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SUMMARY

Human dendritic cells (DCs) comprise subsets with distinct phenotypic and functional 

characteristics, but the transcriptional programs that dictate their identity remain elusive. Here, we 

analyze global chromatin accessibility profiles across resting and stimulated human DC subsets by 

means of the assay for transposase-accessible chromatin using sequencing (ATAC-seq). We 

uncover specific regions of chromatin accessibility for each subset and transcriptional regulators of 

DC function. By comparing plasmacytoid DC responses to IFN-I-producing and non-IFN-I-

producing conditions, we identify genetic programs related to their function. Finally, by 

intersecting chromatin accessibility with genome-wide association studies, we recognize DC 

subset-specific enrichment of heritability in autoimmune diseases. Our results unravel the basis of 

human DC subset heterogeneity and provide a framework for their analysis in disease 

pathogenesis.
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In Brief

Human dendritic cells (DCs) orchestrate immune responses by a division of labor between 

functionally specialized subsets; however, the transcriptional basis of this heterogeneity is poorly 

understood. Using ATAC-seq, Leylek et al. profile the chromatin landscape of human DC subsets, 

providing insight into the underlying regulatory mechanisms that modulate their function.

Graphical Abstract

INTRODUCTION

Dendritic cells (DCs) play pivotal roles in the activation of a wide range of immune 

responses, which are mediated through a division of labor among functionally specialized 

subsets. Functions within each DC subset are enabled by programs coordinated by the 

precise interactions of transcription factors (TFs) binding genomic sites to control gene 

expression. Tight regulation of these programs is essential to promote appropriate responses 

against infection and cancer while avoiding autoimmunity. Although several transcriptional 

programs dictating mouse DC subset development and function have been described, 

transcriptional regulation of human DC subsets remains elusive. Furthermore, we lack a 

comprehensive and unbiased view of the global chromatin landscape of human DCs. 

Revealing chromatin landscapes of primary human DCs in health is ultimately essential to 

pinpoint altered programs in disease.
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The human DC network is composed of two major subsets, classical DCs (cDCs) and 

plasmacytoid DCs (pDCs) (Guilliams et al., 2014; Merad et al., 2013). cDCs can be further 

divided into cDC1 and cDC2, specialized in the activation of CD8+ and CD4+ T cells, 

respectively. pDCs are known for their capacity to produce large amounts of type I 

interferon (IFN-I) in response to viral infection followed by their conversion into cDC-like 

cells (Abbas et al., 2020; Leylek and Idoyaga, 2019; Reizis, 2019). Advances in molecular 

profiling allowed the characterization of human blood DCs using single-cell RNA 

sequencing (scRNA-seq) (See et al., 2017; Villani et al., 2017). This approach was powerful 

to discern previously unappreciated heterogeneity of human DCs and lead to the 

identification of transitional DCs (tDCs, also known as AXL+ DCs or ASDCs), an 

evolutionarily conserved DC population that shares transcriptomic and proteomic features 

with pDCs and cDCs (Alcántara-Hernández et al., 2017; Leylek et al., 2019). However, 

RNA-seq captures protein-coding regions that account for <3% of the genome (ENCODE 

Project Consortium, 2012). RNA expression is often preceded by changes in the chromatin 

accessibility at gene promoters and other distal regulatory elements such as enhancers. Thus, 

understanding human DC transcriptional regulation requires an evaluation of the chromatin 

landscape, which can be measured in high resolution with the assay for transposase-

accessible chromatin using sequencing (ATAC-seq) (Buenrostro et al., 2013). ATAC-seq 

identifies genome-wide accessible regulatory regions (cis-elements) and can infer the 

activity of TFs (Buenrostro et al., 2013, 2015; Schep et al., 2017). The integration of ATAC-

seq data with genome-wide association studies (GWAS) of immune cell-mediated diseases 

also allows the identification of cell-specific enrichment of disease-causing heritability traits. 

ATAC-seq has been used to characterize the chromatin landscape of major mouse and 

human immune lineages (Calderon et al., 2019; Corces et al., 2016; Granja et al., 2019; 

Satpathy et al., 2019; Yoshida et al., 2019); however, a detailed study of primary human DC 

subsets, some of which represent <0.1% of peripheral blood mononuclear cells (PBMCs), is 

lacking. Furthermore, the global chromatin landscape changes that occur during DC 

activation are unknown. These limitations pose a barrier to dissecting the transcriptional 

mechanisms of DC dysfunction in disease and designing DC-based therapeutics.

Here, we applied ATAC-seq to measure chromatin accessibility in primary DC subsets in 

resting and activated states. We correlated the chromatin landscape with TF activity, RNA 

expression, protein expression, and the function of each DC subset. This approach allowed 

us to unmask features of the chromatin landscape associated with cell subsets or activation 

states and discover previously undescribed TFs that regulate DC function. By integrating 

these data with autoimmune disease GWAS, we found evidence for candidate single-

nucleotide polymorphisms (SNPs) in a pDC-specific enhancer that explained trait 

heritability in systemic sclerosis. Our data constitute a comprehensive analysis of the 

epigenomic profiles among functionally distinct but closely related human DC subsets and 

provide a valuable resource for future comparisons of these cells in different tissues in health 

and disease.
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RESULTS

Approach to Analyze the Chromatin Accessibility Landscape of Primary Human DC 
Subsets

We set out to generate a DC map of chromatin accessibility by performing ATAC-seq on 

purified primary human subsets (i.e., cDC1, cDC2 and pDCs) obtained from 7 healthy male 

and female donors. For comparison, we included CD14+ monocytes in our analysis (Figures 

1A and S1A). cDC2s were purified as CD14− BDCA1high to exclude most CD32− 

inflammatory DC3 (Figure S1A; Dutertre et al., 2019; Villani et al., 2017). Our ATAC-seq 

data were of high quality (i.e., the samples had a median transcription start site [TSS] 

enrichment score of 23.7, and replicates were highly reproducible) (Figures S1B and S1C). 

After filtering the data, we identified 94,328 genome-wide ATAC-seq peaks (cis-elements) 

(p < 0.01). Analysis of these cis-elements by principal-component analysis (PCA) showed 

that each DC subset has a distinct chromatin signature (Figure 1B). Cell type made up >97% 

of the variance between samples, while sex and individual differences made minimal 

contributions (Figure S1D).

Open chromatin at known DC subset-specific genes validated our analysis (Figure 1C). 

pDCs had higher accessibility at cis-elements neighboring CLEC4C and GZMB, genes that 

encode the surface marker BDCA2 and granzyme B, respectively. cDC1 showed higher 

accessibility within CADM1 encoding CADM1/NECL2 and SNX22, a sorting nexin 

expressed by mouse and human cDC1 (Brähler et al., 2018; Villani et al., 2017). We found 

that cDC2 and monocytes shared higher accessibility at CD1C and ITGAX, which encode 

BDCA1 and CD11c, respectively. Monocytes had higher accessibility at cis-elements 

neighboring CD14 and the macrophage-inducible C-type lectin CLEC4E.

We next unbiasedly queried cis-elements accessible in each subset (Figure 1D). Of the 

94,328 cis-elements, >7,000 were only accessible in pDCs. Similarly, 2,901 and 2,050 were 

solely accessible in cDC1 and monocytes, respectively. However, only 26 cis-elements were 

uniquely accessible in cDC2, suggesting that the chromatin landscape of cDC2 is shared 

with other DCs. The regions that were more accessible in cDC2 were also more accessible in 

either pDCs, cDC1, or monocytes (Figures 1E and S1E). For instance, cDC2 and pDCs 

shared 909 cis-elements, including regions near DENND1B and ALCAM, genes involved in 

endocytosis and leukocyte adhesion, respectively (Figure 1F). Similarly, cDC2 and cDC1 

shared 3,463 cis-elements neighboring genes associated with the induction of T cell 

responses (e.g., CCR7, CD59). Finally, cDC2 had a greater degree of overlap with 

monocytes, sharing accessibility at 6,134 cis-elements such as CFP and CD58, 2 myeloid 

cell activation genes. The lack of cis-elements unique to cDC2 may reflect further 

heterogeneity in our purified population. This could arise from current limitations in the 

ability to distinguish cDC2 from DC3, given their continuum of phenotypes (Dutertre et al., 

2019). Of note, the 26 cDC2-specific cis-elements surrounded genes of unknown function 

(e.g., the long non-coding RNA LINC007000 and lymphocyte expansion molecule LEXM) 

(see Table S1 for the complete list). Collectively, our approach allows analysis of chromatin 

accessibility in primary human DCs.
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ATAC-Seq Uncovers a pDC-Specific TF, ZBTB18

We leveraged ATAC-seq to infer the activity of 870 human TFs using chromVAR, which 

calculates a TF activity score based on the enrichment of known binding motifs within cis-

elements (Schep et al., 2017). PCA and hierarchical clustering based on TF activity showed 

that pDCs and monocytes were quite distinct, whereas cDC1 and cDC2 were similar to each 

other (Figures 2A and 2B). We next analyzed the activity of TFs known to be involved in the 

development and function of mouse DC subsets (Figure 2C). pDCs showed higher activity 

scores for TCF4 and RUNX2, as expected (Cisse et al., 2008; Sawai et al., 2013). Similarly, 

cDC2 showed higher activity for IRF4 and SPI1 (Anderson et al., 2000; Suzuki et al., 2004), 

whereas monocytes showed higher activity for FLI1, KLF4, and CEBP family members 

(Zhu et al., 2016). Finally, we found that the cDC1 TF BATF3 (Hildner et al., 2008) 

appeared more active in human monocytes than cDC1, which may be due to similarities 

between the binding motifs of BATF3 and other TFs of the AP-1 family (Friedman, 2007).

Although TF expression can be shared between DC subsets, mouse studies have shown that 

each subset can use distinct enhancers. For instance, both pDCs and cDC1 express Irf8, 

which regulates the function and development of these cells, respectively (Sichien et al., 

2016). However, mouse pDCs use the +41-kb Irf8 enhancer, whereas cDC1 absolutely 

require the +32-kb Irf8 enhancer for their development (Bagadia et al., 2019; Durai et al., 

2019). Similarly, human pDCs showed higher accessibility of the +58-kb enhancer and 

cDC1 showed higher accessibility of the +49-kb enhancer, which are equivalent to the 

mouse counterparts (Figure 2D; Bagadia et al., 2019; Grajales-Reyes et al., 2015). We also 

observed 2 cis-elements unique to pDCs located near +54 kb, which have not been reported 

in mice. Chromatin immunoprecipitation sequencing (ChIP-seq) data (Ceribelli et al., 2016) 

showed that the pDC lineage-defining TF TCF4 binds to these 2 newly described enhancers, 

suggesting they may drive IRF8 expression specifically in human pDCs.

