+ T-lymphocyte depletion in FIVple-infected lions and anecdotal reports of lion morbidity
associated with FIV seroprevalence emphasize the concern as to whether FIVple is innocuous or pathogenic.
Here we monitored clinical, biochemical, histological and serological parameters among FIVple-positive
(N=47) as compared to FIVple-negative (N=17) lions anesthetized and sampled on multiple occasions
between 1999 and 2006 in Botswana. Relative to uninfected lions, FIVple-infected lions displayed a
significant elevation in the prevalence of AIDS-defining conditions: lymphadenopathy, gingivitis, tongue
papillomas, dehydration, and poor coat condition, as well as displaying abnormal red blood cell parameters,
depressed serum albumin, and elevated liver enzymes and gamma globulin. Spleen and lymph node biopsies
from free-ranging FIVple-infected lions (N=9) revealed evidence of lymphoid depletion, the hallmark
pathology documented in immunodeficiency virus infections of humans (HIV-1), macaques, and domestic
cats. We conclude that over time FIVple infections in free-ranging lions can lead to adverse clinical,
immunological, and pathological outcomes in some individuals that parallel sequelae caused by lentivirus
infection in humans (HIV), Asian macaques (SIV) and domestic cats (FIVfca).
© 2009 Elsevier Inc. All rights reserved.
Introduction

Pathological conditions associated with lentivirus infection in
human and animal models include immune depletion, oral lesions
caused by opportunistic infections, wasting, renal disease, and
frequently a chronic inflammatory response. These conditions have
been described as shared disease sequelae in humans infected with
HIV, in macaques with SIV or chimeric S/HIV, and in domestic cats
with FIV (Table 1). AIDS-defining conditions in HIV and SIV include
immunodeficiency indicators such as CD4+ depletion (Freeman et al.,
ll rights reserved.
2004; Pandrea et al., 2007; Varbanov et al., 2006), lymphadenopathy
(McClure et al., 1989; Quijano et al., 1997; Wang et al., 2003; Yanai
et al., 2006), and progressive changes in histopathology consisting of
lymphoid hyperplasia, involution, and atrophy (McClure et al., 1989;
Quijano et al., 1997;Wang et al., 2003). In humans, loss of condition, or
cachexia, is also AIDS-defining (Eid and Orenstein, 2006; Faintuch
et al., 2006; Freeman et al., 2004; Kotler et al., 1984). Oral lesions such
as gingivitis and papillomavirus associated warts (papillomas) are
common in HIV infection and can be useful diagnostic indicators of
HIV status since they parallel decline in CD4+ counts and rising viral
load (Greenspan and Greenspan, 1997; Greenspan and Greenspan,
2002; Hodgson et al., 2006; Pantanowitz et al., 2006; Reddy, 2007;
Woodman et al., 2007; zur Hausen, 2002). The documentation of
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Table 1
Comparative sequelae of HIV, SIV, and FIV.

Medical condition present in: HIV (refs) human SIV (refs) macaque FIVFCA (refs) domestic cat Lions

FIVple-negative FIVple-positive Odds ratio p-value

% Affectedb (No. lions)c,d % Affectedb (No. lions)e

Immunodeficiency
CD4 depletiona

Absolute number of CD4+ T-cells/mm3

in peripheral whole blood±s.e.
(47) (15, 33) (1, 2, 22, 25, 32, 45, 46, 49) 0 (5) 100f (8) nag 0.00015

Oral manifestations
Gingivitis (7, 16, 17, 38, 39) (36) (3, 25, 35) 40.00 (15) 88.40 (43) 11.40 0.00016
Papillomavirus (7, 16, 17, 18, 21, 34, 38, 39, 52, 55) ndh (11, 44) 14.30 (14) 53.19 (47) 6.82 0.01009

Chronic inflammatory response
Lymphadenopathy (37, 48) (29, 54) (3, 6, 35) 41.67 (12) 76.60 (47) 4.58 0.01900
Hyperglobulinemia

(serum globulin ≥2 s.d. above mean)j
(7, 8) (51) (1, 22, 43) 0 (14) 85.71 (46) na b2×10−9

Elevated erythrocyte sedimentation rate
(ESR ≥2 s.d. above mean)j

(24, 27, 40) nd nd 13.33 (15) 64.86 (37) 12.00 0.00076

Dehydration (≥4%) (41) (4, 20) (10) 26.67 (15) 63.04 (46) 4.69 0.01408
Non-specific indicators of Ill-health

Hair and coat abnormalities nd nd nd 13.30 (15) 52.27 (44) 7.12 0.00840
Hypoalbuminemia (marker for cachexia)

(serum albumin ≥2 s.d. below mean)j
(5, 14, 42) nd nd 0 (14) 46.94 (46) na 0.00129

Anemia (Hemoglobin and/or PCV ≥2 s.d.
below mean)j

(30, 42) (19) (22, 25, 43) 11.11 (18) 55.77 (52) 10.09 0.00101

Cachexia/unexplained weight loss (12, 13, 26) (15) (3, 23, 25, 28, 53) nd Observed in 3 FIV+
populationsk

na na

Histopathologic evidence of lymphoid response
Histopathologic evidence of: lymphoid activation (37, 48) (29) (6, 9) nd Yes na na
Histopathologic evidence of: lymphoid

atrophy and depletion
(37, 48) (29) (6, 9) nd Yes na na

a Detailed data for CD4 depletion in wild lions is presented in Roelke et al. (2006). Other FIV entries are in this report.
References used in table
1. Ackley et al. (1990); 2. Barlough et al. (1991); 3. Bendinelli et al. (1995); 4. Board et al. (2003); 5. Bonarek et al. (2001); 6. Brown et al. (1991); 7. Coogan et al. (2005); 8. De Milito et al. (2004); 9. Diehl et al. (1995); 10. Egberink et al.
(1990); 11. Egberink et al. (1992); 12. Eid and Orenstein (2006); 13. Faintuch et al. (2006); 14. Feldman et al. (2000); 15. Freeman et al. (2004); 16. Greenspan and Greenspan (1997); 17. Greenspan and Greenspan (2002); 18. Hawes et al.
(2003); 19. Hillyer et al. (1993); 20. Hodge et al. (1998); 21. Hodgson et al. (2006); 22. Hofmann-Lehmann et al. (1997); 23. Hutson et al. (1991); 24. Kim et al. (2006); 25. Kohmoto et al. (1998); 26. Kotler et al. (1984); 27. Lifson et al. (1995);
28.Matsumura et al. (1993); 29.McClure et al. (1989); 30.Mocroft et al. (1999); 31.Nagase et al. (2001); 32. Novotneyet al. (1990); 33. Pandrea et al. (2007); 34. Pantanowitz et al. (2006); 35. Pedersen et al. (1987); 36. Prospero-Garcia et al. (1996);
37. Quijano et al. (1997); 38. Reddy (2007); 39. Reznik (2005); 40. Schwartlander et al. (1993); 41. Selwyn and Rivard (2003); 42. Shah et al. (2007); 43. Sparkes et al. (1993); 44. Sundberg et al. (2000); 45. Tompkins et al. (1991); 46. Torten et al.
(1991); 47. Varbanov et al. (2006); 48. Wang et al. (2003); 49. Willett et al. (1993); 50. Willett et al. (1997); 51. Wong et al. (1999); 52. Woodman et al. (2007); 53. Yamamoto et al. (1989); 54. Yanai et al. (2006); 55. zur Hausen (2002).

