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Understanding immune cell phenotypes in the tumor microenvironment (TME) is essential
for explaining and predicting progression of non-small cell lung cancer (NSCLC) and its
response to immunotherapy. Here we describe the single-cell transcriptomics of CD45+

immune cells from tumors, normal tissues and blood of NSCLC patients. We identified
three clusters of immune cells exerting immunosuppressive effects: CD8+ T cells with
exhausted phenotype, tumor-associated macrophages (TAMs) with a pro-inflammatory
M2 phenotype, and regulatory B cells (B regs) with tumor-promoting characteristics. We
identified genes that may be mediating T cell phenotypes, including the transcription
factors ONECUT2 and ETV4 in exhausted CD8+ T cells, TIGIT and CTL4 high expression
in regulatory T cells. Our results highlight the heterogeneity of CD45+ immune cells in the
TME and provide testable hypotheses about the cell types and genes that define the TME.

Keywords: non-small cell lung cancer, tumor microenvironment, single-cell transcriptomic sequencing,
CD8+ T cells, tumor-associated macrophages, regulatory B cells
INTRODUCTION

Immunotherapy can substantially improve the prognosis of patients with non-small-cell lung
cancer (NSCLC) by inducing an effective adaptive antitumor immune response (1). The efficacy of
such therapy depends strongly on the distribution and activity of immune cells within the tumor
microenvironment (TME) and adjacent normal tissue (2). Thus, understanding the identities,
phenotypes and activities of the various types of immune cells in the TME is essential for
optimizing immunotherapy.

The cellular components of the TME are highly complex, with diverse populations of myeloid
cells and lymphocytes playing important roles in inflammation, cancer immune evasion, and
org July 2022 | Volume 13 | Article 8547241
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responses to immunotherapy treatment (3). The presence of
myeloid cells in the TME is often linked to altered patient
survival (4). For example, certain B cells can regulate T cells and
TAMs to promote cancer progression (5). Few studies, however,
have exploited this approach for identifying “exhaustion
signatures” of immune cells that are associated with weak
antitumor activity and therefore greater risk of progression and
metastasis. Single-cell RNA sequencing (scRNA-seq), which can
characterize cell diversity within the TME (6, 7), has shown many
types of tumors to contain heterogeneous TAMs, dendritic cells
(DCs) and other types of tumor-infiltrating myeloid cells (8). We
have previously detected a range of immune cell types in lung
adenocarcinoma tissue using scRNA-seq (9), but the global
immune landscape is still unknown.

Here we applied scRNA-seq to characterize the diversity of
immune cells within NSCLC tissue, normal tissue and blood. We
found a much broader range of lymphocytes and myeloid cells
within tumors than normal tissue. Their phenotypic
heterogeneity was associated with diverse gene expression
patterns, suggesting that the TME comprise diversity states of
exhaustion or activation, instead of only a few discrete states. Our
findings will help guide future studies of NSCLC pathogenesis
and treatment.
MATERIALS AND METHODS

Patients and Ethics Statement
Patients diagnosed with NSCLC at West China Hospital of
Sichuan University in China between 2018 and 2020 were
prospectively enrolled in this study. All patients were treated
surgically, and none received neoadjuvant therapy before
surgery. Tumors and matched distal normal lung tissues were
obtained during surgery. Normal tissues were obtained 5cm
apart from tumor margin. All samples were evaluated by two
pathologists to determine the pathological diagnosis and tumor
cellularity. Cancer was staged according to the TNM system of
the American Joint Committee on Cancer (8th edition).

Sample Preparation
Freshly resected lung tissue was procured intraoperatively from
patients undergoing lobectomy for focal lung tumors. Normal
lung tissues were obtained from uninvolved regions, and the lung
lobe and location along the airway or periphery were recorded.
Tissues were mechanically and enzymatically dissociated using a
tumor dissociation kit (Miltenyi Biotec, Bergisch Gladbach,
Germany). Suspensions were filtered through a 40-mm cell
strainer to yield single-cell suspensions.

Prior to surgery, peripheral blood (3ml) was collected in
EDTA tubes and isolated using HISTOPAQUE-1077 (Sigma-
Aldrich, BA) according to the manufacturer’s instructions. After
centrifugation, lymphocyte cells at the interface between plasma
and HISTOPAQUE were carefully transferred to a new tube,
then washed twice with phosphate-buffered saline (PBS,
Invitrogen). Lymphocyte cells were re-suspended in PBS
supplemented with 1% fetal bovine serum (FBS, ScienCell).
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Cells were blocked in Hanks buffered saline solution
containing 3% FBS, and then stained first with CD45-Vioblue
direct conjugate antibody (catalog no. 130-092-880, Miltenyi
Biotec). Cells were washed with PBS, then stained with 7-
aminoactinomycin D (Life Technologies, Carlsbad, CA, USA).
CD45+ cells were sorted on a FACSAria Fusion (Becton
Dickinson, Franklin Lakes, NJ, USA).