We further investigated enhancers of other lineage-defining TFs (Figure 2D). We found that 

all DC subsets exhibited open regions at the TCF4 locus, including the TSS; however, only 

pDCs had accessibility at the +570-kb TCF4 enhancer, a binding site necessary for the TCF4 

positive feedback loop that drives pDC development in mice (Grajkowska et al., 2017). We 

further observed higher accessibility of the +42-kb CEBPA enhancer in monocytes, 

equivalent to the +37-kb Cebpa enhancer described in mice (Cooper et al., 2015). Finally, 

we analyzed the KLF4 locus and found that cDC2 and monocytes shared accessibility at +25 

kb, a predicted enhancer site (Fishilevich et al., 2017). Thus, our data enable identification of 

human DC subset-specific cis-elements around lineage-defining TFs.

We then explored TFs with high activity in pDCs to identify undescribed regulators. One 

limitation of ATAC-seq is its difficulty in distinguishing between TFs that share similar 

binding motifs. Therefore, we considered only TFs with high activity that were also 

specifically expressed in pDCs at the RNA level (Figures 2E and S2A). TCF4 and RUNX2 
were highly expressed in pDCs, correlating with their higher activity. TGIF2 was not 

specific, being expressed in pDCs and other DC subsets. TCF3, which shares binding motifs 

with TCF4, was highly and specifically expressed in pDCs; however, mouse experiments 

have shown that this TF is dispensable for pDC development and function (Cisse et al., 
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2008). Lastly, ZBTB18 (ZNF238/RP58/ZFP238), a zinc finger TF known to inhibit ID2 

expression in skeletal muscle (Yokoyama et al., 2009), was specifically expressed in pDCs.

We further evaluated ZBTB18 activity in pDCs. Analysis of the cis-elements surrounding 

ZBTB18 showed a pDC-specific peak at the TSS for one of the transcript variants (Figures 

2F and S2B). Also, HINT (HMM-based identification of TF footprints)-ATAC, which 

displays the “footprint” caused by TF-mediated protection from transposition (Li et al., 

2019b), showed changes surrounding ZBTB18 binding sites in pDCs but no other DC 

subsets (Figure 2G). Moreover, RT-PCR confirmed specific expression of ZBTB18 
transcript variant 1 by pDCs (Figure 2H). Of note, ZBTB18 transcript variants 2 and 3 were 

not differentially expressed between the subsets, suggesting that they do not contribute to the 

expression levels observed by scRNA-seq (Figure S2C). These data suggest that ZBTB18 

may regulate pDC gene expression. To support this hypothesis, we leveraged publicly 

available data of Zbtb18 silencing in mouse myoblasts and gene set enrichment analysis 

(GSEA) (Mootha et al., 2003; Subramanian et al., 2005). We found that genes that were 

downregulated upon Zbtb18 silencing were significantly enriched among human pDCs but 

no other DC subsets, providing additional evidence of ZBTB18 activity in pDCs (Figures 

S2D and S2E).

In summary, our analyses unravel TFs that regulate the chromatin landscape of human 

primary DC subsets. In particular, they allowed the identification of ZBTB18, a previously 

unrecognized TF that is active and specifically expressed by human pDCs.

Chromatin Landscape and Transcriptional Regulation of tDCs

Recently, we and others described an evolutionarily conserved DC population that shares 

features with both pDCs and cDCs, which we called tDCs. Given that the transcriptional 

regulation of tDCs remains poorly understood, we obtained high-quality ATAC-seq profiles 

using the optimized Omni-ATAC protocol for low cell numbers (Corces et al., 2017; Figures 

S3A and S3B).

To parallel our previous analyses, we divided tDCs into pDC-like CD11clo tDCs and cDC-

like CD11chi tDCs (Alcántara-Hernández et al., 2017; Leylek et al., 2019). As previously 

observed for RNA and protein analyses (Alcántara-Hernández et al., 2017; Villani et al., 

2017), TF activity scores derived from ATAC-seq profiles positioned tDCs intermediate 

between pDCs and cDC2 by PCA and unsupervised hierarchical clustering (Figures 3A and 

3B). TFs with higher activity scores in tDCs versus pDCs tended to have higher scores in 

cDC2 (Figure 3C). Conversely, TFs with higher activity scores in tDCs versus cDC2 tended 

to have even higher scores in pDCs (Figure 3D). For example, the pDC TFs TCF4 and 

RUNX2 clearly showed the transition,i.e, high activity in pDCs, intermediate in tDCs, and 

low in cDC2 (Figure 3E). On the other hand, the cDC2 TFs CEBPA and FLI1 were low in 

pDCs, intermediate in tDCs, and higher in cDC2. In all of the cases, there was a directional 

gradient in TF activity from CD11clo tDCs to CD11chi tDCs. Finally, tDCs displayed 

activity for both IRF8 and IRF4, in agreement with their protein expression (Leylek et al., 

2019). As expected (Alcántara-Hernández et al., 2017; Villani et al., 2017), tDCs did not 

show a transitional relationship between pDCs and cDC1 (Figure S3C).
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We next focused on TFs that show higher activity in tDCs, i.e., BCL11A, BCL11B, KLF3 

and TBX2 (Figure 3F, left, labeled with an asterisk). Due to the challenge of differentiating 

between TFs with similar binding motifs, we included closely related TFs in our analysis 

and assessed RNA expression (Figure 3F, right). We found that the TBX family was not 

expressed in any DC population. BCL11A and BCL11B have identical binding motifs, and 

both showed higher TF activity in tDCs; however, BCL11B was not expressed in any DC 

subset, and BCL11A was highly expressed in both pDCs and tDCs. Lastly, all 3 KLF family 

members were expressed in tDCs, but KLF12 expression was highest in tDCs. Analysis of 

cis-elements around the KLF12 locus confirmed the presence of an intronic region uniquely 

accessible in tDCs (Figure 3G). Furthermore, tDCs from both humans and mice expressed at 

least 2-fold more KLF12 mRNA than the other populations (Figure 3H). Finally, genes that 

were downregulated in Klf12−/− mouse natural killer (NK) cells were significantly enriched 

among genes expressed in tDCs, providing further evidence for KLF12 activity in tDCs 

(Figures S3D and S3E).

In conclusion, the transcription factor profile of tDCs is intermediate between pDCs and 

cDC2, corroborating their transitional features. We nevertheless identified KLF12, a TF that 

is uniquely active and expressed in human and mouse tDCs, suggesting it may play a role in 

regulating their development or function.

pDCs Undergo Large-Scale Stimulus-Dependent Chromatin Changes

We next aimed to identify regulatory elements that control functional changes during DC 

activation. For this, we used pDCs as an example, given their potential for multiple 

functional outcomes (Alculumbre et al., 2018; Swiecki and Colonna, 2015). pDCs are 

known for their capacity to produce IFN-I upon viral stimulation (Reizis, 2019). Also, pDCs 

can convert into cDC-like cells by remodeling their morphology, upregulating co-

stimulatory markers, increasing antigen presentation, and decreasing IFN-I production 

(Leylek and Idoyaga, 2019). However, the chromatin dynamics underlying these 2 distinct 

functional outcomes are unclear. Thus, we performed a comprehensive analysis of chromatin 

changes across resting and stimulated bona fide pDCs (purified to be free of tDCs; Figure 

S3A). We compared a stimulus that promotes IFN-I secretion (i.e., the TLR7 agonist 

imiquimod [IMIQ]) and a stimulus that promotes pDC activation without IFN-I secretion 

(i.e., CD40L) (Figures 4A and S4A–S4C). As expected, both stimuli induced human 

leukocyte antigen (HLA)-DR (major histocompatibility complex II [MHC-II]) and CD80 

protein upregulation, corresponding with increased chromatin accessibility around HLA-
DRA, CD80, and CD83 (Figures 4B and 4C). However, only IMIQ induced IFN-I secretion, 

which corresponded to greater chromatin accessibility surrounding IFN-stimulated genes 

such as IFITM2.

Comparison of the chromatin accessibility changes between the 2 stimuli showed that the 

primary axis of variation distinguished resting and stimulated pDCs (Figure 4D, left). 

Nevertheless, we found 2,502 and 8,182 regions that were more accessible after CD40L and 

IMIQ stimulation, respectively (Figures 4D, right, and 4E). These regions neighbored 

several immune genes—for example, CADM1, CD5, and CCR7 for IMIQ and CD2 for 

CD40L (Figures 4E and 4F). To determine whether changes in chromatin accessibility 
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correlated with differences in protein expression, we profiled stimulated bona fide pDCs by 

CyTOF (see Table S2 for the antibody cocktail). In accordance with the ATAC-seq data, 

IMIQ and CD40L stimulation induced different cellular phenotypes identified by 2 major 

differentiation arms of the Wishbone trajectory analysis (Setty et al., 2016; Figure 4G). 

Paralleling the ATAC-seq analysis, CD2 protein expression was higher in branch 2 

corresponding to CD40L-stimulated cells, whereas CADM1 and CCR7 protein expression 

was higher in branch 3 corresponding to IMIQ-stimulated cells.

Next, we used the Genomic Regions Enrichment of Annotations Tool (GREAT) (McLean et 

al., 2010) to identify significantly enriched functional pathways among IMIQ- and CD40L-

remodeled chromatin landscapes (Figure 4H). IMIQ-stimulated pDCs gained more 

accessibility around genes involved in cytokine biosynthesis, which correlated with greater 

IFN-I, tumor necrosis factor α (TNF-α), and interleukin-6 (IL-6) production (Figures 4B 

and 4I). Also, IMIQ-stimulated pDCs had increased accessibility around proliferation genes, 

which functionally correlated with higher Ki67 expression and increased cell division during 

culture (Figure 4J). Finally, IMIQ-stimulated pDCs gained greater accessibility around 

genes related to lymphocyte activation. To functionally confirm this pathway, we compared 

the capacity of IMIQ- and CD40L-stimulated pDCs to activate T cells in a mixed leukocyte 

reaction (MLR) (Figures 4K, S4D, and S4E). While both stimuli increased the capacity of 

pDC to promote T cell proliferation, IMIQ-stimulated pDCs biased responses toward IFN-

γ-producing T cells, whereas CD40L-stimulated pDCs biased responses toward regulatory T 

cells (Tregs) (Figure 4K).

Our analysis resolves the chromatin dynamics of pDCs stimulated under IFN-I-producing 

and non-IFN-I-producing conditions, providing evidence of distinct pathways of 

differentiation that result in alternative cell states and functionality.