b Medical condition for each lionwas scored as “affected” if the individualwas ever found to be abnormal (onphysical exam) orhave a blood value 2 standard deviations ormore away from themean of the FIV-negative lions (toward a lessfit value).
c Number of individual lions examined (for each parameter only a single observation date was used per lion).
d FIV-negative lions=23 lions (27 observation dates evaluated).
e FIV-positive lions=54 lions (84 observation dates evaluated).
f Two standard deviations below the mean for the FIV-negative lions is 810 CD4+ cells.
g na — not applicable.
h nd — not documented.
j Mean±2 s.d. for FIV-negative lion values are:

Globulin (measured and/or calculated)
Measured 4.44±0.90 g/dL
T. protein minus albumin 3.99±0.72 g/dL

ESR (EDTA whole blood) 10.5±28.0 mm/h
ESR (heparin whole blood) 23.9±37.3 mm/h

used both sample types to determine abnormal values
Albumin 3.7±0.76 g/dL
Hemoglobin 12.26±0.90 g/dL
Packed cell volume (PCV) 40.0±7.0%

k Serengeti National Park (MER), Okavango Delta (P. Kat, personal communication), Krugar National Park (Ide 2002).
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Fig. 1. Study sites in Botswana and Tanzania. Dotted outlines designate national
parkland, while shaded ovals encompass the general areas where lions were sampled. N
indicates the number of lions tested for FIV. Not all parameters were determined for
every animal handled at every time point, therefore N was not the same for all clinical
observations from a region and is given as a range.
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gingivitis and papillomas in HIV-positive patients has increased in
recent years possibly due to the long-term survival of patients
receiving anti-retroviral therapy (Reznik, 2005). Papillomavirus is
also associated with aggressive cervical cancer in HIV coinfected
humans (Hawes et al., 2003; Pantanowitz et al., 2006; Woodman
et al., 2007; zur Hausen, 2002). Although the incidence of papilloma
viruses in SIV-infected rhesus macaques (Prospero-Garcia et al.,
1996) is unknown, gingivitis has also been observed in this animal
model (L. Colenda, personal communication).

FIV is an important natural model for HIV/AIDS since FIV-infected
cats develop AIDS-like illnesses (Pedersen et al., 1987; Willett et al.,
1997). As with HIV and SIV infection, lymphadenopathy, immunode-
ficiency, progressive lymphoid depletion, associated oral manifesta-
tions, loss of condition (wasting/cachexia), and chronic inflammatory
response are characteristic of FIV infection (Ackley et al., 1990;
Barlough et al., 1991; Brown et al., 1991; Diehl et al., 1995; Egberink
et al., 1992; Hutson et al., 1991; Kohmoto et al., 1998; Matsumura et al.,
1993; Novotney et al., 1990; Sundberg et al., 2000; Tompkins et al.,
1991; Torten et al., 1991; Willett et al., 1993; Yamamoto et al., 1989).
Progressive stages can last months to years after initial infection,
during which time the cat may be an asymptomatic carrier or may
exhibit persistent generalized lymphadenopathy, AIDS-related
complex, or feline AIDS (Bendinelli et al., 1995).

Immunodeficiency viruses closely related to FIV have been
documented in free-ranging populations of eight non-domestic felid
species (Olmsted et al., 1992; Troyer et al., 2005; Osofsky et al., 1996).
Of these, lions have the highest seroprevalence, approaching 100% of
adult animals in many populations (Brown et al., 1994; Troyer et al.,
2005). Multiple highly divergent strains of lion FIV (FIVple) are found
across much of Africa (O'Brien et al., 2006; Troyer et al., 2005).
Because of the high levels of genetic diversity both within and
between the six known FIVple strains, as well as the phylogeographic
structure of viral sequences that mimics patterns of lion population
structure and migration (Antunes et al., in press; Pecon-Slattery et al.,
2008b), FIVple is thought to be a relatively old virus, perhaps infecting
lions for thousands of years.

The presumed age of FIVple coupled with ecological studies
suggesting that there are no population-level correlates to infection
(i.e. reduced lifespan, or reduced fecundity) has led to the current
paradigm of FIVple as a host-adapted virus that is no longer patho-
genic to lions (Biek et al., 2006; Carpenter and O'Brien, 1995;
Hofmann-Lehmann et al., 1996; Packer et al., 1999). This assumption
has been reinforced by laboratory experiments demonstrating that
domestic cats infected with FIVple seem to recover completely after
transient lymphadenopathy and plasma viremia, despite persistent
cell-associated viremia throughout the study period (VandeWoude
et al., 2002; VandeWoude et al., 1997). Similarly, naturally SIV-
infected hosts such as sooty mangabeys and African green monkeys
are rarely symptomatic, in contrast to AIDS-like pathology in non-
native SIV-infected hosts such as Asianmacaques, and AIDS in humans
(Pandrea et al., 2006; VandeWoude and Apetrei, 2006).

Recent studies demonstrating significantly reduced CD4+ counts
in both captive and free-ranging lions infected with FIVple challenge
the assumption of a completely innocuous infection (Bull et al., 2002;
Bull et al., 2003; Roelke et al., 2006). Neurological effects and cachexia
have also been associated with FIVple infection in captive lions
(Brennan et al., 2006; Bull et al., 2003). In this study, three free-
ranging Botswana lion populations, as well as lions from the Serengeti
Tanzania population, were examined for thirteen physiological and
pathological correlates to FIVple infection (Fig. 1; Table 1). We
examined clinical, hematological and biochemical profiles of FIVple-
infected and FIVple-seronegative free-ranging lions and performed
histopathological analysis on a suite of tissues from a subset of FIVple-
infected lions. Relative increases in the occurrence of specific and non-
specific clinical symptoms including lymphadenopathy, gingivitis,
papillomas, dehydration, and loss of coat condition were found in
FIVple-infected lions, as were biochemical profiles indicative of
hyperglobulinemia, anemia, and hypoalbuminemia. Similarly, histo-
pathological changes in FIV-infected lion lymphoid tissue were
consistent with an FIVple-associated pathogenesis.