Single-Cell RNA Sequencing
Single-cell suspensions were loaded onto a Chromium Single
Cell Chip (10x Genomics) and co-encapsulated with barcoded
Gel Beads according to the manufacturer’s instructions, at a
target capture rate of ~5000 cells per sample. Captured mRNA
was barcoded during cDNA synthesis, and the resulting cDNA
was converted into pooled single-cell RNA sequence libraries. All
samples from a given donor were processed simultaneously using
the Chromium Controller (10x Genomics), and the resulting
libraries were prepared in parallel in a single batch. The libraries
were sequenced using NovaSeq 6000 system (Illumina)
according to the manufacturer’s instructions. All libraries were
sequenced with an 8-base index read, a 26-base read 1 containing
cell-identifying barcodes and unique molecular identifiers
(UMIs), and a 98-base read 2 containing transcript sequences.

Single-Cell RNA Data Processing
Reads were aligned and the UMI matrix was generated using the
Cell Ranger toolkit (version 3.0.2; 10X Genomics) and the
reference genome GRCh37 (hg19). Then the gene expression
matrices for all peripheral blood, tumor and normal samples
were combined in R (version 3.6.1) and converted to a Seurat
object using the Seurat package in R (version 3.2.2). Cells were
removed if no more than 200 genes or if more than 6000 genes
were found to be expressed, or if >10% of UMIs corresponded to
the mitochondrial genome. The number of cells retained for
each feature was calculated, and only genes that were expressed
in at least five cells per feature were retained. We normalized
the count matrix of remaining cells to TP10K using the
“NormalizeData” function in the Seurat package.

We corrected for batch effects using the “FindIntegrationAnchors”
function in the Seurat package as recommended: we scaled each
dataset, selected 2000 HVGs as input to compute integration
anchors, then integrated the batches using the anchors. Linear
regression was used to log-normalize gene expression matrices to
total cellular read-counts and mitochondrial read-counts using
the “ScaleData” function.

Identification of Major Immune Cell Types
and Subtypes
We selected the 2000 most variably expressed genes to identify
major cell types. To reduce dimensionality, variably expressed
genes were summarized using principal component analysis,
then the principal components were summarized using t-SNE
dimensionality reduction (“RunTSNE function”). The number of
principal components depended on the dataset. Data were
clustered using the graph-based clustering approach in the
“FindClusters” function of the Seurat package, with the
resolution parameter of 0.5 and other parameters set to their
July 2022 | Volume 13 | Article 854724
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defaults, and 70 cells were the lowest cell numbers per cluster. This
method identifies cell clusters using shared nearest-neighbor
modularity optimization-based clustering. We then classified
clusters as the following cell types, based on average expression
of the indicated curated gene sets: epithelial cells (EPCAM,
KRT19, KRT18, KRT5, and KRT15), myeloid cells (LYZ, CD68,
MS4A6A, CD1E, IL3RA, and LAMP3), T cells (CD2 and CD3D/
E/G), NK cells (XCL1, KLRD1 andKLRF1) and B cells (CD79A/B,
CD19, and MS4A1). Not all clusters were in the patients, but the
proportions of immune cell types are stable.

We further clustered T/NK cells, B cells, myeloid cells
individually. We used the paran function in the R package paran
to calculate the number of PCs (iterations = 100, centile = 50).
To reduce dimensionality, the principal components were
summarized using RunUMAP, RunTSNE function in the R
package Seruat (reduction = ‘pca’, dims=1: retain_PC). After that,
we use FindNeighbors (reduction = ‘pca’, dims=1:retain_PC) and
FindClusters(resolution = 0.5) from the R package Seruat to
perform reclustering. Within T lineage, we used the following
markers for subtype identification: CD8+ exhausted T (CD8A,
LAG3, and TIGIT), CD8+ cytotoxic T (CD8A, GZMA, GZMK,
GZMB, GZMH), CD4+ naïve T (CCR7, LEF1, IL7R, and SELL),
CD4+ Tregs (FOXP3, IL2RA, and IKZF2). KLRC1, KLRD1, and
NKG7 were used as the markers of NK cells. Similarly, we
distinguished follicular B cells (MS4A1, CD19, CD79A, CD79B)
from plasma cells (CD38, MZB1, TNFRSF17, and SDC1) among
the B cell lineage. Regulatory B cells (IL10, CD5, TLR4) and GC B
cells (LMO2, AICDA, RGS13, GCSAM) were clustered in the B cell
lineage. For the myeloid clusters, macrophages were positive for
canonical marker CD68 and CD163, and alveolar mac markers
MARCO and FABP4. Other myeloid cell types were confirmed by
specific marker genes including classical monocytes (LYZ, VCAN),
DC2 (FCER1A, CD1C), and DC3(CCR7, CLEC4C).

Identification of the Marker Gene
Signatures of Immune Cell Subclusters
To identify marker gene signatures for each of the 32 immune
subclusters within myeloid, T/NK and B cell types, the
“FindMarkers” function in the Seurat package was used to
compare cells within the given subcluster Marker genes for a
subcluster were defined as genes (a) whose expression was
detectable in >25% of the cells in the given subcluster, and (b)
whose average expression was at least 1-fold higher in the given
subcluster than in the other subclusters of the same cell type.
Based on these parameters, we were able to identify marker genes
for 25 of 32 subclusters. The marker genes for each subcluster
make up the gene expression signature for the cell type.