CD40L-Stimulated pDCs Share Chromatin Landscape with tDCs and cDCs

We observed that stimulated bona fide pDCs cluster nearest to tDCs using unbiased global 

analysis (Figure S5). Using a modified GSEA, we confirmed that both CD40L and IMIQ 

stimulation promoted chromatin remodeling that correlated with the chromatin landscape of 

tDCs and cDCs (Figure 5A). This analysis also revealed a higher correlation between 

CD40L-stimulated pDCs and CD11chi tDCs. Thus, pDCs can undergo large-scale chromatin 

remodeling to primarily resemble tDCs, especially during CD40L stimulation.

GREAT analysis of biological processes showed that, similar to tDCs and cDCs, CD40L-

stimulated pDCs had greater accessibility near genes related to myeloid cell differentiation, 

T cell activation, and cytokine secretion (Figure 5B), which is in line with previous evidence 

that CD40L-stimulated bona fide pDCs can acquire cDC-like functions (Alcántara-

Hernández et al., 2017). We then used chromVAR to profile the changes in TF activity 

between CD40L-stimulated and freshly isolated (day 0) pDCs (Figures 5C and 5D). TFs that 

were less active in CD40L-stimulated pDCs tended to be less active in tDCs and cDCs. 

Conversely, TFs that were more active in CD40L-stimulated pDCs tended to have higher 

activity in tDCs and cDCs. Among these, we found a marked decrease in the activity of 

TCF4 during CD40L stimulation, which was also less active in tDCs and cDCs (Figures 5E 

and 5F). However, we found a marked increase in the activity of TFs from the JUN and FOS 
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families (i.e., TFs that can regulate myeloid cell differentiation) (Liebermann et al., 1998) in 

CD40L-stimulated pDCs, tDCs, and cDCs. Of note, only CD40L-stimulated pDCs showed a 

marked increase in the activity of TFs from the nuclear factor κB (NF-κB) family, 

suggesting that these have minimal activity in resting DC subsets (Figure 5D).

TCF4 is known to control the expression of several pDC-specific genes while repressing 

cDC hallmark genes such as ID2, thereby blocking cDC differentiation (Ghosh et al., 2010; 

Grajkowska et al., 2017). Accordingly, we found that CD40L-stimulated bona fide pDCs 

had lower TCF4 protein expression, which corresponded to higher ID2 expression (Figures 

5G and 5H). ZBTB18, which has also been described as repressing ID2, was similarly less 

active and had a lower expression in CD40L-stimulated pDCs (Figures 5E–5G). We then 

asked which other stimulation-induced changes in TF activity could be attributed to the loss 

of TCF4. We compared changes in TF activity upon CD40L stimulation to changes in TF 

expression upon TCF4 silencing (Figure 5I; Ceribelli et al., 2016). We found that several 

members of the JUN and FOS families were upregulated upon both TCF4 silencing and 

CD40L stimulation, suggesting that TCF4 may repress their expression directly or indirectly.

Our chromatin landscape analysis shows that CD40L is able to promote bona fide pDC 

conversion into tDC- and cDC-like cells, and that this dynamic process is likely tightly 

regulated by TCF4, as previously suggested in the mouse (Ghosh et al., 2010). Our data 

further suggest that ZBTB18 may contribute to this process.

pDC Conversion into cDC-like Cells Follows a Linear Trajectory

Our bulk analysis could not dissect whether CD40L-mediated chromatin remodeling was a 

homogeneous process for all pDCs or whether there was heterogeneity within the pDC 

population. Thus, we correlated our ATAC-seq observations with phenotypic cell conversion 

at the single-cell level by analyzing fresh (day 0), 2-, or 6-day CD40L-stimulated bona fide 

pDCs using CyTOF (mass cytometry). Wanderlust analysis (Bendall et al., 2014), which 

predicts the time and order of phenotypic changes, showed that the trajectory of cell 

conversion correlated with TCF4 downregulation, as suggested by the ATAC-seq data 

(Figure 6A). During stimulation, pDCs downregulated classic markers such as BDCA2, and 

upregulated several cDC markers (e.g., CD33, HLA-DR, CD172a, CD11c) (Figures 6B and 

6C).

Next, we aligned the phenotype of CD40L-stimulated bona fide pDCs to that of tDCs and 

cDCs using Scaffold (Spitzer et al., 2015). Scaffold generates a reference map that facilitates 

comparison across conditions by connecting single cells to landmarks based on phenotypic 

similarity. We used prior knowledge to denote the location of pDC (blue), tDC (cyan), cDC1 

(green), and cDC2 (red) landmarks in the map (Figures S6A and S6B). Corroborating our 

purification strategy, ~99% of freshly isolated bona fide pDCs localized in the pDC 

landmark at day 0 (Figures 6D and 6E). In accordance with the ATAC-seq analysis, we 

found that ~15% of pDCs mapped to the tDC landmark after 2 days of culture with CD40L. 

These cells expressed several tDC markers, including CD5, BDCA3, CD11c, CD33, 

CX3CR1, and AXL (Figures 6F and S6C). The appearance of AXL+ cells in the culture was 

not attributable to cell proliferation (Figure S6D). By day 6, we observed that a fraction of 

cells positioned in the cDC2 landmark (Figures 6D and 6E). Considering that cultured pDCs 
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mapped to the tDC landmark by day 2, but only mapped to the cDC2 landmark at day 6, our 

data suggest that tDCs are a transitional cell state during pDC-to-cDC conversion.

To test whether CD40L-mediated phenotypic changes correlated with functional changes, 

we re-sorted cells that mapped to the pDC, tDC, or cDC2 landmarks and analyzed their 

function (see Figure S6E for the phenotype of purified cells). Cells that mapped to the pDC 

landmark retained the capacity to produce IFN-α (Figure 6G). Conversely, cells that mapped 

to the cDC2 landmark lost IFN-α production potential and acquired strong T cell activation 

capacity. Finally, cells that mapped to the tDC landmark produced very little IFN-α and 

induced strong T cell proliferation, which corresponds to the previously described functional 

capabilities of tDCs (Leylek et al., 2019).

We conclude that bona fide pDCs follow a linear trajectory of cell conversion to cDC-like 

cells during CD40L stimulation, passing through a stage that resembles circulating tDCs. 

There is heterogeneity in the pDC response to stimulation at the single-cell level, such that 

not all pDCs proceed through the cell-conversion process simultaneously. Finally, our data 

are in line with a recent report showing that mouse pDCs can acquire tDC- and cDC-like 

gene signatures after viral infection in vivo (Abbas et al., 2020).

GWAS Associates Systemic Sclerosis Genetic Risk Variants with pDCs

Dissecting the molecular mechanisms behind autoimmune disease genetic risk variants 

requires pinpointing disease-relevant cell types. However, nearly 90% of these variants lie in 

non-coding regions (Farh et al., 2015). Our global chromatin analysis allowed us to ask 

whether genetic variation in coding and non-coding regions confers the risk of autoimmune 

diseases in a DC subset-dependent manner.

We used a publicly available database for autoimmune and non-immune (control) disorders 

and calculated the enrichment of disease-related SNPs in DC subsets using the Chromatin 

Element Enrichment Ranking by Specificity (CHEERS) algorithm (Farh et al., 2015; Soskic 

et al., 2019; Figures 7A and S7A). The majority of the significant autoimmune disease 

associations were found with cis-elements that opened upon stimulation. For instance, a 

SNP that confers the risk of Crohn’s disease was located in a stimulation-responsive 

enhancer region within STAT3, a negative regulator of DC activation (Figure S7B; Melillo et 

al., 2010). Thus, stimulation-responsive chromatin regions can explain significant trait 

heritability in DCs.

We then focused on identifying disease-related SNPs in cis-elements for resting DCs. 

Resting pDCs had significant enrichment for risk variants associated with systemic sclerosis 

(Figure 7A). Two variants, rs12445476 and rs11642873, were located within the +58-kb 

pDC-specific IRF8 enhancer (Figure 7B). This enhancer was highly accessible in resting 

pDCs, but not in cDCs, monocytes, or stimulated pDCs. Furthermore, this enhancer was not 

accessible in B cells, T cells, or NK cells, demonstrating pDC specificity. Notably, 

rs12445476 and rs11642873 were adjacent to six E-boxes, which is in line with previous 

reports showing that the majority of SNPs are found near but not within TF binding sites 

(Bagadia et al., 2019; Farh et al., 2015). Since IRF8 regulates pDC function (Sichien et al., 

2016), it is possible that these SNPs contribute to the pathogenesis of systemic sclerosis by 
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dysregulating IRF8 expression in pDCs. Our approach shows the potential of this dataset to 

infer disease mechanisms that involve alterations in DC chromatin regulatory regions.

DISCUSSION

Here, we analyzed the chromatin landscape that provides the basis of primary human DC 

heterogeneity by unraveling the repertoire of accessible cis-elements in each subset. We 

inferred previously undescribed TFs that may underlie pDC and tDC development or 

function and exposed the dynamic activity of lineage-specific and stimulus-dependent TFs 

governing the outcome of stimulated pDCs. Finally, by connecting the chromatin landscape 

of each DC subset to disease-causing SNPs, we identified genetic variants that contribute to 

the risk of autoimmune diseases such as the human pDC-specific +58-kb IRF8 enhancer in 

systemic sclerosis.

Nearly all of the regions accessible in cDC2 were shared with ≥1 cell types. We propose that 

the lack of a cDC2-specific signature reflects the predominance of a generalized and shared 

myeloid program. Alternatively, it is possible that lack of a cDC2 signature is indicative of 

cDC2 heterogeneity, which has recently been highlighted in several publications (Alcántara-

Hernández et al., 2017; Dutertre et al., 2019; Villani et al., 2017). Considering this 

heterogeneity among cDC2, further investigation of their transcriptional regulation may 

benefit from advances in single-cell ATAC-seq approaches (Satpathy et al., 2019).

The development, identity, and function of pDCs is dependent on the master regulator TCF4 

(Cisse et al., 2008). TCF4 antagonizes ID2, and thus is critical in regulating pDC versus 

cDC differentiation (Grajkowska et al., 2017). Similar to TCF4, the herein-identified pDC-

specific TF ZBTB18 is known to inhibit ID2 expression during muscle cell development 

(Yokoyama et al., 2009). Thus, it is reasonable to hypothesize that ZBTB18 cooperates with 

TCF4 to repress ID2 during pDC development and differentiation. A recent chromatin-

accessibility study noted the specific activity of Zbtb18 in murine pDCs (Li et al., 2019b), 

suggesting it is conserved in both species. Future loss-of-function experiments will aim to 

evaluate the role of this undescribed TF on pDC function.