Results

FIV seroprevalence

A total of 64 lionswere anaesthetized, examined, and sampled from
1999 to 2006 in three distinct Botswana ecosystems: Makgadikgadi
National Park and Nxai Pans (MKP/NP; 20 individual lions handled on
24 occasions), Okavango Delta (Delta; 40 lions, 70 observations), and
Chobe National Park (Chobe; 4 lions, 4 observations; Fig. 1). FIV status
was compared between populations. A limited number of lions from
Serengeti National Park in Tanzania (SNP; 8 lions, 8 observations,
sampled from 1994 to 1996; (Roelke et al., 2006) were also included.
FIVple prevalence in our sampling was significantly reduced in study
samples from the MKP relative to other lion study populations; 18% in
MKP/NP compared to 96%,100% and 100% in the Delta, Chobe, and SNP,
respectively (pb0.0001 in all cases). These FIVple sample prevalences
reflect those of the larger populations (Brown et al., 1994; Carpenter
andO'Brien,1995; Olmsted et al.,1992; Troyer et al., 2005).Mean age of
FIVple-positive and FIVple-negative lions was 7.3 (range=0.8–
14 years) and 6.3 (range=1.8–8 years) respectively (no significant
difference between groups, p=0.32) and likewise the proportion of
femaleswas similar in the twoFIVgroups (0.706 for FIVple-positive and
0.846 for FIVple-negative; p=0.50; for age and sex of each lion see
Fig. S1). Immunodeficiency, as indicated by low CD4 counts, has been
previously documented in the SNP lions included in this study (Roelke
et al., 2006). To further document specific immune effects, eight FIVple-
positive lions were collared and sampled sequentially by a full medical
exam including laparoscopic surgery to obtain biopsy samples from
lymph nodes, spleen, liver, and kidney for histopathological analysis.

A summary of the prevalence of various AIDS-defining conditions in
FIVple-negative versus FIVple-positive lions discussed below are
summarized in Table 1. We also list in Table 1 citations for AIDS-
defining conditions in human AIDS, in SIV-infected macaques, and
FIVfca infected domestic cats. Detailed clinical parameters for indivi-
dual FIVple-positive and FIVple-negative lion are presented in Fig. S1.



Fig. 2. Gingival tissue of normal (A) and FIV-positive lions with varying stages of
gingivitis (B–D); frontal incisors (A and C) and lateral molar (B and D) views. (A)
Normal, healthy gingiva in an FIVple-negative lion. Note darkly pigmented (PG) alveolar
mucosa (AM) (adhered to bone). (B) Early stage FIVple gingivitis in a young adult
female lion showing linear gingival erythema (arrow), an inflammatory process that
starts to erode the normal darkly pigmented alveolar mucosa resulting in a narrow zone
of depigmentation (DP) along free edge of gingiva adjacent to molars and lower outside
incisors. (C and D) Granulomatous gingivitis typically seen in all mature, chronically
FIV-infected lions. Note extensive depigmented zone affecting virtually all alveolar
gingival mucosa (AM) but sparing the bucal mucosa (BM). The depigmented area above
the upper canine teeth is normal.
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Oral manifestations; gingivitis and papillomas

On gross clinical examination of FIVple-infected lions, the most
striking observation was their poor oral health. Gingivitis and
sublingual papillomas were more frequently observed during phy-
sical examinations of seropositive compared to seronegative animals
(p=0.00016 and p=0.01009, respectively; Table 1; Fig. 2). Virtually
all FIVple-positive animals had some manifestation of gingivitis. In
some younger lions (≤3 years old) the gingivitis presented as a bright
Fig. 3. Phylogeny of concatenated early and late genes (900 bp) of a Botswana lion papilloma v
virus was used as an outgroup. Shown here is the maximum likelihood (ML) tree. Minimum
values are given at all nodes (ML/ME/MP; ns=not significant).
red line along the gingival edge (very similar in appearance to the
linear gingival erythema seen in HIV-associated gingivitis) (Reznik,
2005). This inflammation was associated with a narrow zone of
depigmentation (especially noticeable along the molars; Fig. 2). All
older FIVple-positive lions had well-developed chronic granuloma-
tous gingival lesions with varying degrees of depigmentation that, in
some cases, involved the entire alveolar mucosa (Fig. 2) although no
lions in the study presented with the extreme necrotizing gingival
lesions seen in human AIDS patients. In contrast, the mild gingivitis
observed in six (out of fifteen) FIVple-negative lions tended to present
as minor gingival irritationwith limited depigmentation; more severe
gingival lesions were not observed in these lions.

Themajority of FIVple-infected lions (53.19% compared to only 14.3%
of uninfected lions) presented with wart-like papillomatous lesions on
the underside of the tongue (1–6 lesions of 2 mm–2 cm in diameter).
Histopathologic examination of biopsied lesions from 12 lions was
consistent with papilloma viral infection (diagnostic eosinophilic
intracytoplasmic inclusions were observed in all cases). Plaques were
removed and DNA was extracted and amplified with feline papilloma
virus-specific primers. Resultant PCR products from two feline papilloma
virus genes (early and late: ∼900 bp) were sequenced and shown to be
feline papilloma viruses almost identical to an isolate from a Gir Forest
India Asiatic lion (Rector et al., 2007) (Fig. 3).

Chronic inflammatory response

Lymphadenopathy was observed more frequently during physical
examinations of seropositive animals. As in HIV-infected people and
FIV-infected domestic cats, lymphadenopathy was intermittent (i.e.
varied by time point in lions examined more than once), and present
in 77% of FIVple-positive lions versus 42% of FIVple-negative animals
(p=0.019; Table 1).

Total protein, as well as globulin and gammaglobulin levels, were
significantly higher in FIVple-positive samples than in FIVple-negative
ones (p=0.048, pb0.001, and pb0.001 respectively; Fig. 4) but
albumin was notably lower (p=0.001; Fig. 4). Serum protein
electrophoretic profiles showed a polyclonalgammopathy (data not
shown). This protein profile resulted in a large and significant
(p=0.00006) difference in albumin/globulin ratios between FIVple-
irus compared to papilloma viruses isolated from several felid species. Canine papilloma
evolution (ME) and maximum parsimony (MP) trees gave similar topologies. Bootstrap



Fig. 4. Comparison of blood parameters, protein levels, and chemistry values from FIV-
positive (red) and negative (green) lions. The black vertical line represents the
median, colored bars represent the interquartile range (IQR), and dotted lines
represent the range up to 1.5 times the IQR. Outliers are represented by open circles,
and biomarkers with an asterisk (ALT and AST) had extreme outliers that are not
shown here in the interest of scale. Due to the non-normal distribution of most
biomarkers, non-parametric Wilcoxon rank-sum statistics were used to determine p
values. Number of FIVple-negative and positive male and female lions is indicated in
parentheses (negative males:negative females/positive males:positive females).
Among FIVple-positive lions, all of the parameters in this figure were examined for
age-dependant effects. The three traits marked with a “†” had a significant difference
in values between adult (4–8 years) and older (9+) age classes, with older lions
trending further away from the mean of the FIVple-negative lions. However, when
older lions were removed from the analysis of these three parameters, significant differ-
ences still remained between FIVple-positive and -negative lions (p=0.029, p=0.0001,
and p=0.032 for PCV, globulin, and ALT, respectively). Abbreviations: PCV — packed
cell volume; ESR — erythrocyte sedimentation rate; ALT — alanine aminotransferase
(aka SGPT); AST — aspartate aminotransferase (aka SGOT).
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negative and positive lions (Table S1). The skewed ratio, hyper-
gammaglobulinemia, and hypoalbuminemia are classic signatures of
chronic inflammatory disease. Elevated erythrocyte sedimentation
rate (ESR) can also indicate a persistent inflammatory state and was
observed significantly more often in the seropositive lions (abnor-
mally fast ESR seen in 64.86% of FIVple-positive lions and 13.33% of
FIVple-negative lion; p=0.00076; Table 1).