To determine whether a given cell type was enriched in one
tissue relative to other tissues, we calculated the ratio of observed
cell number to expected cell number (Ro/e) for each cluster, where
the expected cell number was determined from the chi-squared
test. We assumed that a cluster was enriched in a tissue if Ro/e > 1.

To identify genes differentially expressed between normal
lung samples and matched tumor samples, the “FindMarkers”
function in the Seurat package was applied to each subcluster. A
differentially expressed gene associated with p < 0.05 was
considered to be a tissue-specific gene. We then calculated the
Frontiers in Immunology | www.frontiersin.org 3
Z-score using the “p.to.Z” function in the NCmisc package in R
(version 1.1.6).

Survival Analysis
The potential influence of genes or gene sets derived from
specific cell clusters on patient survival was explored using the
lung adenocarcinoma (LUAD) dataset on gene expression in The
Cancer Genome Atlas (http://xena.ucsc.edu/) and clinical data in
the Genomic Data Commons Data Portal (https://gdc-portal.nci.
nih.gov/). Patient cohorts were stratified into high- or low-
expression groups relative to the median expression level. After
correcting clinical covariates (age, sex, tumor stage) using Cox
proportional hazard modeling in the survival package in R, we
plotted Kaplan-Meier survival curves using the ggsurvplot
function in R. Differences were assessed for significance based
on p values from the Cox regression models in the
survival package.

Trajectory Analysis
Trajectory analysis was performed separately for the CD8+ T
cells and CD4+ T cells using Slingshot (version 1.4.0). For CD8+

T cells, we selected cluster 10 as the starting cluster
(“start.clus = 10”). The global lineage structure was identified
using a cluster-based minimum spanning tree, and principal
curves were fit simultaneously to describe each lineage.

Gene Set Variation Analysis
The hallmark and metabolic pathways in the Molecular
Signature Database (10) were assessed for activation in
individual cells using gene set variation analysis with the
GSVA package (version 1.34.0).

SCENIC Analysis
We used the pySCENIC package (version 0.10.2), a lightning-fast
Python implementation of the “single-cell regulatory network
inference and clustering” (SCENIC) pipeline (11). The search
space around the transcriptional start site was determined using
the following six gene-motif rankings: hg19-500bp-upstream-
10species, hg19-tss-centered-5kb-10species, hg19-tss-centered-
10kb-7species, hg19-tss-centered-5kb-7species, hg19-500bp-
upstream-7species, and hg19-tss-centered-10kb-10species.
The 20-thousand motif database was used for RcisTarget
and GENIE3.

Culture and Transfection of CD8+ T Cells
CD8+ T cells were isolated from blood of the NSCLC patients.
The blood was diluted 1:1 with PBS, and PBMC were isolated on
a Ficoll-Paque Premium gradient (GE) according to the
manufacturer’s instructions. Human CD8+ T cells were then
isolated from the PBMC using CD8 microBeads, and cultured
with human CD3/CD28 T cell activator beads (StemCell) and
100 U/mL recombinant human IL-2 (Miltenyi Biotec, Bergisch
Gladbach, Germany) in X-VIVOTM 15 medium supplemented
with 10% FBS and 1% penicillin/streptomycin at 37°C in a
humidified incubator with 5% CO2. After 14 days of
incubation, CD8+ T cells (1x106) were electroporated with
10 mg of overexpression plasmid encoding SOX2, ONECUT2
July 2022 | Volume 13 | Article 854724
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or ETV4 using a NEPA21 system (Nepa Gene). All experiments
were performed with mycoplasma-free cells.

Flow Cytometry
The CD8+ T cells were labeled with an APC-conjugated against
CD8 (1:100 dilution) for 15 min on ice in the dark. Then, the
cells were washed, fixed, and permeabilized using the
Transcription Factor Buffer Set (BD, USA) according to the
manufacturer’s instructions. The cells were then stained with PE-
conjugated antibody against GZMB (1:50 dilution) and FITC-
conjugated antibody against PRF1 (1:50 dilution). Flow
cytometry was performed on a Moflo Astrios EQ system
(Beckman Coulter) and FlowJo software.

RNA Extraction and Quantitative
Real-Time PCR
Total cell RNA was extracted using the RNeasy Mini Kit
(Qiagen) and converted into cDNA using the iScript cDNA
Synthesis Kit (Bio-rad). SYBR Green Supermix (Bio-rad) was
used for real-time quantitative PCR. The reaction conditions and
PCR system were operated in accordance with the instructions.
All sequences were designed and synthesized by TSINGKE
Chengdu, China) and listed in the Oligonucleotides table in
Key Resources (GZMB forward, GGCTTCCTGATACGA
GACGA; GZMB reverse, CTTGGCCTTTCTCTCCAGCT;
PRF1 forward, ACCAGGACCAGTACAGCTTC; PRF1 reverse,
GGGTGCCGTAGTTGGAGATA; b-actin forward, CCTTCC
TGGGCATGGAGTC; b-actin reverse, TGATCTTCATT
GTGCTGGGTG). Levels of target mRNAs were measured
using the 2-DDCt method relative to the level of b-actin mRNA.