A feature of bona fide pDCs (AXL−) is their capacity to convert into cDC-like cells 

(Alcántara-Hernández et al., 2017). We showed that pDC conversion occurs efficiently 

during CD40L stimulation and is associated with the loss of TCF4 and ZBTB18 TF activity 

and the gain of ID2 expression. We also observed the increased activity of JUN and FOS 

families, which form AP-1 heterodimers (Shaulian and Karin, 2002). TCF4 silencing in the 

absence of stimulation was sufficient to induce the expression of AP-1 members, suggesting 

that AP-1 activity is repressed by TCF4 directly or indirectly, and may be necessary for pDC 

conversion into cDC-like cells. Finally, we showed that bona fide pDC conversion into cDC-

like cells can pass through a stage that resembles circulating tDCs.

The recent identification of tDCs has raised questions about their origin and function. Our 

analysis of TF activity based on chromatin accessibility complemented previous high-

dimensional protein and transcriptomic approaches demonstrating the transitional nature of 

these cells in relation to pDCs and cDC2 (Alcántara-Hernández et al., 2017; Leylek et al., 
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2019; Villani et al., 2017). Given their phenotypic and functional overlap with other DC 

subsets, it remains unclear whether tDCs have a distinct function within the immune system. 

Nevertheless, we identified KLF12 as a TF expressed in both human and mouse tDCs. 

Although KLF12 has not been described in myeloid development or function, other KLF 

family members have been described. KLF4 drives monocyte differentiation and is required 

for cDC2 function (Feinberg et al., 2007; Tussiwand et al., 2015). KLF12 is most closely 

related to KLF3 and KLF8, which act as transcriptional repressors (Ilsley et al., 2017). 

Within the immune compartment, Klf12 is required for NK cell proliferation (Lam et al., 

2019). Further study is needed to determine the function of KLF12 in tDCs.

Our analysis enabled identification of disease-associated SNPs that lie in the regulatory 

regions of human DC subsets. We observed most of the significant autoimmune trait 

heritability within accessible regions of stimulated but not resting DCs, as observed for other 

immune cells (Calderon et al., 2019), suggesting an important role for DC activation in 

autoimmune dysregulation. Nevertheless, we did identify disease SNPs associated with 

resting cells, such as systemic sclerosis-associated SNPs rs12445476 and rs11642873 within 

the pDC-specific +58-kb IRF8 enhancer. The IRF8 locus was previously linked to systemic 

sclerosis (Arismendi et al., 2015; Gorlova et al., 2011; Terao et al., 2013). Similarly, pDCs 

have been associated with systemic sclerosis in human patients and mouse models (Ah 

Kioon et al., 2018). However, the molecular cause of pDC dysregulation is not fully 

understood. It is possible that mutations in the +58-kb IRF8 enhancer may alter IRF8 

expression specifically in pDCs, and consequently, their function in systemic sclerosis.

This dataset provides insights into the transcriptional regulation that underpins the 

heterogeneity of primary human DCs and a resource for understanding human DC 

differentiation, plasticity, and function. This dataset enables connecting human DC subsets 

to disease pathogenesis and, consequently, provides an avenue for DC-based therapeutic 

design.

STAR★METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Juliana Idoyaga 

(jidoyaga@stanford.edu).

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability—ATAC-seq data generated in this study are deposited in 

NCBI Gene Expression Omnibus (GEO: GSE146896). Previously published data analyzed 

in this study include human dendritic cell scRNA-seq data (Villani et al., 2017; https://

singlecell.broadinstitute.org/single_cell/study/SCP43/atlas-of-human-blood-dendritic-cells-

and-monocytes#study-download), mouse dendritic cell RNA-seq data (Lau et al., 2016; 

GEO: GSE76132), Zbtb18 silencing data (Yokoyama et al., 2009; GEO: GSE12993), 

Klf12−/− mouse RNA-seq data (Lam et al., 2019; GEO: GSE128962), TCF4 ChIP-seq data 

(Ceribelli et al., 2016; GEO: GSE76147), TCF4 silencing data (Ceribelli et al., 2016; GEO: 
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GSE75650), and ATAC-seq of human major immune cell lineages (Calderon et al., 2019; 

GEO: GSE118189).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Blood was obtained with informed consent from healthy adults in accordance with the 

Research and Laboratory Environmental Health and Safety program of Stanford University 

and Institutional Review Board (IRB) protocols approved by the Stanford University 

Administrative Panel on Human Subjects in Medical Research. Males and females were 

equally represented. Our analysis revealed that sex differences did not contribute to the 

variation observed (see Figure S1D), thus it was not a major focus of this work. Blood 

donors were healthy, without acute diseases and between 20–45 years old.

METHOD DETAILS

Isolation of Human PBMCs—50 mL of blood from healthy adults were collected using 

EDTA-coated tubes (BD Biosciences). PBMCs were isolated by density gradient 

centrifugation using Ficoll-Paque PLUS (GE Healthcare). Cells were washed with PBS, 

counted, and immediately processed for sorting.

Cell Sorting—PBMCs were incubated with human gamma-globulin (Invitrogen) to block 

non-specific binding for 15 minutes on ice. Myeloid cells were negatively enriched using 

mAbs against CD3 (OKT3), CD19 (HIB19), CD335 (9E2), and CD66b (G10F5) followed 

by anti-mouse magnetic beads (Dynabeads, Thermo Fisher Scientific) at a concentration of 4 

beads per target cell. For experiments in which tDCs were sorted, cells were negatively 

enriched using mAbs against CD3, CD19, CD335, and CD14 (HCD14). After enrichment, 

cells were stained with sorting antibody cocktail for 20 minutes at 4°C. Cells were sorted to 

> 98% purity using a FACSAria II or FACSAria Fusion cell sorter (BD Biosciences). See 

Figures S1A, S3A, and S4A for sort gating strategies. For phenotypic experiments, pDCs 

were enriched from PBMCs using the Human Plasmacytoid Dendritic Cell Isolation Kit II 

(Miltenyi Biotec), then sorted as BDCA4+AXL−.

ATAC-seq—Immediately after sorting, cells were processed as described (Buenrostro et al., 

2015). Briefly, 50,000–60,000 sorted cells were spun down, washed with PBS, and lysed. 

Technical replicates were performed when not limited by cell numbers. The transposition 

reaction was performed with Tn5 transposase from the Illumina Nextera DNA Library 

Preparation Kit or produced as described (Picelli et al., 2014), for 30 min at 37°C. Reactions 

were scaled down for samples with less than 50,000 cells. Transposed DNA was purified 

(QIAGEN MinElute PCR Purification Kit) and stored at −20°C. Once 3–4 donors were 

accumulated, samples were PCR amplified. To reduce GC and size bias, the optimal number 

of PCR cycles was determined for each sample via qPCR according to the protocol. Samples 

were barcoded using published primers (Buenrostro et al., 2013). Library quality and 

quantification was assessed with an Agilent Bioanalyzer at the Stanford Protein and Nucleic 

Acid Facility.
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For subsequent analysis of tDCs and stimulated pDCs, cells were processed according to the 

Omni-ATAC protocol as described (Corces et al., 2017). Reaction volumes for 5,000–15,000 

cells were scaled down from the protocol for 50,000 cells.

Sequencing—Barcoded sample libraries were pooled for a final concentration of 4 nM. 

Libraries were first run on low depth MiSeq for quality assessment. Subsequent sequencing 

was performed on Illumina NextSeq 500 (2×75bp or 2×50bp) at the Stanford Functional 

Genomics Facility. NextSeq was selected to avoid problems with index swapping, which can 

occur in the presence of excess primers (Larsson et al., 2018). Sequencing was performed in 

three batches, which constituted two runs with the initial pDC, cDC1, cDC2, and CD14+ 

analysis, and a later analysis of pDCs, tDCs, and stimulated pDCs.

Staining cell suspensions for flow cytometry—Antibodies (Abs) for flow cytometry 

were purchased from Biolegend, R&D, MBL International Corp., and Thermo Fisher 

Scientific. Anti-TCF4 (Abcam) was labeled using the Alexa 647 Labeling Kit (Thermo 

Fisher Scientific) following manufacturer’s instructions or detected using anti-Rabbit-Alexa 

647 (Jackson ImmunoResearch). Cells were acquired on a 5-laser LSRFortessa X-20 (BD 

Biosciences), and data analyzed using FlowJo software (Tree Star, Inc). Compensation was 

set up using compensation beads (BD Biosciences). PBMCs were incubated with human 

gamma-globulin to block non-specific binding for 15 minutes on ice. Cells were incubated 

with Ab mixes in human FACS buffer (2mM EDTA, 2% Donor equine serum in PBS) for 20 

minutes at room temperature (RT). For transcription factors and cytokine detection, cells 

were stained with LIVE/DEAD Fixable Blue (Thermo Fisher Scientific) for 5 minutes at RT 

for detection of dead cells, then fixed using FoxP3 Transcription Factor Fix/Perm Buffer 

(Thermo Fisher Scientific) for 1 hour and stained intracellularly for 20 minutes in 1X 

Permwash buffer (Thermo Fisher Scientific). After intracellular stain, cells were stained for 

remaining markers for 20 minutes in human FACS buffer. For PrimeFlow, freshly isolated or 

2-day stimulated sorted bona fide human pDCs (AXL−) were plated with 2×106 mouse 

splenocytes to provide a cellular bed, and stained according to manufacturer’s instructions 

(Thermo Fisher Scientific). Human cells were identified by gating mouse CD45− human 

CD123+ cells. ID2 target probes were purchased from Thermo Fisher Scientific. For a 

negative control, cells were processed identically and stained without target probes. To track 

pDC proliferation, PBMCs were resuspended at a concentration of 20×106 cells/mL and 

labeled with 2.5 μM CellTrace Violet (Thermo Fisher Scientific) for 10 minutes at 37°C 

prior to sort.

Staining cell suspensions for CyTOF—Metal-labeled Abs were obtained from 

Fluidigm or labeled using the MaxPar X8 labeling kit (Fluidigm) according to 

manufacturer’s instructions (see Table S2). For mass cytometry analysis of stimulated pDC 

experiments, bona fide pDCs (AXL−) were obtained by sorting as in Figure S3A. Freshly 

isolated and cultured pDCs were pooled with 3×106 mouse splenocytes to provide a cellular 

bed, stained for CyTOF, and identified as human CD45+ mouse CD45− cells. Cells were 

stained with 1 mL of 0.25 μM cisplatin (Fluidigm) for 5 minutes at room temperature to 

exclude dead cells. Cells were then washed with CyFACS buffer (2mM EDTA, 1% BSA 1% 

in PBS) and stained with heavy-metal-labeled Ab cocktail for 30 minutes on ice. Cells were 
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washed twice with CyFACS then fixed with FoxP3 Transcription Factor Fix/Perm Buffer for 

2 hours. Human surface Abs that were sensitive to FoxP3 buffer (i.e., CX3CR1, CD123, 

CD33, CD135, CD172a and CD163), were stained after fixation in 1X Permwash buffer, for 

30 minutes at 4°C. After staining, samples were washed and incubated with 2% 

paraformaldehyde (Electron) in PBS containing 125 nM Iridium intercalator (Fluidigm) 

overnight. Cells were washed with water, filtered and acquired in a CyTOF2 (Fluidigm).