Dehydration was seen more frequently in FIVple-positive lions
(63.04% of the FIVple-positive lions in contrast to 26.67% of FIV-
negative lions; a significant difference; p=0.014; Table 1). Of the 30
lions where the percentage of clinical dehydration was specifically
recorded, 33% were minimally dehydrated (3%), 53% were moder-
ately dehydrated (4–5%), 13% were severely dehydrated (6–10%), and
none were gravely dehydrated (N10%). Remarkably, dehydrated
FIVple-positive lions in this study live primarily in swampland
with ample drinking water, while most FIV-negative lions reside in
scrub and arid areas. Dehydration does not appear to be the result of
impaired renal function since urine from 27 of 29 FIVple-positive
lions was sufficiently concentrated (specific gravity ≥1.035) with
only 5 animals presenting with proteinuria (urine protein:creatine
ratioN0.4; Fig. S1).

Ten liver biopsies from seven lions and four kidney biopsies from
three lions were obtained from Okavango Delta FIVple-positive animals
for histopathology. Mild kidney abnormalities were observed, with
evidence of multifocal segmental to diffuse membranoproliferative
glomerulonephropathy (MPGN) with no evidence of tubular or
interstitial lesions in all three lions (Table S2). This histopathology was
not considered to be of sufficient severity to account for the high
incidence of dehydration in FIVple-positive lions (see discussion). Seven
liver biopsies from Delta lions had portal inflammation, often with
mineralization and a high proportion of eosinophils (Table S3).
Remnants of parasite eggs were seen in two biopsies. Liver enzymes
ALT and AST were also significantly elevated in FIVple-infected samples
(p=0.005 and p=0.012; Fig. 4). Among FIVple-positive samples, ALT
and AST also varied by habitat, with the lowest values seen in samples
from lions residing in arid/savannah environments with intermittent
water supplies (MKP/NP and SNP), followed by samples from lions
living with a constant riverine water source (Chobe), and the highest
levels seen in samples from lions in swampland (the Delta).

Clinical and biochemical non-specific indicators of poor health

Cachexia (poor condition or wasting) is a common finding in
humans and domestic cats infected with pathogenic immunodefi-
ciency viruses (Bendinelli et al., 1995; Eid and Orenstein, 2006;
Faintuch et al., 2006; Kohmoto et al., 1998; Kotler et al., 1984;
Matsumura et al., 1993; Yamamoto et al., 1989). Therefore the relative
condition of FIVple-positive and -negative lions was assessed. Hair
and coat condition was abnormal in 52.27% of positive lions and only
13.3% of negative animals (p=0.008; Table 1). Poor muscle condition
was only seen in a single FIVple-negative animal (Ple-1035, a
10 month-old Delta lion whose litter mates had both seroconverted;
Fig. S1) andwas observed in 9 positive animals, but this differencewas
not significant (p=0.5; data not shown). Severe cachexia (wasting)
has been observed in FIVple-endemic locations (Kruger National Park
and SNP; Fig. 5), but also has been reported in other lion populations
due to prey limitations or other outbreaks such as tuberculosis.

The criteria for cachexia inhumans includeN5%unintentionalweight
loss, bodymass index (BMI) b20, low fat freemass, evidence of cytokine
excess, and low blood albumin levels (b3.5 mg/dL is considered poor
prognosis for long-term survival in humans with a variety of conditions
including HIV and AIDS) (Feldman et al., 2000; Morley, Thomas, and
Wilson, 2006; Sabin et al., 2002; Sullivan, Roberson, and Bopp, 2005).
Although study lions were weighed at capture, most were evaluated at
only one time point. Some lions were weighed at multiple time points,
however age of animals and seasonal differences in prey abundance
complicate determination of weight loss. Thus we could not accurately
document changes in weight. Similarly, the lack of standard measure-
ments and benchmarks for BMI and low fat free mass and standardized
assays for cytokines in lions makes measures of these parameters
unfeasible in these populations. An index of cachexia that could be
measured in study lions was albumin; therefore we used low albumin
levels as a proxy for low BMI. None of the FIVple-negative animals
presented with abnormally low albumin levels, while 46.94% of FIVple-
positive animals had hypoalbuminemia (defined as ≥2 s.d. lower than
the mean of the controls; p=0.00129; Table 1; Fig. 4); 70% of infected
animals had levels 1 s.d. or more below the mean of the controls
(b3.3 mg/dL; Fig. 4; Fig. S1). Within FIVple-positive animals, there was
no significant difference in albumin levels between study sites despite
varying prey densities across sites.

Anemia was observed more often in FIVple-positive lions
(p=0.001; Table 1), which presented with significantly lower
hemoglobin values (p=0.044) and packed cell volume (PCV:
p=0.008) than FIVple-negative individuals (Fig. 4; Table S1). These
values were used to calculate red cell indices (MCV, MCH, and MCHC;
Table S1), which were highly variable with 56–74% of infected animals



Fig. 5. Varying degrees of body condition in FIVple-infected animals. While most
uninfected and infected lions appear to be in good to excellent physical condition (A;
94-184 Ple July 1994, Serengeti National Park; photo credit Christopher Ratier).
However, occasionally lions with unexplained weight loss (cachexia) are observed in
populations with FIVple-positive lions (B; 94-060 Ple Mar 1994, Serengeti National
Park; similar “poor doers” have been seen in Kruger National Park and the Okavango
Delta; photo credit Melody Roelke), often in the context of secondary disease
outbreaks. Both these lions were photographed in the spring of 1994 during a CDV
epidemic. CDV alone is not commonly associated with wasting.
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presenting with abnormal values (≥2 s.d. above or below the
uninfected mean; Fig. S1). The erythrocyte sedimentation rate
trended higher in FIVple-positive animals in EDTA whole blood, but
was only significantly higher in heparinized whole blood (p=0.032;
Fig. 4, Fig. S1, Table S1). There was no significant difference in total
white cell count (Fig. S1, Table S1).