Data Availability
The generated WES, WGS, and RNA-seq data in this study have
been deposited to Genome Sequence Archive (GSA) in BIG Data
Center, Beijing Institute of Genomics (BIG) under accession
number HRAXXXX. The transcriptome data of TCGA LUAD
were collected from the following web-links https://portal.gdc.
cancer.gov/projects/TCGA-LUAD. The human-specific
databases for RcisTarget were downloaded from (https://
resources.aertslab.org/cistarget/databases/homo_sapiens/hg19/
refseq_r45/mc9nr/gene_based/hg19-500bp-upstream-7species.
mc9nr.feather) and (https://resources.aertslab.org/cistarget/
databases/homo_sapiens/hg19/refseq_r45/mc9nr/gene_based/
hg19-tsscentered-10kb-7species.mc9nr.feather).
RESULTS

Landscape of Immune Cells in the
NSCLC TME
Using fluorescence-activated cell sorting, we collected CD45+

cells from tumors, normal tissues, and blood from 13 patients
with NSCLC (Figure 1A and Supplementary Figure 1). From
these 16 samples (Supplementary Table 1), single-cell
transcriptomes were determined using the droplet-based
system of 10× Genomics Chromium(Supplementary Table 2).
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After filtering for data quality, about ~0.2 billion unique
transcripts were obtained from 55,501 cells. We classified cells
into transcriptomic clusters based on principal component
analysis and a graphing method (12). Based on the average
expression of curated gene sets, we annotated the clusters as
myeloid cells, T cells, natural killer (NK) cells, B cells
(Figures 1B–D). Notably, very few cells expressed epithelial
markers, which may be due to the cell-cell interaction between
epithelial cancer cells and immune cells (9). The gene expression
data showed that each immune cell cluster contained cells from
multiple patients (Supplementary Figure 2). Next, we identified
32 subclusters within the three major cell clusters of T/NK cells,
myeloid cells, and B cells (Figure 1D). Subsequently we
identified signature genes for each of the immune subclusters,
successfully developing the immune subcluster signatures.
(Supplementary Figures 3, 4, and Supplementary Table 3).
These data may provide a useful reference atlas for studying
NSCLC TME.

The different immune cell types differed in their distribution
in the TME (Figure 2A), T and B lymphocytes were more
concentrated in tumors than normal tissues (Figure 2B),
which is consistent with several previous results (9, 13). Of the
32 subclusters, subcluster C9 of exhausted CD8+ T cells and
subcluster C0 of B cells were found almost exclusively in tumors,
whereas subclusters C10 of naïve CD8+ T cells and C3 of
regulatory B cells were more abundant in normal tissues
(Figure 2C). These differences between tumor and tissues were
confirmed using multiplex immunofluorescence of formalin-
fixed, paraffin-embedded sections from the same patients
(Supplementary Figure 5). This immunostaining further
showed that regulatory T cells were nearly absent from tumors
but were abundant in stroma, where 90% were close to
immunosuppressive PD-1+ cells. These observations imply
suppressive immune activity within the TME.

Comparison of genes differentially expressed between the
subcluster C9 of exhausted CD8+ cells from tumors and
normal tissues showed GNLY and ITM2A were highly
expressed in normal tissues, and high expression of FABP5
and RPS6 was exhibited in tumor tissues. (Supplementary
Figures 6, 7). FABP5 gene have been reported to mediate lipid
uptake and intracellular transport of CD8+ T cells, and was
critical for the control of immune function mainly through
releasing proinflammatory cytokines (14). In this way, our
results may help clarify how exhausted CD8+ T cells influence
immune activity in NSCLC.

The relative abundance of different immune cell subclusters
differed substantially across tumors from different patients
(Supplementary Figure 8A). For example, tumors from
patients 2 and 12 contained abundant T and B lymphocytes,
whereas the tumor from patient 7 contained few such cells and
instead abundant myeloid cells. These results identify the tumor
from patient 7 as an “immune-cold” tumor with striking features
of T cell absence or exclusion (15). Tumors from patients 8 and
11 contained abundant B lymphocytes and myeloid cells.
Tumors from patients 6 and 10 contained abundant T
lymphocytes and NK cells, implying different immune cell
July 2022 | Volume 13 | Article 854724