Cell culture for pDC activation—Prior to cell culture, pDCs were purified by sorting to 

be free of tDCs (AXL−), following the gating strategy in Figure S3A. 10,000 sorted bona 

fide pDCs were cultured in 200 μL R10 complete media consisting of RPMI (Corning) with 

10% FBS, 2 mM L-glutamine (Corning), 100 IU Penicillin, 100 mg/mL Streptomycin 

(Corning), 25 mM HEPES (Corning), 1 mM Sodium Pyruvate (Corning), 100 mM MEM 

Nonessential Amino Acids (Corning) and 55 mM 2-Mercaptoethanol (GIBCO) in 96 well 

U-bottom plates at 37°C. All conditions included 10 ng/mL recombinant human IL-3 (R&D 

Systems; carrier-free) for pDC survival. Stimulation conditions were 100 ng/mL CD40L 

(R&D Systems; carrier-free) or 5 μg/mL Imiquimod (R837, Invitrogen). For ATAC-seq, 4–6 

wells were plated per condition. After 2 days, cells were pooled and sorted as FSC-A, SSC-

A, Live, Singlets, CD123+ HLA-DR+ (see Figure S4A for sorting strategy). For analysis of 

IFN-I production in Figure 6G, pDCs were re-sorted into “pDC-like,” “tDC-like,” and 

“cDC-like” after 2 days of stimulation with CD40L, then stimulated for 24h with 5 μg/mL 

CpG-A (ODN 2216, Invivogen).

Cytokine detection in culture supernatant—IFNα was detected with the VeriKine 

Human IFN Alpha Multi-Subtype ELISA Kit (PBL Assay Science). IL-6 and TNFα were 

detected using the Cytometric Bead Array (CBA) Enhanced Sensitivity Flex Set (BD 

Biosciences).

Mixed Leukocyte Reactions—PBMCs were washed with PBS, incubated with 1.7 nM 

CFSE (Sigma-Aldrich) at 37°C in a water bath for 10 minutes, and washed with MACS 

buffer (2mM EDTA, 2% BSA in PBS). After CFSE labeling, total T cells (CD4+ and CD8+ 

T cells) were obtained using the Pan T Cell Isolation Kit (Miltenyi Biotec) according to 

manufacturer’s instructions. Allogeneic T cells were co-cultured with freshly sorted (day 0) 

bona fide (AXL−) pDCs (1:20 ratio) or bona fide (AXL−) pDCs that were stimulated for 2 

days with CD40L or IMIQ. Activated pDCs were washed, re-counted and plated with 

allogeneic T cells in the presence of fresh stimuli. As a control of homeostatic proliferation, 

T cells were cultured alone without pDCs in the presence of the corresponding stimuli. The 

same T cell donor was used to perform the experiments with freshly isolated versus activated 

pDC. Alternatively, pDCs were re-sorted into “pDC-like,” “tDC-like,” and “cDC-like” after 

2 days of stimulation with CD40L, then plated with T cells as above. After 6 days of 

reaction, 100 ng/mL of PMA (Sigma-Aldrich) and 500 ng/mL of Ionomycin (Sigma-

Aldrich) were added to the culture followed by the addition of 10 μg/mL of Brefeldin A 

(Sigma-Aldrich) and 1:1500 Golgi STOP (BD Biosciences) 1 hr later for a total of 6 hr. 

Cytokines and FoxP3 were stained after 2 hours of fixation with FoxP3 Transcription Factor 

Fix/Perm Buffer (ThermoFisher Scientific). Results are expressed as total number of CFSElo 
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T cells or ratio between the numbers of cytokine-producing cells and FoxP3+ CD127low 

regulatory T cells (Treg).

Quantitative PCR—RNA was extracted from sorted cells with the Nucleospin RNA XS 

kit (Takara Bio) according to manufacturer’s instructions. Total RNA from each DC subset 

was reverse transcribed to cDNA using iScript Reverse Transcription Supermix for RT-

qPCR (Bio-Rad Laboratories). cDNA was amplified in a CFX Connect Real-Time PCR 

Detection System (Bio-Rad Laboratories) with the iTaq Universal SYBR® Green Supermix 

(Bio-Rad Laboratories). Expression was calculated following a ΔΔCq method relative to 

RPL13A and cDC2 and shown as 2−ΔΔCq. Primers were as follows: KLF12 forward 

CCTTTCCATAGCCAGAGCAG; KLF12 reverse TTGCATCCCTCAAAATCACA; 

ZBTB18_v1 forward CAGGTTTATGTGTCCTAAAGGTTATG; ZBTB18_v1 reverse 

CCACCAGAACAGTGCAGTCA; ZBTB18_v2 forward 

AGCACAGTCAGGTAGCAAAAGT; ZBTB18_v2 reverse 

GTCCCACAAAACCTACAAAATAGC; ZBTB18_v3 forward 

GGCCGCTCCGTGTTATGAA; ZBTB18_v3 reverse CCACCAGAACAGTGCAGTCA; 

RPL13A forward GCCCTACGACAAGAAAAAGCG; RPL13A reverse 

TACTTCCAGCCAACCTCGTGA.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical details of experiments, including statistical tests and value of n, can be found in 

figure legends. Significance is depicted as follows: *p < 0.05, **p < 0.01, ***p < 0.001, 

****p < 0.0001. Statistical tests were two-sided, and were performed with GraphPad Prism 

6 unless otherwise indicated. All bar graphs show mean ± SD. PCA and heatmaps were 

performed and visualized in R with the ggplot2, prcomp, and viridis packages. gMFI 

indicates geometric mean fluorescence intensity. ΔMFI indicates percent change from 

control condition.

Initial processing of ATAC-seq data—Processing of raw sequencing data was 

performed with the ENCODE ATAC-seq Pipeline (https://github.com/ENCODE-DCC/atac-

seq-pipeline) (ENCODE Project Consortium, 2012) on the Stanford Sherlock computing 

cluster. A non-overlapping union peak set was defined using a previously described method 

(Corces et al., 2018). Briefly, peak calling was first performed on each sample individually 

with MACS2. Next, 500 bp fixed width peaks were defined by identifying the peak summit 

and extending it by 250 bp on either side. Finally, overlapping peaks were removed through 

an iterative process. For combined analysis in Figure 3, Figure 5, and Figure 7, fixed width 

peak sets from both datasets were combined and overlaps were removed. Read counts were 

calculated with bedtools multicov (Quinlan and Hall, 2010).

Analysis of open chromatin regions—Differential accessibility analysis of peaks was 

performed with DESeq. Raw counts were normalized with conditional quantile 

normalization (CQN). A model was built with DESeq using the formula ~CellType + Sex + 

Batch. Cell-specific peaks in Figure 1 were defined as FC > 5 and p-adj < 0.05. Shared 

peaks in Figure 1 were defined as FC < |2| and average count > 10. Differential peaks 

between CD40L and IMIQ in Figure 4 were defined as FC > |2| and p-adj < 0.05. For 
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visualization (PCA, heatmaps), counts were batch corrected using ComBat when applicable 

(Johnson et al., 2007). In Figure 3A, the PCA was built on one batch, and remaining two 

batches were overlaid using pca.predict. In Figure 3B, TF scores were averaged across 

samples for each subset prior to calculating Z-score.

For genome tracks, bigwig files were created from bam files with deeptools and normalized 

using the CPM method (Ramírez et al., 2016). Genome tracks were explored using the 

WashU Epigenome browser (Li et al., 2019a). Genome tracks were formatted for publication 

with SparK (https://www.biorxiv.org/content/10.1101/845529v1; https://github.com/

harbourlab/SparK).

To connect observed chromatin accessibility at the IRF8 locus with previously described 

enhancers, we used UCSC BLAT to find the human hg19 genomic coordinates for the 

conserved sequences that overlapped the mouse +32kb Irf8 enhancer reported in Grajales-

Reyes et al., 2015. These sequences were found between chr16:85981418–85981613, which 

overlapped the +49kb peak identified here. We also used the human hg19 genomic 

coordinates representing a conserved sequence that overlapped the mouse +41kb Irf8 
enhancer reported in Bagadia et al. (2019). We found that this region (chr16:85991064–

85991633) overlapped the +58kb peak identified here.

Enrichment of gene ontology terms was performed on differentially accessible cis-elements 

with GREAT (McLean et al., 2010) using the hg19 reference genome with whole genome as 

background and associating genomic regions by “Single nearest gene within 1000kb.” 

Default global controls were used (Region-based fold enrichment > 2, FDR < 0.05) except 

that we increased the minimum observed gene hits to 5. Redundant pathways were removed 

with ReVIGO (Supek et al., 2011). Remaining terms were ranked by p value and the top 8–

10 were shown.

To compare chromatin accessibility signatures between stimulated pDCs and resting 

populations, a modified Gene Set Enrichment Analysis (GSEA) was performed with cis-

elements in place of genes. The top 500 cis-elements that were differentially accessible in 

each DC subset or monocyte compared to Day 0 unstimulated pDCs were used to create 

signatures (.gmx file), representing the x axis in Figure 5A. To define the pDC signature, 

pDCs were compared to cDC2. Stimulation profiles (.rnk files) were created by taking the 

top differentially accessible cis-elements (2000 up and 2000 down) between CD40L-

stimulated pDCs and Day 0 unstimulated pDCs or between IMIQ-stimulated pDCs and Day 

0 unstimulated pDCs, representing the y axis in Figure 5A. The analysis was performed with 

GSEA software, which is available through the Broad Institute (https://www.gsea-

msigdb.org/gsea/downloads.jsp) (Mootha et al., 2003; Subramanian et al., 2005).

Analysis of transcription factor activity—For transcription factor analysis, 

chromVAR was used to calculate deviations (TF activity scores, or TF scores) for a curated 

collection of 870 transcription factor motifs derived from cisBP data “human_pwms_v2” 

(Schep et al., 2017). t test was used for differential analysis with a Benjamini-Hochberg 

correction for multiple hypothesis testing. For visualization of chromVAR data (PCA, 

heatmaps), deviation scores were batch corrected using ComBat where applicable. Where 
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indicated, TF scores were scaled between 0 and 1 by subtracting the minimum, then dividing 

by the maximum.

Transcription factor footprint plots were produced using HINT-ATAC (Li et al., 2019b). 

Motif position weight matrices (pwms) were acquired from CisBP, JASPAR, or chromVAR. 

Data was pooled from all samples for each cell type.