Histological lymphoid involvement

Lymphoid and non-lymphoid tissues were examined for 9 FIVple-
positive lions from the Delta (8 biopsied lions and 1 hunter-killed lion
that was opportunistically necropsied within 3 h of death). Histo-
pathological changes in lymphoid tissues (lymph nodes and spleen)
were common in FIVple-infected lions (Table 2), similar to HIV and
FIVfca infection. One lion (Ple-1025), with both lymph node and spleen
sampled 3 times over a period of 3 years, demonstrated the typical
progression pattern from a hypertrophic state to an involuted onewith
increasing lymphoid depletion, hyalinosis, and development of
plasmacytosis over time that is seen in HIV-infected humans and
FIVfca infected domestic cats (Fig. 6; Table 2) (Matsumura et al., 1993;
Quijano et al., 1997). In two lions (Ple-1738 and Ple-1756) there was
evidence of follicular (cortex and/or pericortical areas) hyperplasia in
both tissues. All nine individuals presented with evidence of moderate
to severe follicular and/or pericortical atrophy either in lymph node,
spleen, or both and most showed lymphocyte depletion with or
without follicularhyalinosis (Table 2).Overall, therewasmore evidence
of involution and depletion than hypertrophy in our biopsy samples.
The single individual presenting with no evidence of splenic lymphoid
depletion was the youngest lion sampled (Ple-1738; 3 years old).
Discussion

In this study we investigated the possibility that, despite
inferences that FIVple-infected lions can live out normal life spans
in the wild and reproduce successfully (Biek et al., 2006; Carpenter
and O'Brien, 1995; Hofmann-Lehmann et al., 1996; Packer et al., 1999),
there are significant pathological correlates to FIVple infection that
have health consequences for individual lions. We extend previous
reports of FIVple-associated CD4 depletion in peripheral blood (Bull
et al., 2003; Roelke et al., 2006) by demonstrating lymphoid depletion
via biopsies of lymphoid tissues from infected lions. We document
evidence that lymphadenopathy, gingivitis, and papillomas are more
common in FIVple-infected lions. In addition, we show that infected
animals are more likely to be in poor condition, both with respect to
their general physical health (hydration, coat condition, and albumin
levels) as well having depressed hemoglobin and PCV. Finally, we
demonstrate that infected lions have alterations in serum chemistry
profiles and histopathologies that are consistent with immune
deficiencies seen in humans, macaques, and domestic cats infected
with HIV, SIV, and FIV, respectively.

Both gingivitis and papillomavirus have been implicated as AIDS-
defining oral manifestations (Coogan et al., 2005; Greenspan and
Greenspan, 1997). Papillomaviral-induced cervical cancer is also
significantly increased in HIV-positive women (Hawes et al., 2003;
zur Hausen, 2002) and papillomas have been described in domestic
cats infected with pathological lentiviruses (Egberink et al., 1992;
Sundberg et al., 2000). Fifty-threepercent of FIVple-infected study lions
presented with papillomas, while only 14.3% of uninfected lions had
papillomas (Table 1). Gingivitis was documented in 88.4% of FIVple-
positive lions and only 40% of FIVple-negative animals. In addition
gingivitis persisted andprogressed further in infected lions. Early stages
of gingivitis in our study lions mimicked that seen in HIV-associated
gingivitis with marked linear gingival erythema (LGE). Later stage
gingivitis in lionswas not similar to HIV-associated gingivitis as none of
our study lions presented with the severe necrotizing gingivitis and
periodontitis as seen inHIV-infected humans and FIV-infected domestic
cats (Coogan et al., 2005; Kohmoto et al., 1998; Reddy, 2007). It is likely
that these conditions would be mal-adaptive in a natural setting where
healthy teeth and mouth are essential for survival.

Lymphoid depletion is a hallmark of immunodeficiency virus
infections; CD4 count b200 is the predominant AIDS-defining
conditions that, in the absence of drug therapy, occurs in nearly all
HIV-positive humans, SIV-infected macaques, and FIV-infected cats,
although time to CD4 depletion can vary. Lions infected with FIVple
undergo CD4 depletion (Bull et al., 2003; Roelke et al., 2006).
Lymphadenopathy was also significantly increased in FIVple-infected
animals. While it was not always observed in positive lions, not all
lions are at the same stage of infection. Most lions in this study were
over 6 years old and, given the 100% seroprevalence rate by 2 years of
age, were probably infected for at least 4 years when first examined
and therefore may not have been in an acute stage of lymphoid
hyperplasia. Other signs of a chronic inflammatory response observed
in FIVple-infected lions include ubiquitous hyperglobulinemia
(primarily gammaglobulin), hypoalbuminemia, and anemia (low
hemoglobin and/or PCV). These biochemical profiles are common in
HIV-positive individuals (DeMilito et al., 2004; Kim et al., 2006; Lifson
et al., 1995; Nagase et al., 2001; Schwartlander et al., 1993) and have
been observed in SIV and FIV infection (Ackley et al., 1990; Hillyer
et al., 1993; Hofmann-Lehmann et al., 1997; Kohmoto et al., 1998;
Sparkes et al., 1993; Wong et al., 1999). Further, low hemoglobin and
albumin levels are significantly associated with progression to AIDS
and death in human pre-AIDS patients (Bonarek et al., 2001; Mocroft
et al., 1999; Shah et al., 2007).

Histological evidence suggests that some lions biopsied may have
progressed to a chronic stage of infection or undergone atrophy of the
lymph nodes, another consequence of pathologic immunodeficiency



Table 2
Lymph node and splenic histopathology seen in FIV-positive lions from the Okavongo Delta (N=9).

Code name Date Lymph node histopathology Spleen histopathology

Lymph node
location

Hypertrophy/Hyperplasia and reactivity Involution and/or depletion Hypertrophy Involution and/or depletion Degeneration

Cortical follicular
hypertrophy

Paracortical
hypertrophy

Medullary
plasmacytosis

Sinus histiocytosis
(macrophages)

Cortical follicular
atrophy

Paracortical
atrophy

Cysts/dilated
sinuses

Follicular
hyalinosis

Follicular
hypertropy

Follicular
atrophy

Lymphocyte
depletion

Follicular
hyalinosis

PLE-0700 2004 Ca – – + + – ++ – – – + + – Ap, Nc, PMN deg
PLE-1024 2003 – P + +++ +
PLE-1025 2002 Ab – ++ – – ++ – – – + + + – Ap, Lcy, PMN deg

2003 + + ++ +
2004 Ca – – + ++ nta nta – – – + ++ ++

PLE-1026 2001 Ax-Asp – – – + ++ + – –

PLE-1726 2001 Ax-Asp – – – + +++ +++ – –

PLE-1738 2002 Ma – – – – ++ +++ – + + – – – Ap, PMN deg
2002 Ab + + – + ++ – – +

PLE-1744 2004 – + + + Ap, PMN deg
PLE-1750 2003 – P + + +

2004 – + ++ +
PLE-1756 2006 Pop ++ – + + – + – + + ++ ++ ++

2006 Ax ++ – + – – ++ + +
2006 Oth – – – – +++ +++ +++ +

Scoring code (for tissue categories as in Ida 2002)
– not present
+ mild
++ moderate
+++ severe
nta no tissue available
P follicules are present
Lymph node location
Ca caudal abdomenal (mammary)
Asp asperate peripheral LN
Ab abdomenal (cecal) LN
Ma mandibular LN
Pop popliteal LN
Ax axillary LN
Oth other not specified
Splenic degeneration
Ap apoptosis
Nc necrosis
PMN deg PMN degeneration assoc with trabeculae
Lcy lymphocytolysis
Biopsies from FIV-negative aged match control lions were not available for histology.
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Fig. 6. Spleen (A–D) and lymph node (E–H) tissue from normal, uninfected domestic
cats (A and E) and FIVple-infected lions (B–D and F–H). GF=germinal follicle;
Co=cortex; PCo=paracortex; Cy=cyst; M=medulla. (A) Healthy splenic tissue. (B)
A hyperplastic follicle. (C) Follicular atrophy. (D) Severe follicular atrophy with
pronounced lymphoid depletion. Arrow indicates an area of hyaline depletion. (E) A
healthy lymph nodewith many follicles in the cortex and a smaller paracortical area. (F)
Mixed hyperplastic follicles with cystic areas. (G) Cortical atrophy with paracortical
hyperplasia. (H) Extensive medullary plasmacytosis. Arrows indicate cords of plasma
cells.
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virus infections (Brown et al., 1991; Diehl et al., 1995; McClure et al.,
1989; Quijano et al., 1997; Wang et al., 2003). In 2 lions, histopathol-
ogy of lymphoid tissues (lymph nodes and spleen) was consistent
with a progressive depletion of lymphocytes. While one could argue
that lymphadenopathy may have other etiologies (fight wounds,
injuries, etc.), wholesale lymphoid depletion is common during HIV,
SIV, and FIV infection and is most compatible with an FIVple-
associated immune deficiency.