https://portal.gdc.cancer.gov/projects/TCGA-LUAD
https://portal.gdc.cancer.gov/projects/TCGA-LUAD
https://resources.aertslab.org/cistarget/databases/homo_sapiens/hg19/refseq_r45/mc9nr/gene_based/hg19-500bp-upstream-7species.mc9nr.feather
https://resources.aertslab.org/cistarget/databases/homo_sapiens/hg19/refseq_r45/mc9nr/gene_based/hg19-500bp-upstream-7species.mc9nr.feather
https://resources.aertslab.org/cistarget/databases/homo_sapiens/hg19/refseq_r45/mc9nr/gene_based/hg19-500bp-upstream-7species.mc9nr.feather
https://resources.aertslab.org/cistarget/databases/homo_sapiens/hg19/refseq_r45/mc9nr/gene_based/hg19-500bp-upstream-7species.mc9nr.feather
https://resources.aertslab.org/cistarget/databases/homo_sapiens/hg19/refseq_r45/mc9nr/gene_based/hg19-tsscentered-10kb-7species.mc9nr.feather
https://resources.aertslab.org/cistarget/databases/homo_sapiens/hg19/refseq_r45/mc9nr/gene_based/hg19-tsscentered-10kb-7species.mc9nr.feather
https://resources.aertslab.org/cistarget/databases/homo_sapiens/hg19/refseq_r45/mc9nr/gene_based/hg19-tsscentered-10kb-7species.mc9nr.feather
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhao et al. Reveal Immune Cell Exhaustion Signatures
patterns in NSCLC TME. These results also highlight the strong
variation in immune cell landscape across tumors from different
patients (16). This diversity may also help explain differences in
prognosis: patient survival was negatively associated with the
abundance of myeloid subcluster C0, and positively associated
with abundances of the myeloid subcluster C4 and CD8+

subcluster C0 (Supplementary Figure 8B). Thus, analyzing the
immune cell landscape in the TME may help predict response
to immunotherapy.

T/NK Cell Phenotypes Regulate Antitumor
Immune Responses in NSCLC
T and NK cells are the most abundant immune cells in the
NSCLC TME. We classify the 42,665 T/NK cells into subclusters
C1 and C2, which contained naïve CD4+ T cells; subcluster C5,
CD4+ regulatory T cells; subclusters C6 and C10, naïve CD8+ T
cells; subclusters C0, C3, C4 and C7, cytotoxic CD8+ cells;
subclusters C8 and C9, exhausted CD8+ T cells; and subcluster
C11, NK cells (Figures 1D, 3A). Comparison of gene expression
among these subclusters (Figure 3B) showed that subclusters C0
and C3 of cytotoxic CD8+ T cells highly expressed cytokines and
their effector molecules, including the chemokine receptor
Frontiers in Immunology | www.frontiersin.org 5
CX3CR1 (17) and the cytotoxicity-associated genes PRF1,
GZMA and GZMB (18) (Figure 3C and Supplementary
Figure 9). Thus, these two subclusters may be the major
populations of cytotoxic CD8+ T cells in NSCLC.

In contrast, the subclusters C6 and C10 of naïve CD8+ cells
strongly expressed the well-defined naïve markers CCR7, TCF7,
LEF1 and SELL. The subcluster C8 of exhausted CD8+ T cells
expressed high levels of the inhibitory markers PDCD1, LAG3
and HAVCR2, but low levels of GZMA and GZMK. During the
progression towards late dysfunctionality, classic CD8+ T cell
effector function- associated genes, such as PRF1 and GZMB
remains high (19, 20). Subclusters C0, C3 and C4 of cytotoxic
CD8+ T cells expressed immune checkpoint molecules,
particularly express LAG3 and PDCD1 (Figure 3B). LAG3 was
mainly expressed in CD8+ exhausted T cells, which is consistent
with previous findings (20). In fact, expression of LAG3 and
HAVCR2 varied positive with expression of cytotoxic granzymes
GZMA and GZMH (Figure 3D). These results suggest an
activation-dependent exhaustion phenotype mediated by LAG3
in NSCLC. Thus, these two checkpoint molecules may be
potentially therapeutic targets. The subcluster C5 of regulatory
T cells strongly expressed the exhaustion markers CTLA4,
B C

D

A

FIGURE 1 | Overview of single-cell transcriptomic profiling of NSCLC samples. (A) Workflow showing the collection and processing of fresh samples from NSCLC
for single-cell RNA sequencing (scRNA). FACS, fluorescence-activated cell sorting. (B) t-SNE plots of cells from the 16 samples profiled in this study. Different cell
types were colored differently. (C) Heatmap of selected marker genes of 5 major cell types. Red: high expression; blue: low expression. (D) t-SNE projection of the
expression profiles of the T cells/natural killer (NK) cells, myeloid cells, and B cells that passed quality control. Immune cell subsets, defined by 32 unique clusters,
are annotated and marked by color code.
July 2022 | Volume 13 | Article 854724
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HAVCR2 and TIGIT (Figure 3B), in contrast to subclusters C1
and C2 of naïve CD4+ T cells. Furthermore, these T cell clusters
appeared to exhibit distinct tissue distributions. Subcluster C0 of
cytotoxic CD8+ cells localized predominantly in blood, whereas
subcluster C9 of exhausted CD8+ T cells were more abundant in
tumors. Subcluster C9 may be tumor-specific subtypes, which
implies an exhaustion expression program in NSCLC
(Supplementary Figure 10). Altogether, the changes in cellular
composition and gene expression phenotype of T cells confirmed
the direction of tumor immunity towards immune suppression
(21, 22).