Analysis of autoimmune SNPs—Fine-mapped autoimmune-disease associated SNPs 

were downloaded from Farh et al. (Farh et al., 2015). We used the CHEERS algorithm to 

identify enrichment of disease variants in each cell type (Soskic et al., 2019). Briefly, peak 

counts were averaged for each cell type then normalized with a “reads in peak” 

normalization. The bottom 10th percentile of peaks was removed, and quantile normalization 

was performed. Euclidean normalization was performed to obtain a cell type specificity 

score for each peak in each cell type. Finally, the algorithm identified peaks that overlap 

SNPs for each disease and calculated an enrichment p value.

RNA-seq and microarray analysis—Human scRNA-seq data was downloaded from 

https://singlecell.broadinstitute.org/single_cell/study/SCP43/atlas-of-human-blood-

dendritic-cells-and-monocytes#study-download as log transformed transcripts per million 

(TPM). For analysis in Figure 2E, expression from single cells was averaged for each subset. 

Then, Z-scores were calculated for pDCs, cDC1, cDC2, and CD14+ monocytes. pDC 

specificity refers to the Z-score in pDCs. Normalized counts for mouse RNA-seq bulk data 

were downloaded from NCBI GEO (GEO: GSE76132). For Figures S2 and S3, GSEA was 

performed with Zbtb18 silencing (GEO: GSE12993) and Klf12−/− mice (GEO: GSE128962) 

datasets, respectively, downloaded from NCBI GEO. The top 500 differentially expressed 

genes were used to create signatures for loss of Zbtb18 or Klf12. Differentially expressed 

genes (FC > 1.5 and p-adj < 0.05) between pDCs or tDCs and other DC subsets were 

identified with the limma package in R. Up to 2000 differentially expressed genes (1000 up 

and 1000 down) were ranked by log2 fold change and tested for overlap with signatures. For 

Figure 5I, TCF4 silencing data was downloaded from NCBI GEO (GEO: GSE75650). 

CAL-1 cells analyzed after 48h treatment with control shRNA or TCF4 shRNA were 

compared with the limma package in R to determine differentially expressed TFs (FC > |2| 

and p-adj < 0.05).

CyTOF data analysis—Files in FCS format were normalized using the Nolan Lab’s 

Normalizer (https://github.com/nolanlab/bead-normalization). For both mouse and human, 

live, single cells were gated using FlowJo. Human PBMCs were gated as CD3−, CD19−, 

CD335−, CD66b−, CD14−, CD16− and HLA-DR+. Stimulated pDCs were gated on human 

CD45+ live cells. Events of interest were imported into CYT and transformed using 

hyperbolic arcsin (asinh x/5). For Wanderlust and Wishbone analysis, 250–300 events were 

sampled from each condition. Trajectory analysis was performed using all of the parameters 

except lineage and setting freshly isolated pDCs as the starting trajectory point.

The Scaffold R package was downloaded from GitHub (https://github.com/nolanlab/

scaffold). Events from the stimulated pDCs and the corresponding PBMCs were imported. 
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DC populations were gated and exported from FlowJo. Clustering was performed using all 

of the parameters except lineage markers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Mapping the chromatin landscape of primary human DC subsets using ATAC-

seq

• The transcription factors ZBTB18 and KLF12 are active in pDCs and tDCs, 

respectively

• The chromatin landscape of stimulated pDCs converges toward tDCs and 

cDC2

• DC cis-elements, including the pDC IRF8 enhancer, harbor autoimmune 

disease SNPs
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Figure 1. Analysis Workflow of Primary Human DC Chromatin Accessibility Profiles
(A) Left: experimental workflow. Human myeloid populations were sorted from peripheral 

blood of 7 healthy adult donors and analyzed by ATAC-seq. Technical replicates were 

analyzed when not limited by cell number. Right: post-sort purity. The numbers indicate the 

frequency of parent gate. See Figure S1A for the full gating strategy.

(B) PCA based on ATAC-seq signal in all cis-elements. Each point represents 1 sample.
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(C) Genome tracks from 1 representative donor showing signal near known subset-specific 

genes. The bottom bar represents the gene and the arrow indicates the start codon. The gray 

highlights indicate differentially accessible cis-elements.

(D) Top: heatmap of subset-specific cis-elements (fold change [FC] > 5 and adjusted p value 

[p-adj] < 0.05 in all pairwise comparisons). Color indicates Z score of ATAC-seq signal. 

Bottom: number of subset-specific cis-elements.

(E) Left: scatterplots comparing ATAC-seq signal (read counts) between cDC2 and other 

subsets. Each point represents 1 cis-element. The colored points indicate differentially 

accessible cis-elements (FC > 5 and p-adj < 0.05). The dark gray points indicate shared cis-

elements (FC < 2 and average count > 10). Right: heatmap of cis-elements shared between 

cDC2 and other subsets. The color indicates ATAC-seq signal Z scores. Bottom: overlap of 

cDC2-specific differentially accessible cis-elements in each pairwise comparison.

(F) Genome tracks for select shared cis-elements from (E).

See also Figure S1 and Table S1.
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Figure 2. ATAC-Seq Reveals an Undescribed Transcriptional Regulator in pDCs.
(A) PCA based on TF activity scores (TF score) calculated by chromVAR.

(B) Heatmap of top 200 most variable TFs (columns) across subsets (rows). The color 

indicates scaled TF score.

(C) PCA as in (A) colored by scaled TF score.

(D) Chromatin accessibility around the IRF8, TCF4, CEBPA, and KLF4 loci. The tracks are 

from 1 representative donor. The TCF4 ChIP-seq track (Ceribelli et al., 2016) is shown for 

IRF8 and TCF4.

(E) pDC-specific TFs identified by chromVAR that also demonstrate higher mRNA 

expression in pDCs. The x axis represents the mean mRNA expression in pDCs measured by 

scRNA-seq (Villani et al., 2017). The bars are colored by pDC specificity compared to other 

DC subsets (Z score).

(F) Genome tracks of ZBTB18 locus from 1 representative donor showing transcript variant 

1.

(G) ZBTB18 HINT-ATAC footprint from genome-wide binding sites. The data are pooled 

from all of the samples for each subset.

(H) ZBTB18 transcript variant 1 expression measured by RT-PCR, n = 3–5 in 2–4 

independent experiments. The statistics are determined by 1-way ANOVA with Dunnett’s 

multiple comparisons test.
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Bar graphs show means ± SDs. *p < 0.05 and **p < 0.01. See also Figure S2.
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Figure 3. Unique TF Profile of tDCs
(A) PCA based on TF scores calculated by chromVAR.

(B) Heatmap of top 200 most variable TFs (columns) across subsets (rows). The color 

indicates scaled TF score.

(C) Left: histogram of difference in TF scores between pDCs and CD11chi tDCs. The 

colored points indicate significantly different TFs (ΔTF score > |0.05| and p-adj < 0.05). 

Right: boxplots of TF scores for differentially active TFs from indicated comparisons.

(D) Same as (C), but comparing cDC2 and CD11chi tDCs.

(E) Bar graphs of scaled TF scores for indicated TF motifs (n = 4–17 samples per subset).

(F) Left: heatmap of scaled TF scores for tDC-specific TF motifs (ΔTF score > |0.05| and p-

adj < 0.05 in all pairwise comparisons; indicated by asterisk) and closely related TFs. Right: 

heatmap of average TF mRNA expression from scRNA-seq data (Villani et al., 2017).
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(G) Genome tracks of KLF12 locus from 1 representative donor.

(H) Left: KLF12 expression in human subsets measured by RT-PCR (n = 2–3 in 2 

experiments). Right: Klf12 expression in mouse subsets measured by RNA-seq (n = 2–3) 

(Lau et al., 2016; Leylek et al., 2019). The statistics are determined by 1-way ANOVA with 

Dunnett’s multiple comparisons test.

Bar graphs show means ± SDs. **p < 0.01, ***p < 0.001, and ****p < 0.0001. See also 

Figure S3.
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Figure 4. Analysis of Chromatin Landscapes Reveals Alternative pDC Cell States following 
Stimulation
(A) Experimental workflow for analysis of freshly isolated (day 0) and stimulated pDCs. 

Bona fide pDCs (AXL−) were sorted and analyzed immediately (day 0) or stimulated in 
vitro for 2 days, followed by re-sorting live cells for ATAC-seq analysis (see Figures S3A 

and S4A for gating strategy).

(B) Left: protein levels of HLA-DR and CD80 in freshly isolated (day 0) or 2-day stimulated 

bona fide pDCs measured by flow cytometry (n = 3–9 in 3–8 experiments). The statistics are 

determined by Kruskal-Wallis with Dunn’s multiple comparisons test. Right: IFN-α 
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measured by ELISA in culture supernatant after 2 days (n = 5 in 5 experiments). The 

statistics are determined by Mann-Whitney test.

(C) Genome tracks from 1 representative donor.

(D) Left: PCA based on ATAC-seq signal in all cis-elements. Each point represents 1 sample 

(n = 3–4 per condition). Right: scatterplot comparing all cis-elements between CD40L- and 

IMIQ-stimulated pDCs. The colored points indicate significantly differentially accessible 

cis-elements (FC > 2 and p-adj < 0.05).

(E) Heatmap of scaled ATAC-seq signal in cis-elements identified in (D).

(F) Genome tracks from 1 representative donor.

(G) Left: PCA of sorted bona fide pDCs analyzed by CyTOF, including three time points 

(days 0, 2, and 6) and conditions (media alone, CD40L, IMIQ) subsampled and merged. The 

color indicates the branch cluster determined by Wishbone (n = 1 representative of 2 

experiments). Center: percentage of pDCs in each Wishbone branch at day 6. Right: PCA 

colored by expression of select markers.

(H) Top Gene Ontology terms enriched in CD40L and IMIQ differentially accessible cis-

elements. The bubble size represents the fold enrichment. The color indicates −log10 false 

discovery rate (FDR).

(I) Cytokines in culture supernatant of 2-day stimulated pDCs (n = 5 in 5 experiments). The 

statistics are determined by t test.

(J) Left: frequency of Ki67+ cells among fresh (day 0) or 2-day stimulated pDCs. Right: 

number of CellTrace Violet low (CTVlo) cells among fresh, 2-, or 6-day stimulated pDCs (n 

= 4–11 in 2–7 experiments). The statistics are determined by t test.

(K) MLR using fresh or 2-day stimulated pDCs (DC:T cell ratio 1:20, n = 3–4 donors in 3 

experiments). The statistics are determined by 1-way ANOVA against day 0 or t test.

Bar graphs shown as mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. See 

also Figure S4 and Table S2.
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Figure 5. CD40L-Stimulated pDCs Share Chromatin Accessibility Landscape with tDCs and 
cDCs
(A) Modified GSEA to test for enrichment of DC subset chromatin signatures among 

CD40L- or IMIQ-stimulated pDCs (see Quantification and Statistical Analysis). The bubble 

size represents the Spearman’s rank correlation coefficient. The color indicates the 

normalized enrichment score (NES).