FIVple-positive lions were often mildly to moderately dehydrated
(Table 1).Major causes of dehydration include lack ofwater (an unlikely
cause in the swampland of the Okavanga Delta) and gastrointestinal
disease with vomiting and diarrhea, which have not been generally
observed in these study lions by the field biologists. Also, significant
renal disease can result in dehydration due to the kidney's inability to
retain water and the high net protein loss by diseased glomerulus and
tubules.However, very few infected lions (5of 29 tested) presentedwith
overt proteinuria or loss of functional concentrating ability (only 2 out of
29 tested had lowspecific gravity of urine). In addition, serum creatinine
levels (which are indicative of glomerular dysfunction) were not
significantly different between either FIVple-positive and negative
lions or dehydrated vs. hydrated lions. Further, in the three lions for
whichwe had renal biopsies, renal pathologywasmild and restricted to
the glomerulus. Taken together, these parameters of renal function do
not support renal failure as the cause of widespread (63%) dehydration
seen in FIVple-positive lions. The remaining typical reason that animals
and humans become dehydrated are fever or depression/malaise (with
associated inappetence and oligodipsia), both of which may be general
signs of ill health and, along with dehydration itself, are well-
documented in lentiviral infected humans and domestic cats (Bendinelli
et al., 1995; Egberink et al., 1990; Faintuch et al., 2006; Pedersen et al.,
1987; Selwyn andRivard, 2003); dehydration is alsodocumented in SIV-
infected rhesus macaques (Board et al., 2003; Hodge et al., 1998).

Wasting, an extreme loss of condition, is common in humans,
macaques, and domestic cats infected with pathogenic lentiviruses (Eid
and Orenstein, 2006; Faintuch et al., 2006; Freeman et al., 2004; Hutson
et al., 1991; Kohmoto et al., 1998; Kotler et al., 1984; Matsumura et al.,
1993; Morley, Thomas, and Wilson, 2006; Podell, Chen, and Shelton,
1998; Yamamoto et al., 1989). Many FIVple-infected lions in this study
(Table 1; Table S1) presented symptoms suggesting they were along a
continuum betweenwellness and wasting as indicated by their general
physical condition, anemic state and significantly depressed albumin
levels. In addition, cachexic animals have been observed in FIV-endemic
areas in Tanzania (SNP) and in South Africa (KNP). In both sites, the
prevalence of wasting seemed to rise coincidental with the introduction
of other immunosuppressive disease outbreaks; specifically tuberculosis
(TB) in KNP (Ide, 2002; Renwick, White, and Bengis, 2007) and canine
distemper virus (CDV) in SNP (Roelke-Parker et al., 1996). While TB
causes a wasting syndrome on its own, CDV typically is not associated
with wasting and it is possible there was a synergistic reaction or a
release of FIVple from immune control in dually infected animals. Other
indicators of general loss of conditionhave also beenobserved, including
poor coat condition and hair quality (52.3% in FIVple-infected lions
versus 13.3% in negative lions; p=0.00840; Table 1) considered an
indicator of wellness in veterinary practice. These markers are non-
specific and can be influenced by many biological and environmental
factors, but taken together showa general trend for FIVple-infected lions
to be in poor health more often than FIVple-negative lions.

Opportunistic infections are the major cause of death in AIDS
patients, and many of them are AIDS-defining conditions (Pantanowitz
et al., 2006). While liver pathologies are often observed in HIV-infected
humans due to viral infections, usually hepatitis C virus (HCV), they are
rare in macaques or domestic cats, as these laboratory animals are
sequestered from secondary infections in specific pathogen free
environments. Elevated liver transaminase (ALT and AST) are indicative
of hepatic insult and were observed more frequently in Okavango Delta
FIVple-positive lions. The liver histopathology of a subset of those lions
was consistent with parasite infection (see Table S3), as were the
presence of parasite eggs in some samples. In this case we suspect the
liver pathologies may have a primarily environmental component and
may be due to afluke or other parasite restricted to themarsh ecosystem
(Okavango Delta). This does not rule out the possibility that, due to
lymphocyte depletion, infected Botswana lions would be more
susceptible to hepatic viruses or parasites such as schistomiasis, both
of which are exacerbated by HIV infection in humans.

This study presents evidence that supports the conclusion that
FIVple infection is associated with multiple pathologies seen in
chronically infected patients at the pre-AIDS stages of HIV infection.
We had previously speculated that FIVple is host-adapted (Brown
et al., 1994; Carpenter and O'Brien, 1995; Troyer et al., 2004) and has
little influence on lion survival, at least not in the Serengeti ecosystem
(Hofmann-Lehmann et al., 1996). However, as with HIV-infected
humans, there occurs variability in FIVple progression rates from acute
to chronic disease states. Many lions may never progress to advanced
symptoms, others may do so only after reproductive age or the natural
lifespan of a lion in the wild, which is shorter than that of lions in
captivity. Regardless of age, lions that are severely ill die or are killed
very quickly in the wild; confounding attempts to document extreme
pathologies, since bodies are seldom recovered for necropsies. Finally,
the extensive genetic diversity observed among FIV strains, would
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raise the prospect of potential differences in pathogenicity between
different FIVple strains, as is documented among both HIV and FIV
strains (O'Brien et al., 2006; Pecon-Slattery et al., 2008a; Troyer et al.,
2004; Troyer et al., 2005).

Given the high prevalence of FIVple in many lion populations, it is
evident that in several different ecosystems many lions with FIVple
have survived and thrived (Antunes et al., 2008; Brown et al., 1994;
O'Brien et al., 2006; Olmsted et al., 1992; Troyer et al., 2005). However,
in natural settings, small decreases in fitness can have large effects
during times of stress. Thus, while FIVple-infected animalsmay dowell
under normal circumstances, they may potentially be more sensitive
than uninfected animals to secondary assaults, such as new disease
outbreaks. In fact, two documented disease outbreaks (TB and CDV)
have occurred in lion populations where FIVple is endemic (Ide, 2002;
Renwick, White, and Bengis, 2007; Roelke-Parker et al., 1996). We
recommend that lions continue to bemonitored for FIVple and that the
possible correlates to FIVple infection presented here should be
examined in other populations. We would also recommend that
FIVple-infected animals should not be introduced into naive popula-
tions, and that care should be taken to prevent exposure of infected lion
populations to domestic animals, which are a major documented
sourceof harmful secondary infections in free-ranging lionpopulations.