Pseudotime analysis based on Slingshot (23) suggested that
CD8+ T cells followed a differentiation trajectory extending from
subcluster C10 of naïve CD8+ cells to subcluster C0 of cytotoxic
Frontiers in Immunology | www.frontiersin.org 6
CD8+ cells as well as subclusters C8 and C9 of exhausted CD8+ T
cells (Figure 3E). Consistent with their exhausted phenotype, the
CD8+ T cells in subcluster C9 showed lower expression of
cytotoxicity-associated genes GZMH, GZMA, and PRF1 than
subcluster C0 of cytotoxic CD8+ T cells (Supplementary
Figure 9). In addition, gene set variation analysis showed that
the exhausted cells in subcluster C9 expressed genes involved in
tryptophan metabolism (Supplementary Figure 11), which
impair antitumor immune responses (19), whereas the
cytotoxic cells in subcluster C0 cells expressed genes involved
in antigen processing, antigen presentation, and T cell
receptor signaling.

Pseudotime analysis suggested that conventional CD4+ T cells
followed a developmental trajectory extending from subcluster
B C

A

FIGURE 2 | Dissection of the 32 cell types in NSCLC based on single-cell RNA sequencing. (A) Data on the 32 immune cell subclusters of 55,501 cells from 16
samples. Left: fractions of cells originating from each tissue and each patient. Middle: numbers of cells. Right: box plots of the numbers of genes. (B) Preferential
localization of each cluster in tumor or normal tissue, based on the ratio of observed to expected cell numbers (RO/E). The vertical dashed line indicates a ratio of 1,
with values >1 indicating enrichment in the indicated tissue. (C) Preferential localization of each cluster in tumor or normal tissue, based on the average ratio of
observed to expected cell numbers across three patients (nos. Patient 6-8). Box plot shows log2(Ro/e(Tumor)/Ro/e(Normal)) score.
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C2 of naïve CD4+ T cells to subclusters C1 of naïve CD4+ T cells
and C5 of exhausted CD4 regulatory T cells (Figure 3B and
Supplementary Figure 12). Subcluster C5 strongly expressed
the exhaustion markers PDCD1, CTLA4 and TIGIT
(Supplementary Figure 13), as well as the T follicular helper
Frontiers in Immunology | www.frontiersin.org 7
markers CXCL13 and ICOS (Figure 3B), consistent with a
previous finding that exhausted CD4+ T cells tend to adopt a T
follicular helper phenotype (24).

To identify transcription factors that might regulate these
various CD8+ T cell subclusters, we used single-cell regulatory
B

C

D

E

F

A

FIGURE 3 | T/NK cell clusters in NSCLC. (A) Refined clustering was performed on 42,665 T/NK cells from tumor (n = 7), adjacent normal lung (n = 3) and
peripheral blood (n = 6). These cells are color-coded by their associated clusters. (B) Average expression of selected T cell function-associated genes of naïve
markers, inhibitory receptors, cytokines and effector molecules, co-stimulatory molecules, and Treg markers in each cell cluster. Red to blue: high to low expression.
(C) t-SNE plot, Expression and distribution of CX3CR1 gene among cells. color-coded from gray to red according to expression. (D) Spearman correlation between
the activity of CD8+ T cells, as measured by average granzyme expression (GZMA, GZMB and GZMH), and the expression of CD8+ T cell-specific genes. Genes
encoding known immune checkpoint molecules are highlighted in blue. (E) Transitional relationship among 23,151 CD45+ CD8+ T cells predicted by Slingshot.
Rainbow coloring from red to blue represented the begin to end of the trajectory. (F) Levels of mRNAs encoding ONECUT2 or ETV4 in human CD8+ T cells
transfected with plasmids overexpressing those proteins, or with empty vector (negative control, NC). Data are mean ± SEM of three independent experiments, each
conducted with triplicate samples. *P < 0.05, **P < 0.01, ***P < 0.001.
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network inference and clustering (11), which identified the
transcription factor ONECUT2 to be highly expressed in
subcluster C8 of exhausted CD8+ T cells and the transcription
factor ETV4 to be strongly expressed in subcluster C9 of
exhausted CD8+ T cells (Supplementary Figure 14).
Consistent with this analysis, we found that overexpressing
either transcription factor in CD8+ T cells from the blood of
NSCLC patients downregulated GZMB and PRF1 expression
(Figure 3F). These findings identify ONECUT2 and ETV4 as
potential regulators of CD8+ T cell exhaustion in NSCLC.
Conversely, the transcription factors BACH1 and RUNX3 were
upregulated in subcluster C0 of CD8+ cytotoxic T cells
(Supplementary Figure 14). Thus, these factors may help
drive cytotoxic immune responses in NSCLC (25–27).

Diverse B Cell Subtypes in NSCLC
Given that B cells infiltrate lung cancer at all stages of the disease
and contribute to anti-tumor immunity (28), we detected 3,958 B
cells and divided them into eight clusters (Figures 4A, B). One
cluster contained germinal center B cells (GC B cells) that
strongly expressed LMO2, AICDA and RGS13, whereas
another contained regulatory B cells that expressed IL-10, CD5
and TRL4 and that were more abundant in tumors
(Supplementary Figure 15) than in normal tissues and in
blood (29). Polarization of B cells into a phenotype that
secreted abundant IL-10 was associated with strong expression
of inflammatory signals. One cluster was characterized as plasma
Frontiers in Immunology | www.frontiersin.org 8
cells, which strongly expressed CD38, SDC1, MZB1 and
TNFRSF17 (Figure 4C). It has been reported that GC B cells
with relatively high affinity could be directed to become plasma
cells (30).