(B) Top Gene Ontology terms enriched in CD40L-stimulated pDCs compared to freshly 

isolated (day 0) pDCs. The terms are colored and ranked by −log10 FDR. The bubble size 

represents the term fold enrichment.
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(C) Left: histogram of difference in TF scores between CD40L-stimulated pDCs and day 0 

pDCs. The significantly different TF motifs (ΔTF score > |0.08| and p-adj < 0.05) are 

colored. Right: boxplots of TF scores.

(D) Heatmap of differentially active TFs from (C). The color indicates the scaled TF score 

for each subset.

(E) HINT-ATAC footprint plots for indicated TFs. The data are pooled from 3–4 donors per 

condition.

(F) Bar graphs of scaled scores for select TFs from (D) (n = 4–17 samples per cell type).

(G) Top: frequency of pDCs expressing high levels of TCF4 protein measured by flow 

cytometry (n = 13–17 in 10–14 experiments). Bottom: ZBTB18 transcript variant 1 

expression measured by RT-PCR (n = 3–4 in 3–4 experiments). The statistics are determined 

by t test.

(H) Top: representative histogram of ID2 mRNA expression in 2-day CD40L-stimulated 

pDCs measured by PrimeFlow. The unfilled histogram represents the control. Bottom: 

frequency of ID2+ pDCs (n = 2 in 2 experiments).

(I) Scatterplot comparing changes between CD40L stimulation and TCF4 silencing. x axis: 

FC of mRNA expression between TCF4 and control small hairpin RNA (shRNA) conditions 

in the pDC cell line CAL-1 (microarray) (Ceribelli et al., 2016). y axis: ΔTF score between 

freshly isolated (day 0) and CD40L-stimulated pDCs (ATAC-seq). Shown are TFs that were 

significantly different in both analyses.

Bar graphs show means ± SDs. *p < 0.05 and ****p < 0.0001. See also Figure S5.
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Figure 6. Single-Cell Trajectory of pDC Cell State Conversion during Stimulation
(A) Wanderlust trajectory of fresh (day 0), 2-, or 6-day CD40L-stimulated bona fide pDCs 

analyzed by CyTOF; each point represents 1 cell (1 experiment of 3–4).

(B) Normalized expression of pDC and cDC markers plotted along Wanderlust trajectory 

axis.

(C) As in (A), but colored by expression of key markers.

(D) Statistical Scaffold maps of CyTOF data from fresh (day 0), 2-, or 6-day CD40L-

stimulated pDCs (1 representative donor).

(E) Summary graph of frequency of pDCs mapped to each landmark node (n = 2–3 donors 

in 3–4 experiments).

(F) Protein expression in fresh (day 0), 2-, or 6-day CD40L-stimulated bona fide pDCs 

analyzed by flow cytometry and CyTOF (n = 3–18 donors in 3–16 experiments). Statistics 

determined by Kruskal-Wallis with Dunn’s multiple comparisons test.
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(G) Functional analysis of pDCs that mapped to each landmark node. Two-day CD40L-

stimulated pDCs were re-sorted based on phenotype. Left: IFN-α in culture supernatant after 

24 h CpG-A, measured by ELISA. Right: T cell proliferation in MLR (n = 2–3 donors in 2–

3 experiments).

Bar graphs show means ± SDs. **p < 0.01, ***p < 0.001, and ****p < 0.0001. See also 

Figure S6 and Table S2.
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Figure 7. ATAC-Seq Identifies Regulatory Regions Overlapping Autoimmune Disease-Related 
SNPs
(A) Enrichment for autoimmune disease-associated SNPs performed by CHEERS. Color 

indicates p value, asterisk indicates p < 0.05. See Figure S7 for the complete list.

(B) Left: genome track of the IRF8 locus showing 1 representative donor. Right: genome 

track of the +58-kb IRF8 enhancer showing pDCs, major immune cell lineages (Calderon et 

al., 2019), and TCF4 ChIP-seq data (Ceribelli et al., 2016). Bottom panel shows the 

schematic of SNP positions in relation to TCF4 binding sites (E-boxes).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-human CD11b (clone ICRF44) Nd144 Fluidigm Cat# 3144001B; RRID:AB_2714152

Anti-human BDCA2/CD303 (clone 201A) Sm147 Fluidigm Cat# 3147009B; RRID:AB_2714153

Anti-human CD16 (clone 3G8) Nd148 Fluidigm Cat# 3148004B; RRID:AB_2661791

Anti-human CD127/IL-7R (clone A019D5) Sm149 Fluidigm Cat# 3149011B; RRID:AB_2661792

Anti-human CD123/IL3R (clone 6H6) Eu151 Fluidigm Cat# 3151001B; RRID:AB_2661794

Anti-human CD163 (clone GHI/61) Sm154 Fluidigm Cat# 3154007B; RRID:AB_2661797

Anti-human CD45 (clone HI30) Y89 Fluidigm Cat# 3089003; RRID:AB_2661851

Anti-human CD45 purified (clone HI30) Biolegend Cat# 304002; RRID:AB_314390

Anti-human CCR7 (clone G043H7) Tb159 Fluidigm Cat# 3159003A; RRID:AB_2714155

Anti-human CD14 (clone M5E2) Gd160 Fluidigm Cat# 3160001B; RRID:AB_2687634

Anti-human CD11c (clone Bu15) Dy162 Fluidigm Cat# 3162005B; RRID:AB_2687635

Anti-human CD117/c-kit purified (clone 104D2) Biolegend Cat# 313202; RRID:AB_314981

Anti-human BDCA3/CD141 (clone 1A4) Yb173 Fluidigm Cat# 3173002B; RRID:AB_2714156

Anti-human CD32 purified (clone FUN-2) Biolegend Cat# 303202; RRID:AB_314334

Anti-human CD335/NKp46 purified (clone 9E2) Biolegend Cat# 331902; RRID:AB_1027637

Anti-human BDCA-1/CD1c purified (clone L161) Biolegend Cat# 331502; RRID:AB_1088995

Anti-human CD1a (clone HI149) Biolegend Cat# 300102; RRID:AB_314016

Anti-human CD172a/b / SIRP alpha purified (clone SESA5) Biolegend Cat# 323802; RRID:AB_830701

Anti-human HLADR purified (clone L243) Biolegend Cat# 307651; RRID:AB_2562826

Anti-human CD34 purified (clone 561) Biolegend Cat# 343602; RRID:AB_1732014

Anti-human CD3 purified (clone UCHT1) Biolegend Cat# 300443; RRID:AB_2562808

Anti-human CD115/CSF1R purified (clone 9-4D2-1E4) Biolegend Cat# 347302; RRID:AB_2085375

Anti-human CX3CR1 purified (clone K0124E1) Biolegend Cat# 355702; RRID:AB_2561726

Anti-human CD116/GMSFR purified (clone 4H1) Biolegend Cat# 305902; RRID:AB_314568

Anti-human CLEC9A/ DNGR1 purified (clone 8F9) Biolegend Cat# 353802; RRID:AB_10983070

Anti-human CD135/ FLT3 purified (clone BV10A4H2) Biolegend Cat# 313302; RRID:AB_314987

Anti-human CD45RA purified (clone HI100) Biolegend Cat# 304102; RRID:AB_314406

Anti-human CD33 purified (clone WM53) Biolegend Cat# 303402; RRID:AB_314346

Anti-human CD2 purified (clone RPA-2.10) Biolegend Cat# 300202; RRID:AB_314026

Anti-human CD81 purified (clone 5A6) Biolegend Cat# 349502; RRID:AB_10643417

Anti-human CD5 purified (clone UCHT2) Biolegend Cat# 300602; RRID:AB_314088

Anti-human CD66b purified (clone G10F5) Biolegend Cat# 305102; RRID:AB_314494

Anti-human CD19 purified (clone HIB19) Biolegend Cat# 302202; RRID:AB_314232

Anti-APC (clone APC003) Biolegend Cat# 408005; RRID:AB_2563706

Anti-human IRF4 (clone 3E4) Biolegend Cat# 646402; RRID:AB_2280462

Anti-human IRF8 APC (clone V3GYWCH) ThermoFisher Scientific Cat# 17-9852-82; RRID:AB_2573318

Anti-human Siglec-6/CD327 PE (clone 767329) R&D Systems Cat# FAB2859P; RRID:AB_2714157
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REAGENT or RESOURCE SOURCE IDENTIFIER

Anti-human CD100- APC (clone REA316) Miltenyi Biotec Cat# 130-104-674; RRID:AB_2654323

Anti-human AXL purified (clone 108724) R&D Systems Cat# MAB154; RRID:AB_2062558

Anti-human/mouse CADM1/ SynCAM purified (clone 3.E.1) MBL Life Science Cat# CM004-3; RRID:AB_592783

Anti-human CD3 purified (OKT3) Biolegend Cat# 317302; RRID:AB_571927

Anti-human CD14 purified (HCD14) Biolegend Cat# 325602; RRID:AB_830675

Anti-human AXL Alexa Fluor 488 (clone 108724) R&D Systems Cat# FAB154G; RRID:AB_2714170

Anti-human BDCA1/CD1c APC/Cy7 (clone L161) Biolegend Cat# 331520; RRID:AB_10644008

Anti-human BDCA3/CD141 PE/Cy7 (clone M80) Biolegend Cat# 344110; RRID:AB_2561623

Anti-human BDCA3/CD141 BV785 (clone M80) Biolegend Cat# 344116; RRID:AB_2572195

Anti-human BDCA4/ CD304 APC (clone 12C2) Biolegend Cat# 354506; RRID:AB_11219600

Anti-human BDCA4/ CD304 PE (clone 12C2) Biolegend Cat# 354503; RRID:AB_11219200

Anti-human CD11c Alexa Fluor 700 (clone Bu15) Biolegend Cat# 337220; RRID:AB_2561503

Anti-human CD123 FITC (clone 6H6) Biolegend Cat# 306014; RRID:AB_2124259

Anti-human CD123 PE (clone 6H6) Biolegend Cat# 306006; RRID:AB_314580

Anti-human CD14 APC (clone M5E2) Biolegend Cat# 982506; RRID:AB_2650643

Anti-human CD14 BV785 (clone M5E2) Biolegend Cat# 301840; RRID:AB_2563425

Anti-human CD14 650 (clone M5E2) Biolegend Cat# 301836; RRID:AB_2563799

Anti-human CD16 BV650 (clone 3G8) Biolegend Cat# 302042; RRID:AB_2563801

Anti-human CD19 PerCP/Cy5.5 (clone HIB19) Biolegend Cat# 302230; RRID:AB_2073119

Anti-human CD20 PerCP/Cy5.5 (clone 2H7) Biolegend Cat# 302325; RRID:AB_893285

Anti-human CD3 PerCP/Cy5.5 (clone UCHT1) Biolegend Cat# 300430; RRID:AB_893299

Anti-human CD335 PerCP/Cy5.5 (clone 9E2) Biolegend Cat# 331920; RRID:AB_2561665

Anti-human CD66b PerCP/Cy5.5 (clone G10F5) Biolegend Cat# 305108; RRID:AB_2077855