Materials and methods

Sites and study animals

In Botswana, biologic samples were collected from free-ranging
African lions radio-collared for monitoring studies from 1999 to 2006.
Animals fromMKPwere captured on two collection trips (Nov. '99 and
May '01). A total of 20 individual lions were darted, examined, and
sampled. Four lions were captured on both trips allowing re-sampling.
Seven collection trips were made to the Delta resulting in 70 separate
examinations and samples from a total of 40 individual lions (1–5
samplings/animal). Four Chobe lions examined and sampled in May
'01 and archived samples from 8 SNP lions (with one re-sample)
collected from 1994 to 1996 were used as study site controls for the
two major sites in this study. The majority of lions in all populations
were mature adults between the ages of 6 to 9 years old. Cubs (up to
2 years old) were sampled from MKP and the Delta, and some sub-
adults and young adults (2–6 years old) were sampled from each
population. In MKP we sampled only 1 older adult (9 to 14 years),
however in the Delta, we sampled over many years and 14 lions had
reached old adult status by the time the study ended (see Fig. S1 for
estimated age and age class of lions at each sample date). Samples from
all populations were biased towards females to maximize recapture
potential (Fig. S1). Within the Delta, 8 FIVple-positive animals were
also selected for more extensive examination and surgical and
percutaneous biopsies of lymphoid and other tissues. One individual,
Ple-1025,was biopsied annually for 3 years for a progressive analysis of
tissue pathology. Finally, one trophy-killed FIVple-positive male lion,
Ple-1756, was necropsied for tissue collection within 3 h of death.

Anesthesia

Using adart rifle, telazol and/orketamineand/ormedetomidinewas
injected into either the hind limb or shoulder muscle. After 10–20 min,
the lion heart rate, respiratory rate, temperature, oxygen saturation, and
venous blood pressure were monitored. If needed, additional adminis-
tration of ketamine, or propofol, was administered. Lactated Ringers
(1–4 L) was administered either IV or SQ. After approximately 1–2 h,
atipamezol reversal was administered (if indicated).

For the surgical biopsies, the lionesses were moved to a mobile
surgical unit using a wooden stretcher by all terrain vehicle or by
helicopter. The lioness was then intubated and maintained under
general gas anesthesia with isoflurane and positive pressure ventila-
tion using a custom adapted large animal anesthetic machine
(Mallard) for approximately 2–4 h. Lions were returned to point of
capture and observed until appropriate (approximately 2–10 h) and
located in the next days to assure they had returned to their pride.

Physical findings

Complete physical examinations of all major systems were con-
ducted by a clinical veterinarian and recorded noting any abnormalities
of the external, oral, lymphatic, heart and lung, abdomen, urogenital,
musculoskeletal, and neurological systems. During exams, peripheral
lymph nodes (LN) including popliteal, caudal abdominal (mammary)
and axillary nodes were palpated and evaluated by the attending
veterinarian. Nodeswere considered abnormal (and animals are herein
reported as having lymphadenopathy) if they were enlarged, exces-
sively nodular and/or small, hard, and fibrotic.

Teeth, gums, and tongue were examined. Lions were scored as
positive for gingivitis if they had any symptoms including the entire
range from minimal linear gingival erythema to granular thickened
chronic active inflammation of the alveolar mucosa. Lions were also
scored for the presence or absence of papillomas (flat, white, plaque-
like lesions), which were frequently observed under the tongue.

Hydration was assessed by observing the speed of skin retraction
after a skin-tenting maneuver. Visibly slowed retraction was
considered an indication of ≥3% dehydration. Hair and coat condition
was considered normal if the coat was sleek, shiny and supple. Dry,
bristly hair coat or evidence of serous atrophy of subcutaneous fat was
scored as abnormal according to level of severity. Muscle condition
was also evaluated; normal animals had no ribs showing, vertebrae
not readily palpable, and musculature of the back level with or above
spinous processes of the back vertebrae. Lack of muscle conditionwas
scored by level of severity.

Sample collection and processing

Field samples (collected from all lions)
Whole blood (WB) was withdrawn from cephalic, lateral or medial

(preferred) saphenous, or jugular veins via a 19 g butterfly infusion set
with a luer and vacutainer adapters. Eighty to 120 ml of WB was drawn
directly into vacutainer tubes containing ethylene-diaminetetraacetic
acid (EDTA), sodiumheparin, and/or clot activators (SST). Afterdrawing,
WBwith EDTA and heparinwere placed in an insulated, “cool” transport
container, while the SST tubes were allowed to clot and retract before
beingplaced in the container. Urine frombothmale and female lionswas
obtained by catheterization using sterile polypropylene catheters and
aseptic technique. A human, female vaginal speculum and flashlight
facilitated visualizing the external urethral meatus.

Laparoscopic surgery and biopsy collection
Foreightof the lions fromDelta, surgical biopsies of lymphnode, liver,

spleen, and/or kidneywere collected via laparoscopy or percutaneously.
Anesthetized lions were placed in dorsal recumbency and the

ventral abdomen was scrubbed with betadine and isopropyl alcohol,
using standard asceptic, surgical techniques. The surgeon, surgical
assistant, and lionwere gowned, gloved, and draped respectively using
sterile, disposable materials. Abdominal laparascopy and biopsies
were performed using standard, acceptable medical procedures, with
the following modifications. All equipment and laparoscopic instru-
ments used were made by Stortz (Germany). Compressed medical
grade CO2was introduced into the abdomen via a 6″ Veress needle to a
maximum pressure of 13–15 mmHg (controlled by a Stortz Endo-
flator). Once sufficient abdominal pressure was achieved, the lions
were tippedhead down at∼30° to roll the viscera forward and a 11mm
trocar 10.5 cm long with a conical tip was used to penetrate the
abdominal wall 3 to 5 cm caudal to the umbilicus and a 10mmHopkins
28 cm telescopewas introduced. A fiberoptic cable carried light from a
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300 W halogen light source to the telescope. A Storz camera system
was attached to the eyepiece of the telescope and the image was
visualized on a flat video screen (Samsung®). Two additional 5 mm
ports were appropriately placed proximal and lateral to the camera
port to accommodate instruments in order to biopsy the liver, spleen,
right kidney, and cecal lymph nodes (also on the right). Blakesley and
Manhes Biopsy forceps with 5 mm cups were used to collect tissue
samples of liver, spleen and cecal lymph nodes (approximately 5 mm3

each). The preferred technique for the kidney biopsy was to tilt the
animal to the left to expose the right kidney. Tru-cut biopsy needles
were used to perform endoscopy guided sampling transcutaneously.
When possible, multiple samples were taken from each organ and
were placed in neutral buffered formalin and maintained at room
temperature. Tissues from the necropsy of lion ple-1756 were treated
in a similar way.