Differences in pathway activities and TFs among the different
B cell subtypes are shown in Figures 4C, D, respectively. Cluster
C3 of regulatory B cells and cluster C4 of plasma cells showed
activation of angiogenesis pathways, while cluster C2 of GC B
cells showed upregulation of the transcription factor BCL6
(Figure 4D), which enhances B cell responses to external
stimuli. Cluster C4 of plasma cells showed upregulation of the
transcription factor ATF4 and ATF6, which helps drive
immunoglobulin production (31). These transcription factors
may help drive the differences in gene expression observed
between GC B cells and plasma cells in NSCLC.

In mouse models of cancer, tumor-associated B cells promote
antitumor inflammation (32), but they can also dampen
responses to antitumor therapies that depend on T cells (33).
Cluster C3 of regulatory B cells, which were more abundant in
tumors than in normal tissues or blood (Supplementary
Figure 15), showed upregulation of pathways related to
angiogenesis, VEGF signaling and hypoxia (Figure 4C). Thus,
this cluster may help promote NSCLC progression. Regulatory B
cells in our samples expressed some different genes depending on
their location: while B cells in tumors strongly expressed HLA
genes, which are related to antigen presentation, B cells in
normal tissues strongly expressed genes related to energy
B

C D

A

FIGURE 4 | B cell clusters in NSCLC. (A) Refined clustering was performed on 3,958 B cells from tumor (n = 7), adjacent normal lung (n = 3) and peripheral blood
(n = 6). These cells are color-coded by their associated clusters and cell types. GC, germinal center. (B) Average expression of selected B cell type marker genes
after normalization by z-score within each cell cluster. (C) Heatmap showing differences in pathway activity scores among regulatory B cells, plasma cells and
germinal center B cell clusters of B cells, based on gene set variation analysis. Activity scores were normalized. (D) Heatmap of gene expression regulation by
transcription factors using SCENIC for the B cells. TF activity is scored using AUCell, and the scores are normalized.
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metabolism (Supplementary Figure 16). Such spatial differences
may provide insights into how regulatory B cells influence the
TME and thereby cancer progression.

Myeloid Cell Subtypes Show Tissue-
Specific Patterns in NSCLC
To begin to clarify the heterogeneity of myeloid cells in the TME
and their potential roles in cancer, we characterized gene
signatures of 12 subsets (Figures 1D, 5A). The 8,026 myeloid
cells were clustered into monocytes, macrophages, and DCs.
Monocytes expressed a unique set of genes, which included
CTSS, FCN1, LYZ and VCAN (Figure 5B), and they were
more abundant in blood than in tumors or normal tissues
(Supplementary Figure 17). These results are consistent with
the known roles of monocytes in regulating inflammation and
responding to bacterial infection in the blood, from which they
can infiltrate tissues and differentiate into tissue-resident CD14+

CD16- macrophages (34). Two DC subsets strongly expressed
DCmarkers, and they were more abundant in tumor and normal
tissue than in blood (Figure 5B and Supplementary Figure 17).
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The DC2 subtype preferentially expressed classic markers of
conventional type 2 DCs, including CD1E, FCER1A, LAMP3
and CLEC10A. LAMP3 pression has also been linked to
activation and migration of DCs (3), and this protein was also
highly expressed by cluster C4 of macrophages.

The macrophage clusters were identified based on their high
expression of CSF1R (CD115), FCGR3A (CD16), and CD86.
Clusters C6 and C9 were more abundant in normal tissue,
whereas clusters C2 and C4 were more abundant in tumors
(Supplementary Figure 17); therefore, clusters C6 and C9 were
designated as TAMs (35), which strongly expressed APOE,
C1QA and C1QB (36), as well as the type I transmembrane
glycoproteins, MKI67 and CDK1 (Figure 5B). Clusters C3 cells
were more abundant in blood, so they were designated as
wandering macrophages (8). Cluster C2 of TAMs showed
upregulation of pathways involved in inflammatory responses,
TNF-a-induced proliferation and production of reactive oxygen
species (Figure 5C). These pathways are hallmarks of the M2-
like, pro-tumoral subtype of macrophages in mouse models of
cancer (37). Indeed, cluster C2 in our study showed strong
B