Anti-human CD80 BV421 (clone 2D10) Biolegend Cat# 305222; RRID:AB_2564407

Anti-human HLADR BV605 (clone L243) Biolegend Cat# 307640; RRID:AB_2561913

Anti-human/mouse TCF4/E2-2 purified (clone NCI-R159-6) Abcam Cat# ab217668; RRID:AB_2714172

Anti-human Ki67 PerCP/Cy5.5 (clone Ki-67) Biolegend Cat# 350520; RRID:AB_2562295

Anti-human CD3 PE/Cy7 (clone UCTH1) Biolegend Cat# 300419; RRID:AB_439780

Anti-human CD4 BV785 (clone RPA-T4) Biolegend Cat# 300554; RRID:AB_2564382

Anti-human CD8 APC/Cy7 (clone RPA-T8) Biolegend Cat# 301016; RRID:AB_314134

Anti-human IFNγ Alexa Fluor 700 (clone B27) Biolegend Cat# 506516; RRID:AB_961351

Anti-human FOXP3 APC (clone PCH101) ThermoFisher Scientific Cat# 17-4776-41; RRID:AB_1603281

Anti-human CD33 BV650 (clone WM53) Biolegend Cat# 303430; RRID:AB_2650934

Anti-human CD5 BUV737 (clone UCHT2) BD Biosciences Cat# 564452; RRID:AB_2714177

Biological Samples

Whole blood from healthy donors Obtained from donors with 
informed consent. IRB approved by 
Stanford University Research 
Compliance Office.

N/A

Chemicals, Peptides, and Recombinant Proteins

Ficoll-Paque PLUS GE Healthcare Cat# 300-25
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REAGENT or RESOURCE SOURCE IDENTIFIER

1M Tris-HCl, pH 7.4 VWR Cat# 100216-458

NaCl ThermoFisher Scientific Cat# AM9760G

MgCl2 ThermoFisher Scientific Cat# AM9530G

Tween-20 Millipore-Sigma Cat# 11332465001

Digitonin VWR Cat# PAG9441

Nonidet P40 Substitute Millipore-Sigma Cat# 11332473001

IGEPAL CA-630 Millipore-Sigma Cat# 18896

Tn5 transposase Produced as described in Picelli et 
al., 2014

N/A

SYBR Green I Nucleic Acid Gel ThermoFisher Scientific Cat# S7563

Dulbecco’s Phosphate Buffered Saline Corning Cat# 21-031-CV

Fetal Bovine Serum, qualified, US origin GIBCO Cat# 26140079

RPMI 1640 with L- Glutamine Corning Cat# 10040CV

L-glutamine Solution Corning Cat# 25005CI

Sodium Pyruvate Solution Corning Cat# 25000CI

Penicillin-Streptomycin Corning Cat# 30002CI

HEPES solution Corning Cat# 25060CI

MEM Nonessential Amino Acid Solution Corning Cat# 25025CI

Recombinant Human IL-3 R&D Systems Cat# 203IL010CF

EDTA 0.5M pH 8.0 Corning Cat# 46034CI

ACK Lysis Buffer Lonza Cat# 10-548E

Benzonase Nuclease Millipore-Sigma Cat# E1014-25KU

Cell-ID Intercalator-Ir Fluidigm Cat# 201192A

Cell-ID Cisplatin Fluidigm Cat# 201064

5(6)-Carboxyfluorescein diacetate N-succinimidyl ester Millipore-Sigma Cat# 21888-25MG-F

CellTrace Violet Cell Proliferation Kit ThermoFisher Scientific Cat# C34557

Bovine Serum Albumin solution 30% ± 2% in 0.85% sodium 
chloride, aseptically filled

Millipore-Sigma Cat# A7284-50ML

Dimethyl sulfoxide > 95% Millipore-Sigma Cat# D4540

Paraformaldehyde 16% aqueous solution Electron Microscopy Sciences Cat# 15710

Indium 113 metal chloride Trace Sciences International In-113

Indium 115 metal chloride Trace Sciences International In-115

CpG-A ODN 2216 Invivogen Cat# tlrl-2216-1

Imiquimod Invivogen Cat# tlrl-imqs

Recombinant Human CD40 Ligand R&D Systems Cat# 6420CL025CF

Critical Commercial Assays

Foxp3 / Transcription Factor Fixation/Permeabilization 
Concentrate and Diluent

ThermoFisher Scientific Cat# 00-5521-00

Permeabilization Buffer (10X) ThermoFisher Scientific Cat# 00-8333-56

Maxpar X8 Multimetal Labeling Kit Fluidigm Fluidigm Cat# 201300

LIVE/DEAD Fixable Dead Cell Stain Sampler Kit ThermoFisher Scientific Cat# L34960
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REAGENT or RESOURCE SOURCE IDENTIFIER

Dynabeads Pan Mouse IgG ThermoFisher Scientific Cat# 11042

Plasmacytoid Dendritic Cell Isolation Kit II, human MACS, Miltenyi Biotec Cat# 130-097-415

Pan T cell Isolation Kit, human MACS, Miltenyi Biotec Cat# 130-096-535

Human IFN Alpha Multi-Subtype ELISA Kit (TCM) PBL Assay Science Cat# 41105-1

BD Cytometric Bead Array Human Enhanced Sensitivity 
Master Buffer Kit

BD Biosciences Cat# 561521

BD Cytometric Bead Array Human IL-6 Enhanced 
Sensitivity Flex Set

BD Biosciences Cat# 561512

BD Cytometric Bead Array Human TNF Enhanced 
Sensitivity Flex Set

BD Biosciences Cat# 561516

BD CompBead Anti-Mouse Ig, κ/Negative Control 
Compensation Particles Set

BD Biosciences Cat# 552843

Alexa Fluor 647 Antibody Labeling Kit ThermoFisher Scientific Cat# A20186

NucleoSpin RNA XS kit Takara Bio Cat# 740902.10

NEBNext High Fidelity 2X PCR Master Mix New England Biolabs Cat# M0541S

iScript Reverse Transcription Supermix Bio-Rad Laboratories Cat# 1708840

iTaq Universal SYBRGreen Supermix Bio-Rad Laboratories Cat# 1725120

QIAGEN MinElute PCR Purification Kit QIAGEN Cat# 28004

Nextera DNA Library Preparation Kit Illumina Cat# FC-121-1030

Zymo DNA Clean and Concentrator-5 Kit Zymo Research Corporation Cat# D4013

PrimeFlow RNA Assay Kit ThermoFisher Scientific Cat# 88-18005-204

ID2 PrimeFlow Probe Set (A488) ThermoFisher Scientific Cat# PF210; Assay ID: VA4-3086868-
PF

Deposited Data

ATAC-seq data (generated here) NCBI GEO GEO: GSE146896

Human DC scRNA-seq https://singlecell.broadinstitute.org/
single_cell/study/atlas-of-human-
blood-dendritic-cells-and-
monocytes

Broad Single Cell Portal study “Atlas 
of human blood dendritic cells and 
monocytes”

Mouse DC RNA-seq NCBI GEO GEO: GSE76132

Other Immune Lineage ATAC-seq NCBI GEO GEO: GSE118189

TCF4 ChIP-seq NCBI GEO GEO: GSE76147

TCF4 silencing microarray NCBI GEO GEO: GSE75650

Zbtb18 silencing microarray NCBI GEO GEO: GSE12993

Klf12−/− mouse RNA-seq NCBI GEO GEO: GSE128962

Software and Algorithms

GraphPad Prism 6 GraphPad Software, Inc. https://www.graphpad.com/scientific-
software/prism/

MATLAB N/A https://www.mathworks.com/products/
matlab.html

Cytofkit N/A https://bioconductor.riken.jp/
packages/3.7/bioc/html/cytofkit.html

FlowJo Software v10.0.8 TreeStar, Inc https://www.flowjo.com/solutions/
flowjo

R N/A https://www.R-project.org/
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https://bioconductor.riken.jp/packages/3.7/bioc/html/cytofkit.html
https://www.flowjo.com/solutions/flowjo
https://www.flowjo.com/solutions/flowjo
https://www.R-project.org/
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REAGENT or RESOURCE SOURCE IDENTIFIER

ggplot2 v2.2.1 N/A https://github.com/tidyverse/ggplot2

viridis v0.3.0 N/A https://github.com/sjmgarnier/viridis

limma v3.44.3 N/A https://bioconductor.org/packages/
release/bioc/html/limma.html

DESeq2 v1.28.1 N/A https://bioconductor.org/packages/
release/bioc/html/DESeq2.html

cqn v1.34.0 N/A https://www.bioconductor.org/
packages/release/bioc/html/cqn.html

PVCA v1.28.0 N/A https://www.bioconductor.org/
packages/release/bioc/html/pvca.html

chromVAR v1.10.0 Schep et al., 2017 http://bioconductor.org/packages/
release/bioc/html/chromVAR.html

SparK N/A https://github.com/harbourlab/SparK/
blob/master/README.md

HINT-ATAC Li et al., 2019b http://www.regulatory-genomics.org/
hint/introduction/

deeptools Ramírez et al., 2016 https://deeptools.readthedocs.io/en/
develop/content/installation.html

ENCODE-DCC atac-seq pipeline N/A https://github.com/ENCODE-DCC/
atac-seq-pipeline

ENCODE-DCC chip-seq pipeline N/A https://github.com/ENCODE-DCC/
chip-seq-pipeline2

bedtools Quinlan and Hall., 2010 https://github.com/arq5x/bedtools2

ComBat (sva package) Johnson et al., 2007 https://bioconductor.org/packages/
release/bioc/html/sva.html

CHEERS Soskic et al., 2019 https://github.com/trynkaLab/CHEERS

GSEA Mootha et al., 2003; Subramanian et 
al., 2005

https://www.gsea-msigdb.org/gsea/
downloads.jsp

GREAT McLean et al., 2010 http://great.stanford.edu/public/html/
index.php

ReVIGO Supek et al., 2011 http://revigo.irb.hr/

Wanderlust Bendall et al., 2014 https://dpeerlab.github.io/dpeerlab-
website/cyt-download.html

Wishbone Setty et al., 2016 https://github.com/ManuSetty/
wishbone

Scaffold Spitzer et al., 2015 https://github.com/nolanlab/scaffold
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