Percutaneous biopsies of peripheral lymph nodes (axillary, popliteal,
and/or caudalmammary)was performed using either biopsy needles or
18 g needle and 10 cc syringe, depending on the size of the node.

Field blood processing
Samples were processed as soon after collection as was practical,

ideally initiated within 8 h and no more than 24 h post draw.
Supernatants from clot SST tubes (for serum) and 10 cm3 of urine
were collected after centrifugation (2000 RPM for 10 min) and frozen
in liquid nitrogen (in the field) for transportation to our laboratory
then were stored at −70 °C until analyzed.

Whole blood with EDTA was used for standard hematological
procedures with modifications as indicated. White and red blood cell
counts were determined using commercially available blood dilution
reservoirs (Unopette, Becton Dickinson and Company, Franklin Lakes,
New Jersey, USA), hemo-cytometers, and manual or electronic cell
counters. Capillary tubes filled with whole blood were centrifuged for
5 min at 7000 RPM to determine the packed cell volume in % (PCV).
The plasma portion of the PCV was used to determine the plasma
proteins (gm/dL) utilizing a clinical refractometer (corrected for
temperature). Dried blood smears were stained with Dif-Quick and
differentials were read manually. Both WB EDTA and heparin were
used to evaluate the erythrocyte sedimentation rates (ESR) using the
Wintrobe method and 110 mm long glass tubes. The ESR value is
derived from the total mm the red cells fell within 60 min.

Fresh urine samples were spun at 1000 RPM for 10 min. The
specific gravity of the supernatant was determined with a refract-
ometer, a multi-test urine dipstick was used to look for biochemical
abnormalities, and the sediment was examined microscopically.

Laboratory blood analysis

Frozen, thawed serum, well homogenized whole blood (EDTA),
and urine were submitted to one of two veterinary analytical
laboratories (Antech Diagnostics in New York and the Laboratory
Animal Science Program's Pathology/Histotechnology Laboratory,
NCI-Frederick, MD) for the determination of serum biochemistries,
hemoglobin, and urine creatinine and protein. The detection of
antibodies to Toxoplasma gondii, herpesvirus, canine distemper
virus, calicivirus, panleukopenia, and feline coronavirus was done by
Washington Animal Disease Diagnostics Laboratory on frozen-thawed
serum samples collected from 17 lions in 1999.

The presence of FIV antibodies was detected in the field by CITE
ComboSNAP kit (IDEXX) and/or in the laboratory by immunoblot
(Western blot) assays as described by Troyer et al. (2005). Serum
(diluted 1:200), was tested against the viral proteins derived from
isolates of domestic cat, puma (Puma concolor), and African lion FIV
using a chemiluminescence Western blot. Test results (developed on
X-ray film) were scored manually as positive, indeterminate, or
negative based on the presence and intensity of antibody binding to
the p24 gag capsid protein.
Papillomavirus detection and classification

From the frozen sublingual papilloma excised from Ple-1745, DNA
was extracted using a commercially available kit (DNeasy Tissue Kit,
Qiagen). PCR primers were designed from Felis domesticus papillo-
mavirus type 1: genbank sequence NC_004765. (Early gene 358 bp: 5′
GACACCCTGTATAAATCACGCG3′ and 5′CAGGACTAGCAATATA-
CTTTCGTTTTA3′; Late gene 455 bp: 5′TCTCAAGGCCAAAACAATGG3′
and 5′ CCTCCACCCTGCAACACAT3′). PCRs were performed using
approximately 50 ng of genomic DNA in a 50 μL reaction using
50 mM Kcl, 10 mM Tris–HCl (pH 8.3), 1.5 mM MgCl2, 0.25 mM
concentrations of dATP, dCTP, dGTP, and dTTP, 2 mM concentrations of
each primer, and 2.5 units of Platinum Taq polymerase (Applied
Biosystems). PCR was run on a geneAmp PCR system 9700 thermo-
cycler with the following touchdown conditions: 2 min at 95 °C
followed by 3 cycles of 20 s at 94 °C, 30 s at 60 °C, and 30 s at 72 °C;
annealing temperature was then dropped 2 °C every 5 cycles until it
reached 50 °C, where it was kept for 22 cycles; followed by a final
elongation at 72 °C for 2 min. PCR products were visualized on a 1%
agarose gel, primers and unincorporated dNTPs were removed by
Microcon YM (Millipore) technology and sequences were obtained
using PCR primers in standard ABI BigDye terminator reactions.
Nucleotide sequences were compiled and aligned for subsequent
phylogenetic analysis by ClustalX (Thompson et al., 1997) and verified
visually. Phylogenetic analyses in PAUP (Swofford, 1993) were
performed as previously described (Troyer et al., 2005) for the
following methods: minimum evolution, maximum parsimony, and
maximum likelihood. Modeltest (Posada and Crandall, 1998) was used
to estimate the optimal model of sequence evolution, and these
settings were incorporated into subsequent analyses.

Histopathological examination of biopsied tissues

Formalin fixed (10% neutral buffered) tissue samples of spleen,
lymph nodes, liver, and kidney were embedded in paraffin, cut in
5 μm sections, and routinely stained with hematoxylin-eosin and
read by light microscopy. Lymphoid involution was evaluated
according to histological criteria published for the domestic cat
(Kipar et al., 2001). The severity of lymphoid depletion/animal (LD)
was categorized as none, mild, moderate or severe, considering two
variables: (a) number and type of lymphoid tissues affected and (b)
grade of lymphoid depletion/tissue: normal, mild, moderate and
severe (Table 2). Kidney tissues were also stained with PAS (periodic
acid Schiff reagent), Masson's trichrome stain, and Congo red to
evaluate renal basement membranes, collagen, and amyloid respec-
tively. The pathologists on this study did not have access to any FIV-
negative lion tissues to use as species controls, so used normal
domestic cat tissue as baseline.

Statistics

Clinical outcomes were compared between FIVple+ and FIVple−
lions using Chi-squared analysis. Animals were considered positive for
any given outcome if they presentedwith that finding at any sampling
in the study period. This was done since many of the parameters
measured are transient, and not all parameters were measured at
every sampling. Histological and biochemical parameters were also
compared between FIVple+ and FIVple− lions. Because normal
values for free-ranging lions have not been established, we deter-
mined values for uninfected lions and considered values for any
sample to be abnormal if they were ≥2 standard deviations above or
below the mean of the uninfected individuals.

Wilcoxon rank-sum tests were used to statistically test whether the
various biomarkers explored tend to be in the same range in FIVple+
and FIVple− lions, and box plots were constructed to visualize the
distributions of biomarkers in each group. Data from the last (oldest)
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sample date for each animal were included in the analysis with the
exception of 7 animals, for which more complete data were available
from an earlier sample date (see Fig. S1 for samples used in blood
chemistry analysis). A total of 64 animals were included in the final
analysis. Poisson regression was used to model the increase in number
of secondary infections in FIVple+ lions, compared to FIVple− lions.
These statistics were computed in R version 2.8.1 (R Development
Core Team, 2008).
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