C D

A

FIGURE 5 | Myeloid cell clusters in NSCLC. (A) Refined clustering was performed on 8,026 myeloid cells from tumor (n = 7), adjacent normal lung (n = 3) and
peripheral blood (n = 6). These cells are color-coded by their associated clusters and cell types DC, dendritic cell; Mac, macrophage (B) Average expression of
selected myeloid cell marker genes and function-associated genes, after normalization by z-score within each cell cluster. RTMs, resident tissue macrophages;
TAMs, tumor-associated macrophages; DCs, dendritic cells; Alveolar Mac, alveolar macrophages. (C) Heatmap showing differences in pathway activity scores
among clusters of macrophages, based on gene set variation analysis. The scores of pathways are normalized. (D) Heatmap of gene expression regulation by
transcription factors using SCENIC for the macrophages. TF activity is scored using AUCell, and the scores are normalized.
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enrichment of angiogenesis, glycolysis, and hypoxia pathways,
based on gene set variation analysis (Figure 5C and
Supplementary Figure 18). These results suggest a strong
tumor-promoting phenotype of cluster C2 TAMs (38).
Consistently, cluster C2 strongly expressed S100A8 and
S100A9 (Supplementary Figure 19), which may promote cell
proliferation while inhibiting cell differentiation and apoptosis
(39). In contrast, cluster C4 of TAMs showed upregulation of
IFN-a response pathways.

Single-cell regulatory network inference and clustering
identified several transcription factors that may help drive the
observed differences in gene expression among the myeloid cell
types in NSCLC (Figure 5D). Cluster C2 of macrophages
showed upregulation of BHLHE40, which helps drive breast
cancer metastasis (27), and those expression levels correlated
inversely with survival (Supplementary Figure 20). Cluster C9
of macrophages showed upregulation of E2F1 (Figure 5D),
inducing their repolarization into proinflammatory M2-like
macrophages (40), and thereby weaken T cell proliferation and
antitumor activity (41).
DISCUSSION

One of the major obstacle to cancer immunotherapy is the
heterogeneous composition of immune cells within the TME.
Using single-cell transcriptomics on tissues and bloods from
NSCLC patients, we constructed an immune atlas of the disease
that highlights how much gene expression and phenotype
depend on whether the immune cell is located within the
tumor, in normal tissue, or in the blood.

Tumors are thought to evade natural immune surveillance
either by immune escape or by active suppression of immune
responses. We identified several T cell subtypes expressing
cytokines and chemokines, indicative of ongoing immune
responses. At the same time, some of those subtypes were
exhausted or regulatory T cells showing immunosuppressive
phenotypes. From the differential gene expression analysis, we
showed an activation-dependent exhaustion phenotype
mediated by LAG3 in NSCLC. This phenomenon has been
demonstrated by previous studies in NSCLC that during the
progression towards late dysfunctionality, classic CD8+ T cell
effector function- associated genes remains high (19, 20). In a
subsequent study, the transcription factor ONECUT2 and ETV4
was found to be overexpressed and to downregulated GZMB and
PRF1 expression, thus leading to dysfunctional T cells.
Therefore, the ONECUT2 and ETV4 transcription factor may
be useful target for checkpoint inhibition.

Of note, overall survival in NSCLC appears to depend on
effective infiltration of tumors by B cells (42), and stimulating B
cells with appropriate ligands can inhibit tumor growth and lung
metastasis in mouse models. Thus, immunotherapies based on B
cells may be effective. Our results suggest a potential approach to
B cell therapy: exploit the tumor-promoting features of
regulatory B cells to inhibit downstream immunosuppressive
pathways. On the other hand, our results are consistent with the
notion that lymphocytes possess relatively stable phenotypes,
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whereas myeloid cells can be more “plastic” depending on their
location in the TME (21). We were able to identify 12 subtypes
myeloid cells from advanced NSCLC besides T/NK and B cells,
the majority of which are consistent with previous studies (20).
We focused on the tumor associated macrophages, which were
highly plastic and display a variety of phenotypes (16).
Consistently, we observed greater phenotypic complexity
among TAMs, including one TAM population in which
inflammatory responses, TNF-a-induced proliferation and
production of reactive oxygen species were upregulated.
Additionally, high expression of the BHLHE40 of macrophages
significantly predicted a poor prognosis in NSCLC.

Finally, characterization of the TME on single-cell resolution
can provide insight on possible novel therapeutic targets. It
remains an open question to which extent tumor cells shape
the ir microenvironment and to which extent the
microenvironment affects tumor cells. More efforts need to be
complemented by translational studies to identify critical
mechanisms in this complex network that determine tumor
response to targeted or immune therapies in the clinical
context. In the future, other single-cell approaches comprising
spatial information, and surface protein expression will help to
complete the picture.
CONCLUSION

In summary, our work represents a new resource providing a
comprehensive single-cell transcriptome atlas of the
multicellular ecosystem of NSCLC TME. Our high-resolution
immune landscape of NSCLC has identified ONECUT2 and
ETV4 transcription factors as potential drivers of CD8+ T cell
exhaustion. It also reveals exhausted subtypes of TAMs and
regulatory B cells that may immunosuppress the TME. These
insights from the present work may help identify novel
therapeutic targets and biomarkers of therapy response in
NSCLC. Some of our findings are unreported and will need
further functional validation. Despite this limitation, it can serve
as valuable resources and a proof-of-concept study for future
research to identify biomarkers and targets for treatment and
enable personally tailored therapeutic decisions for patients with
advanced NSCLC.
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